2.624

2020影响因子

(CJCR)

  • 中文核心
  • EI
  • 中国科技核心
  • Scopus
  • CSCD
  • 英国科学文摘

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码
显示方式:
目录
目录
2022, 48(6).  
[封面浏览] [PDF 8040KB](26)
综述
迭代学习模型预测控制研究现状与挑战
马乐乐, 刘向杰, 高福荣
2022, 48(6): 1385-1401.   doi: 10.16383/j.aas.c210818
[摘要](662) [HTML全文](365) [PDF 1163KB](485)
摘要:
历经20多年的发展, 迭代学习模型预测控制在理论和应用方面都取得了长足的进步. 但由于批次工业过程复杂多样、结构各异、精细化程度较高, 现有的迭代学习模型预测控制理论仍面临着巨大挑战. 本文简要回顾了迭代学习模型预测控制理论的产生及发展, 阐述了二维预测模型、控制律迭代优化及二维稳定性等基本理论问题; 分析了现有方法在理论及应用方面的局限性, 说明了迭代学习模型预测控制在迭代建模、高效优化、变工况适应等方面面临的难点问题, 提出了可行的解决方案. 简要综述了近年来迭代学习模型预测控制理论和应用层面的发展动态, 指出了研究复杂非线性系统、快速系统、变工况系统对进一步完善其理论体系和拓宽其应用前景的意义, 展望了成品质量控制和动态经济控制等重要的未来研究方向.
图像异常检测研究现状综述
吕承侃, 沈飞, 张正涛, 张峰
2022, 48(6): 1402-1428.   doi: 10.16383/j.aas.c200956
[摘要](3023) [HTML全文](2093) [PDF 4391KB](628)
摘要:
图像异常检测是计算机视觉领域的一个热门研究课题, 其目标是在不使用真实异常样本的情况下, 利用现有的正常样本构建模型以检测可能出现的各种异常图像, 在工业外观缺陷检测、医学图像分析、高光谱图像处理等领域有较高的研究意义和应用价值. 本文首先介绍了异常的定义以及常见的异常类型. 然后, 本文根据在模型构建过程中有无神经网络的参与, 将图像异常检测方法分为基于传统方法和基于深度学习两大类型, 并分别对相应的检测方法的设计思路、优点和局限性进行了综述与分析. 其次, 梳理了图像异常检测任务中面临的主要挑战. 最后, 对该领域未来可能的研究方向进行了展望.
论文与报告
基于多阶运动参量的四旋翼无人机识别方法
刘孙相与, 李贵涛, 詹亚锋, 高鹏
2022, 48(6): 1429-1447.   doi: 10.16383/j.aas.c200862
[摘要](727) [HTML全文](251) [PDF 3435KB](142)
摘要:
以小型多轴无人机为代表的“低慢小”目标, 通常难以被常规手段探测, 而此类目标又会严重威胁某些重要设施. 因此对该类目标的识别已经成为一个亟待解决的重要问题. 本文基于目标运动特征, 提出了一种无人机目标识别方法, 并揭示了二阶运动参量以及重力方向运动参量是无人机识别过程中的关键参数. 该方法首先提取候选目标的多阶运动参量, 建立梯度提升树(Gradient boosting decision tree, GBDT)和门控制循环单元(Gate recurrent unit, GRU)记忆神经网络分别完成短时和长期识别, 然后融合表观特征识别结果得到最终判别结果. 此外, 本文还建立了一个综合多尺度无人机数据集(Multi-scale UAV dataset, MUD), 本文所提出的方法在该数据集上相对于传统基于运动特征的方法, 其识别精度(Average precision, AP)提升103%, 融合方法提升26%.
一致性约束下末制导系统最大可容许模式决策延迟
项盛文, 范红旗, 达凯, 付强
2022, 48(6): 1448-1456.   doi: 10.16383/j.aas.c200717
[摘要](639) [HTML全文](307) [PDF 957KB](55)
摘要:
对于大机动目标拦截问题, 模式决策器是基于逻辑的集成估计导引系统(Integrated estimation and guidance, IEG)中的一个重要组件. 为了保证系统的估计精度和制导性能, 模式决策器的模式延迟应尽可能小. 本文针对末制导场景, 首先推导了离散时间系统零控脱靶量的估计误差模型, 然后在一致性约束条件下给出了系统最大可容许模式决策延迟的数值计算方法. 本文的研究结果可为IEG系统中模式决策器的设计提供指标参考.
基于自注意力模态融合网络的跨模态行人再识别方法研究
杜鹏, 宋永红, 张鑫瑶
2022, 48(6): 1457-1468.   doi: 10.16383/j.aas.c190340
[摘要](261) [HTML全文](125) [PDF 1727KB](153)
摘要:
行人再识别是实现多目标跨摄像头跟踪的核心技术, 该技术能够广泛应用于安防、智能视频监控、刑事侦查等领域. 一般的行人再识别问题面临的挑战包括摄像机的低分辨率、行人姿态变化、光照变化、行人检测误差、遮挡等. 跨模态行人再识别相比于一般的行人再识别问题增加了相同行人不同模态的变化. 针对跨模态行人再识别中存在的模态变化问题, 本文提出了一种自注意力模态融合网络. 首先是利用CycleGAN生成跨模态图像. 在得到了跨模态图像后利用跨模态学习网络同时学习两种模态图像特征, 对于原始数据集中的图像利用SoftMax 损失进行有监督的训练, 对生成的跨模态图像利用LSR (Label smooth regularization) 损失进行有监督的训练. 之后, 使用自注意力模块将原始图像和CycleGAN生成的图像进行区分, 自动地对跨模态学习网络的特征在通道层面进行筛选. 最后利用模态融合模块将两种筛选后的特征进行融合. 通过在跨模态数据集SYSU-MM01上的实验证明了本文提出的方法和跨模态行人再识别其他方法相比有一定程度的性能提升.
污水处理过程出水水质稀疏鲁棒建模
闻超垚, 周平
2022, 48(6): 1469-1481.   doi: 10.16383/j.aas.c200707
[摘要](558) [HTML全文](225) [PDF 2319KB](94)
摘要:
污水处理过程中, 出水水质参数是衡量污水处理性能的最重要指标, 需要进行严格监测, 但现有传感技术难以对其进行实时准确地在线测量. 因此, 提出一种新型的基于随机权神经网络(Random vector functional-link networks, RVFLNs)与Schweppe型广义M估计(Generalized M-estimation, GM-estimation)的稀疏鲁棒建模方法, 用于水质指标的在线鲁棒预测. 首先, 针对常规RVFLNs隐含层矩阵存在多重共线性而导致最小二乘估计失效的问题, 利用稀疏偏最小二乘(Sparse partial least squares, SPLS)代替RVFLNs输出权值求解的最小二乘估计, 从而提出SPLS-RVFLNs. 该算法不仅可有效解决传统RVFLNs的多重共线性问题, 还可以进行建模变量选择, 提高模型的可解释性和最终的预测精度. 同时, 考虑到SPLS-RVFLNs在求解输出权值时会同时受到隐含层矩阵和输出层矩阵两个方向离群点的影响, 进一步采用Schweppe型广义M估计对SPLS-RVFLNs进行鲁棒改进, 从而提出GM-SPLS-RVFLNs, 可显著提高模型的稀疏鲁棒性能. 最后, 将提出的GM-SPLS-RVFLNs用于污水处理过程出水水质指标预测建模, 数据实验结果表明所提方法不仅解决了常规RVFLNs多重共线性和鲁棒性差的问题, 而且具有很好的预测精度和泛化性能.
基于FPSO的电力巡检机器人的广义二型模糊逻辑控制
吴庆, 赵涛, 佃松宜, 郭锐, 李胜川, 方红帏, 韩吉霞
2022, 48(6): 1482-1492.   doi: 10.16383/j.aas.c190306
[摘要](244) [HTML全文](139) [PDF 2693KB](62)
摘要:
针对电力巡检机器人(Power-line inspection robot, PLIR)的平衡调节问题, 设计了广义二型模糊逻辑控制器(General type-2 fuzzy logic controller, GT2FLC); 针对GT2FLC中隶属函数参数难以确定的问题, 通过模糊粒子群(Fuzzy particle swarm optimization, FPSO)算法来优化隶属函数参数. 将GT2FLC的控制性能与区间二型模糊逻辑控制器(Interval type-2 fuzzy logic controller, IT2FLC)和一型模糊逻辑控制器(Type-1 fuzzy logic controller, T1FLC) 的控制性能进行对比. 除此之外, 还考虑了外部干扰对三种控制器控制效果的影响. 仿真结果表明, GT2FLC具有更好的性能和处理不确定性的能力.
基于多源数据的电网一次调频能力平行计算研究
张江丰, 王飞跃, 苏烨, 陈波, 汪自翔, 孙坚栋, 尹峰
2022, 48(6): 1493-1503.   doi: 10.16383/j.aas.c190512
[摘要](111) [HTML全文](69) [PDF 2596KB](71)
摘要:
为解决电网一次调频性能难以估计的问题, 本文提出了基于多源数据的电网一次调频性能平行计算平台. 通过采集整合OMS (Operations management system)、WAMS (Wide area measurement system)、SCADA (Supervisory control and data acquisition)等系统的各类型一次调频数据, 以极大似然估计、数值拟合等方法构建机组一次调频性能功频图谱. 采用均方差分析建立电网一次调频性能数学模型, 基于并网运行机组的一次调频性能功频图谱, 估算出当前电网的实际一次调频性能. 算例计算表明, 本文所提出的计算方法能够有效兼顾机组类型的静态特性和运行工况的动态特性, 并以平行执行方式完成人工估算系统与实际电力系统的滚动优化, 实现了电网一次调频性能的在线全面估计, 为电网频率管理与控制提供数据决策支持.
量子线性卷积及其在图像处理中的应用
刘兴奥, 周日贵, 郭文宇
2022, 48(6): 1504-1519.   doi: 10.16383/j.aas.c210637
[摘要](352) [HTML全文](242) [PDF 9812KB](114)
摘要:
线性卷积在图像处理中发挥着重要作用, 但是在处理海量高分辨率图像时, 求解线性卷积会消耗许多计算资源. 为此, 本文就量子线性卷积及其在图像处理问题中的应用开展相关研究, 首先提出单通道, 单位步长, 零补充情况下的量子一维和二维线性卷积, 然后实现多通道, 非单位步长, 非零补充的情况, 最后将量子二维线性卷积应用于量子图像平滑, 量子图像锐化和量子图像边缘检测. 通过理论分析证明了量子线性卷积的空间复杂度\begin{document}${\rm{O}}(\mathrm{log}M)$\end{document}和时间复杂度\begin{document}${\rm{O}}({\mathrm{log}}^{2}M)$\end{document}较经典线性卷积有指数级下降, 且基于Qiskit的仿真实验成功验证了量子线性卷积和量子图像处理算法的正确性和可行性.
基于信息几何的高超声速飞行器搜索方法
罗艺, 谭贤四, 王红, 曲智国
2022, 48(6): 1520-1529.   doi: 10.16383/j.aas.c200738
[摘要](525) [HTML全文](120) [PDF 1588KB](54)
摘要:
由于地面雷达受视距限制无法对高超声速飞行器进行连续观测, 针对高超声速飞行器飞出雷达视距盲区后难以搜索的问题, 提出了一种基于信息几何的雷达搜索方法. 本文利用非参数概率密度估计法对高超声速飞行器的出现位置的概率密度进行估计, 并将估计的位置概率密度作为雷达搜索的引导信息; 根据引导信息确定搜索区域, 以区域覆盖率最大化作为优化目标在搜索区域内进行波位编排; 基于信息几何理论, 将搜索策略建模为统计流形, 利用KL (Kullback-Leibler)散度来度量搜索策略与引导信息之间的差异, 通过最小化KL散度获得最优搜索策略. 通过仿真实验验证了本文所提方法的有效性和可行性, 并验证了相比其他搜索方法具有较明显的优势.
一种非仿射高超声速飞行器输出反馈控制方法
路遥
2022, 48(6): 1530-1542.   doi: 10.16383/j.aas.c210131
[摘要](500) [HTML全文](509) [PDF 1528KB](87)
摘要:
针对一类考虑模型非仿射特性和执行机构饱和特性的高超声速飞行器轨迹跟踪控制问题, 提出一种基于backstepping的输出反馈非线性控制方法. 考虑执行机构故障激发的未知非线性动态, 建立了非仿射形式飞行器模型. 为解决实际工程应用中存在的气流角测量值难以使用的问题, 利用高度和速度测量值以及高阶微分器设计了航迹倾角在线估计方法. 基于跟踪微分器设计了模型干扰项的估计方法, 并解决了backstepping方法应用中存在的“微分项爆炸”问题. 引入辅助系统降低控制量饱和带来的不利影响. 基于Lyapunov理论证明了闭环系统的稳定性. 最后, 通过对比仿真实验验证了所提方法的有效性.
一种基于改进AOD-Net的航拍图像去雾算法
李永福, 崔恒奇, 朱浩, 张开碧
2022, 48(6): 1543-1559.   doi: 10.16383/j.aas.c210232
[摘要](514) [HTML全文](152) [PDF 1983KB](126)
摘要:
针对航拍图像易受雾气影响, AOD-Net (All in one dehazing network)算法对图像去雾后容易出现细节模糊、对比度过高和图像偏暗等问题, 本文提出了一种基于改进AOD-Net的航拍图像去雾算法. 本文主要从网络结构、损失函数、训练方式三个方面对AOD-Net进行改良. 首先在AOD-Net的第二个特征融合层上添加了第一层的特征图, 用全逐点卷积替换了传统卷积方式, 并用多尺度结构提升了网络对细节的处理能力. 然后用包含有图像重构损失函数、SSIM (Structural similarity)损失函数以及TV (Total variation)损失函数的复合损失函数优化去雾图的对比度、亮度以及色彩饱和度. 最后采用分段式的训练方式进一步提升了去雾图的质量. 实验结果表明, 经该算法去雾后的图像拥有令人满意的去雾结果, 图像的饱和度和对比度相较于AOD-Net更自然. 与其他对比算法相比, 该算法在合成图像实验、真实航拍图像实验以及算法耗时测试的综合表现上更好, 更适用于航拍图像实时去雾.
基于改进YOLOv3算法的公路车道线检测方法
崔文靓, 王玉静, 康守强, 谢金宝, 王庆岩, MIKULOVICHVladimir Ivanovich
2022, 48(6): 1560-1568.   doi: 10.16383/j.aas.c190178
[摘要](333) [HTML全文](206) [PDF 1194KB](180)
摘要:
针对YOLOv3算法在检测公路车道线时存在准确率低和漏检概率高的问题, 提出一种改进YOLOv3网络结构的公路车道线检测方法.该方法首先将图像划分为多个网格, 利用K-means++聚类算法, 根据公路车道线宽高固有特点, 确定目标先验框数量和对应宽高值; 其次根据聚类结果优化网络Anchor参数, 使训练网络在车道线检测方面具有一定的针对性; 最后将经过Darknet-53网络提取的特征进行拼接, 改进YOLOv3算法卷积层结构, 使用GPU进行多尺度训练得到最优的权重模型, 从而对图像中的车道线目标进行检测,并选取置信度最高的边界框进行标记.使用Caltech Lanes数据库中的图像信息进行对比试验, 实验结果表明, 改进的YOLOv3算法在公路车道线检测中平均准确率(Mean average precision, mAP)为95%, 检测速度可达50帧/s, 较YOLOv3原始算法mAP值提升了11%, 且明显高于其他车道线检测方法.
参考点自适应调整下评价指标驱动的高维多目标进化算法
何江红, 李军华, 周日贵
2022, 48(6): 1569-1589.   doi: 10.16383/j.aas.c200975
[摘要](139) [HTML全文](63) [PDF 1206KB](53)
摘要:
在具有不同Pareto前沿形状的优化问题上, 基于参考点的高维多目标进化算法表现出较差的通用性. 为了解决这个问题, 提出参考点自适应调整下评价指标驱动的高维多目标进化算法(Many-objective evolutionary algorithm driven by evaluation indicator under adaptive reference point adjustment, MaOEA-IAR). MaOEA-IAR提出Pareto前沿形状监测基础上的参考点自适应策略, 利用该策略选择一组候选解作为初始参考点; 然后通过曲线参数对参考点位置进行调整; 将最终得到的能够适应不同Pareto前沿的参考点用于计算增强的反世代距离指标, 基于指标值设计适应度函数作为选择标准. 实验证明提出的算法在处理各种Pareto前沿形状的优化问题时能获得较好的性能, 算法通用性高.
基于轮胎状态刚度预测的极限工况路径跟踪控制研究
王国栋, 刘洋, 李绍松, 卢晓晖, 张邦成
2022, 48(6): 1590-1600.   doi: 10.16383/j.aas.c190349
[摘要](89) [HTML全文](99) [PDF 2155KB](48)
摘要:
为解决高速极限工况下自动驾驶车辆紧急避撞时传统路径跟踪控制方法因轮胎力表达不精确导致的路径跟踪失败问题, 提出一种基于轮胎状态刚度预测的模型预测路径跟踪控制方法. 首先, 基于非线性UniTire轮胎模型求解的轮胎状态刚度对非线性轮胎力进行线性化处理. 其次, 基于期望路径信息提出状态刚度预测方法, 实现预测时域内轮胎力的预测和线性化. 最后, MATLAB和CarSim联合仿真实验表明: 所提出的方法能够明显改善高速极限工况下的避撞控制效果.
基于遗传乌燕鸥算法的同步优化特征选择
贾鹤鸣, 李瑶, 孙康健
2022, 48(6): 1601-1615.   doi: 10.16383/j.aas.c200322
[摘要](1057) [HTML全文](239) [PDF 1210KB](98)
摘要:
针对传统支持向量机方法用于数据分类存在分类精度低的不足问题, 将支持向量机分类方法与特征选择同步结合, 并利用智能优化算法对算法参数进行优化研究. 首先将遗传算法(Genetic algorithm, GA)和乌燕鸥优化算法(Sooty tern optimization algorithm, STOA)进行混合, 先通过对平均适应度值进行评估, 当个体的适应度函数值小于平均值时采用遗传算法对其进行局部搜索的加强, 否则进行乌燕鸥本体优化过程, 同时将支持向量机内核函数和特征选择目标共同作为优化对象, 利用改进后的STOA-GA寻找最适应解, 获得所选的特征分类结果. 其次, 通过16组经典UCI数据集和实际乳腺癌数据集进行数据分类研究, 在最佳适应度值、所选特征个数、特异性、敏感性和算法耗时方面进行对比研究, 实验结果表明, 该算法可以更加准确地处理数据, 避免冗余特征干扰, 在数据挖掘领域具有更广阔的工程应用前景.
短文
一种新颖的深度因果图建模及其故障诊断方法
唐鹏, 彭开香, 董洁
2022, 48(6): 1616-1624.   doi: 10.16383/j.aas.c200996
[摘要](908) [HTML全文](482) [PDF 908KB](203)
摘要:
为了实现复杂工业过程故障检测和诊断一体化建模, 提出了一种新颖的深度因果图建模方法. 首先, 利用循环神经网络建立深度因果图模型, 将Group Lasso稀疏惩罚项引入到模型训练中, 自动地检测过程变量间的因果关系. 其次, 利用模型学习到的条件概率预测模型对每个变量建立监测指标, 并融合得到综合指标进行整体工业过程故障检测. 一旦检测到故障, 对故障样本构建变量贡献度指标, 隔离故障相关变量, 并通过深度因果图模型的局部因果有向图诊断故障根源, 辨识故障传播路径. 最后, 通过田纳西−伊斯曼过程进行仿真验证, 实验结果验证了所提方法的有效性.
本刊经同行评议拟录用的文章,目前在编校阶段,尚未确定卷期及页码,已有DOI。
显示方式:
基于改进SAE和双向LSTM的滚动轴承RUL预测方法
康守强, 周月, 王玉静, 谢金宝, MIKULOVICH Vladimir Ivanovich
当前状态:  doi: 10.16383/j.aas.c190796
[摘要](106) [HTML全文](84) [PDF 2915KB](8)
摘要:
针对稀疏自动编码器(Sparse auto encoder, SAE)采用sigmoid激活函数容易造成梯度消失的问题, 用一种新的Tan函数替代原有的sigmoid函数; 针对SAE采用KL (Kullback-Leibler) 散度进行稀疏性约束在回归预测方面的局限性, 以dropout机制替代KL散度实现网络的稀疏性. 利用改进SAE对滚动轴承振动信号进行无监督深层特征自适应提取, 无需人工设计标签进行有监督微调. 同时, 考虑到滚动轴承剩余使用寿命(Remaining useful life, RUL)预测方法一般仅考虑过去信息而忽略未来信息, 引入双向长短时记忆网络(Bi-directional long short-term memory, Bi-LSTM)构建滚动轴承RUL的预测模型. 在2个轴承数据集上的实验结果均表明, 所提基于改进SAE和Bi-LSTM的滚动轴承RUL预测方法不仅可以提高模型的收敛速度而且具有较低的预测误差.
基于区块链的电子病历数据共享方案
牛淑芬, 陈俐霞, 李文婷, 王彩芬, 杜小妮
当前状态:  doi: 10.16383/j.aas.c190801
[摘要](0) [HTML全文](0) [PDF 1617KB](0)
摘要:
以区块链为数据存储平台的电子病历系统是当下研究的热点. 存储在区块链上的数据是不可变的, 这加强了数据的安全性. 提出了一个基于区块链的电子病历数据共享方案, 实现了患者和第三方数据用户在不侵犯患者隐私的前提下共享患者电子病历. 使用私有链与联盟链构造方案的系统模型, 医院服务器上存储患者的电子病历密文, 私有链上存储患者病历密文的哈希值和关键字索引, 联盟链上存储由关键字索引构成的安全索引. 同时利用可搜索加密技术实现了联盟链上对关键字的安全搜索, 运用代理重加密算法实现了第三方数据用户对患者电子病历的共享. 通过数值实验对方案进行了性能评估.
基于条件生成对抗网络的书法字笔画分割
张巍, 张筱, 万永菁
当前状态:  doi: 10.16383/j.aas.c190141
[摘要](34) [HTML全文](8) [PDF 1295KB](16)
摘要:
毛笔书法作为中华传统艺术的精华, 需要在新的时代背景下继续传承和发扬. 书法字是以笔画为基本单元组成的复杂图形, 如果要分析书法结构, 笔画分割是首要的步骤. 传统的笔画分割方法主要利用细化法从汉字骨架上提取特征点, 分析交叉区域的子笔画拓扑结构关系来分割笔画. 本文分析了传统笔画分割基于底层特征拆分笔画的局限性, 利用条件生成对抗网络(Conditional generative adversarial network, CGAN)的对抗学习机制直接分割笔画, 使提取笔画从先细化再分割改进为直接分割. 该方法能有效提取出精确的笔画, 得到的高层语义特征和保留完整信息的单个笔画利于后续对书法轮廓和结构的评价.
基于上下文和浅层空间编解码网络的图像语义分割方法
罗会兰, 黎宵
当前状态:  doi: 10.16383/j.aas.c190372
[摘要](26) [HTML全文](1) [PDF 1720KB](14)
摘要:
当前图像语义分割研究基本围绕如何提取有效的语义上下文信息和还原空间细节信息两个因素来设计更有效算法. 现有的语义分割模型, 有的采用全卷积网络结构以获取有效的语义上下文信息, 而忽视了网络浅层的空间细节信息; 有的采用U型结构, 通过复杂的网络连接利用编码端的空间细节信息, 但没有获取高质量的语义上下文特征. 针对此问题, 本文提出了一种新的基于上下文和浅层空间编解码网络的语义分割解决方案. 在编码端, 采用二分支策略, 其中上下文分支设计了一个新的语义上下文模块来获取高质量的语义上下文信息, 而空间分支设计成反U型结构, 并结合链式反置残差模块, 在保留空间细节信息的同时提升语义信息. 在解码端, 本文设计了优化模块对融合后的上下文信息与空间信息进一步优化. 所提出的方法在3个基准数据集CamVid、SUN RGB-D和Cityscapes上取得了有竞争力的结果.
采用分类经验回放的深度确定性策略梯度方法
时圣苗, 刘全
当前状态:  doi: 10.16383/j.aas.c190406
[摘要](24) [HTML全文](4) [PDF 1530KB](13)
摘要:
深度确定性策略梯度(Deep deterministic policy gradient, DDPG)方法在连续控制任务中取得了良好的性能表现. 为进一步提高深度确定性策略梯度方法中经验回放机制的效率, 提出分类经验回放方法, 并采用两种方式对经验样本分类: 基于时序差分误差样本分类的深度确定性策略梯度方法(DDPG with temporal difference-error classification, TDC-DDPG)和基于立即奖赏样本分类的深度确定性策略梯度方法(DDPG with reward classification, RC-DDPG).在TDC-DDPG和RC-DDPG方法中, 分别使用两个经验缓冲池, 对产生的经验样本按照重要性程度分类存储, 网络模型训练时通过选取较多重要性程度高的样本加快模型学习. 在连续控制任务中对分类经验回放方法进行测试, 实验结果表明, 与随机选取经验样本的深度确定性策略梯度方法相比, TDC-DDPG和RC-DDPG方法具有更好的性能.
污水处理过程递推双线性子空间建模及无模型自适应控制
张帅, 周平
当前状态:  doi: 10.16383/j.aas.c190514
[摘要](14) [HTML全文](3) [PDF 2065KB](11)
摘要:
污水处理过程中, 生化反应硝态氮浓度和溶解氧浓度是决定出水水质好坏的两个最关键变量, 难以采用常规基于模型的方法进行有效控制. 本文基于数据驱动建模与控制技术, 提出一种污水处理过程递推双线性子空间辨识(Recursive bilinear subspace identification, RBLSI)建模和无模型自适应控制方法. 首先, 针对污水处理过程的非线性时变动态特性, 采用最小二乘递推双线性子空间辨识方法建立污水处理生化反应过程具有参数自适应能力的递推双线性模型; 其次, 基于建立的数据驱动模型, 采用基于多参数灵敏度分析(Multi-parameter sensitivity analysis, MPSA)和遗传粒子群优化(Genetic algorithm-particle swarm optimization, GA-PSO)算法的无模型自适应控制(Model-free adaptive control, MFAC)方法对硝态氮和溶解氧浓度进行直接数据驱动控制; 最后, 数据实验及其比较分析表明了所提方法的有效性和优越性.
基于分布式神经动态优化的综合能源系统多目标优化调度
黄博南, 王勇, 李玉帅, 刘鑫蕊, 杨超
当前状态:  doi: 10.16383/j.aas.c200168
[摘要](1018) [HTML全文](253) [PDF 2329KB](114)
摘要:
研究了基于神经动态优化的综合能源系统(Integrated energy systems, IES)分布式多目标优化调度问题. 首先, 将IES元件单元(包含负荷)作为独立的决策主体, 联合考量其运行成本和排放成本, 并计及多能源设备间的传输损耗, 提出了IES多目标优化调度模型, 该模型可描述为一类非凸多目标优化问题. 其次, 针对此类问题的求解, 提出了一种基于神经动力学系统的分布式多目标优化算法, 该算法基于动态权重的神经网络模型, 可以解决不可分离的不等式约束问题. 该算法计算负担小, 收敛速度快, 并且易于硬件实现. 仿真结果表明, 所提算法能同时协调综合能源系统的经济性和环境性这两个冲突的目标, 且获得了整个帕累托前沿, 有效降低了综合能源系统的污染物排放量和综合运行成本.
考虑输出约束的冗余驱动绳索并联机器人预设性能控制
陈正升, 程玉虎, 王雪松
当前状态:  doi: 10.16383/j.aas.c210949
[摘要](45) [HTML全文](20) [PDF 5095KB](16)
摘要:
提出一种考虑输出约束的冗余驱动绳索并联机器人(Redundantly-actuated cable driving parallel robots, RCDPRs)预设性能有限时间控制算法. 首先, 采用Newton-Euler方程推导系统动力学模型, 并建立绳索拉力优化模型保证系统正常工作; 其次, 将输出约束问题转化为位置跟踪误差的坐标变换问题, 设计给定时间衰减函数与非对称变换函数, 将约束形式的跟踪误差转化为无约束变量, 实现给定时间的输出约束; 然后, 针对滑模控制的抖振问题, 在预设性能控制中采用模型不确定与扰动估计器进行扰动估计, 并通过自适应方法对扰动估计误差进行补偿; 以此为基础, 提出一种基于精度驱动且在分段点处三阶连续的终端滑模面进行控制算法设计; 最后, 采用Lyapunov函数证明算法的有限时间收敛特性, 并以7自由度冗余驱动绳索并联机器人为控制对象进行仿真研究, 对算法进行验证.
基于干扰估计的非对称运动下飞机刹车系统模型预测控制
李繁飙, 杨皓月, 王鸿鑫, 阳春华, 廖力清
当前状态:  doi: 10.16383/j.aas.c210852
[摘要](77) [HTML全文](28) [PDF 1778KB](30)
摘要:
针对飞机在非对称运动下的双侧机轮协调控制问题, 提出一种基于滑模干扰估计的模型预测控制方法. 首先, 通过对飞机制动过程横纵方向力矩机理分析并分别考虑左右机轮对刹车性能的影响, 建立全面刻画系统动态的地面滑跑动力学模型. 在此基础上, 设计滑模观测器对侧风干扰进行实时估计, 利用补偿机制实现对侧风扰动的有效抑制. 此外, 提出基于前轮荷载状态门限特征和结合系数阈值范围特征的分析方法, 解决切换跑道环境辨识问题. 设计非线性模型预测算法, 实现飞机纵向防滑刹车和横向跑道纠偏的协调控制. 最后, 在侧风干扰、跑道切换以及不对称着陆等情况下进行仿真实验, 验证了所提出的控制策略能够有效提升刹车系统的防滑效率及纠偏性能.
多维注意力特征聚合立体匹配算法
张亚茹, 孔雅婷, 刘彬
当前状态:  doi: 10.16383/j.aas.c200778
[摘要](717) [HTML全文](292) [PDF 1463KB](55)
摘要:
现有基于深度学习的立体匹配算法在学习推理过程中缺乏有效信息交互, 而特征提取和代价聚合两个子模块的特征维度存在差异, 导致注意力方法在立体匹配网络中应用较少、方式单一. 针对上述问题, 本文提出了一种多维注意力特征聚合立体匹配算法. 设计2D注意力残差模块, 通过在原始残差网络中引入无降维自适应2D注意力残差单元, 局部跨通道交互并提取显著信息, 为匹配代价计算提供丰富有效的特征. 构建3D注意力沙漏聚合模块, 以堆叠沙漏结构为骨干设计3D注意力沙漏单元, 捕获多尺度几何上下文信息, 进一步扩展多维注意力机制, 自适应聚合和重新校准来自不同网络深度的代价体. 在三大标准数据集上进行评估, 并与相关算法对比, 实验结果表明所提算法具有更高的预测视差精度, 且在无遮挡的显著对象上效果更佳.
基于低秩约束的熵加权多视角模糊聚类算法
张嘉旭, 王骏, 张春香, 林得富, 周塔, 王士同
当前状态:  doi: 10.16383/j.aas.c190350
[摘要](21) [HTML全文](2) [PDF 1701KB](4)
摘要:
如何有效挖掘多视角数据内部的一致性以及差异性是构建多视角模糊聚类算法的两个重要问题. 本文在Co-FKM算法框架上, 提出了基于低秩约束的熵加权多视角模糊聚类算法(Entropy-weighting multi-view fuzzy C-means with low rank constraint, LR-MVEWFCM). 一方面, 从视角之间的一致性出发, 引入核范数对多个视角之间的模糊隶属度矩阵进行低秩约束; 另一方面, 基于香农熵理论引入视角权重自适应调整策略, 使算法根据各视角的重要程度来处理视角间的差异性. 本文使用交替方向乘子法(Alternating direction method of multipliers, ADMM)进行目标函数的优化. 最后, 人工模拟数据集和UCI (University of California Irvine)数据集上进行的实验结果验证了该方法的有效性.
基于驾驶员转向模型的共享控制系统
田彦涛, 赵彦博, 谢波
当前状态:  doi: 10.16383/j.aas.c190486
[摘要](19) [HTML全文](56) [PDF 3706KB](16)
摘要:
针对车辆驾驶对于共享控制系统实用性的需求, 提出了基于驾驶员转向模型的共享控制系统. 基于驾驶员的视觉预瞄特性与神经肌肉特性建立了驾驶员转向模型, 通过遗传算法辨识模型参数并分析其与车速和道路曲率之间的函数关系; 采用模糊权重分配策略合理分配驾驶权重; 本文利用基于所开发的CarMaker驾驶模拟实验平台, 对系统进行在线测试和验证, 结果表明该系统不仅能够更好地提升车辆的轨迹跟踪精度和安全性, 辅助驾驶员转向, 还能够极大地减轻驾驶员负荷.
基于变分信息瓶颈的半监督神经机器翻译
于志强, 余正涛, 黄于欣, 郭军军, 高盛祥
当前状态:  doi: 10.16383/j.aas.c190477
[摘要](681) [HTML全文](181) [PDF 2318KB](29)
摘要:
变分方法是机器翻译领域的有效方法, 其性能较依赖于数据量规模. 然而在低资源环境下, 平行语料资源匮乏, 不能满足变分方法对数据量的需求, 因此导致基于变分的模型翻译效果并不理想. 针对该问题, 本文提出基于变分信息瓶颈的半监督神经机器翻译方法, 所提方法的具体思路为: 首先在小规模平行语料的基础上, 通过引入跨层注意力机制充分利用神经网络各层特征信息, 训练得到基础翻译模型; 随后, 利用基础翻译模型, 使用回译方法从单语语料生成含噪声的大规模伪平行语料, 对两种平行语料进行合并形成组合语料, 使其在规模上能够满足变分方法对数据量的需求; 最后, 为了减少组合语料中的噪声, 利用变分信息瓶颈方法在源与目标之间添加中间表征, 通过训练使该表征具有放行重要信息、阻止非重要信息流过的能力, 从而达到去除噪声的效果. 多个数据集上的实验结果表明, 本文所提方法能够显著地提高译文质量, 是一种适用于低资源场景的半监督神经机器翻译方法.
面向网络空间防御的对抗机器学习研究综述
余正飞, 闫巧, 周鋆
当前状态:  doi: 10.16383/j.aas.c210089
[摘要](1039) [HTML全文](588) [PDF 1954KB](122)
摘要:
机器学习以强大的自适应性和自学习能力成为网络空间防御的研究热点和重要方向. 然而机器学习模型在网络空间环境下存在受到对抗攻击的潜在风险, 可能成为防御体系中最为薄弱的环节, 从而危害整个系统的安全. 为此科学分析安全问题场景, 从运行机理上探索算法可行性和安全性, 对运用机器学习模型构建网络空间防御系统大有裨益. 全面综述对抗机器学习这一跨学科研究领域在网络空间防御中取得的成果及以后的发展方向. 首先, 介绍了网络空间防御和对抗机器学习等背景知识; 其次, 针对机器学习在网络空间防御中可能遭受的攻击, 引入机器学习敌手模型概念, 目的是科学评估其在特定威胁场景下的安全属性; 然后, 针对网络空间防御的机器学习算法, 分别论述了在测试阶段发动规避攻击、在训练阶段发动投毒攻击、在机器学习全阶段发动隐私窃取的方法, 进而研究如何在网络空间对抗环境下, 强化机器学习模型的防御方法; 最后, 展望了网络空间防御中对抗机器学习研究的未来方向和有关挑战.
基于i向量和变分自编码相对生成对抗网络的语音转换
李燕萍, 曹盼, 左宇涛, 张燕, 钱博
当前状态:  doi: 10.16383/j.aas.c190733
[摘要](494) [HTML全文](48) [PDF 1827KB](16)
摘要:
提出一种基于i 向量和变分自编码相对生成对抗网络的语音转换方法, 实现了非平行文本条件下高质量的多对多语音转换. 性能良好的语音转换系统, 既要保持重构语音的自然度, 又要兼顾转换语音的说话人个性特征是否准确. 首先为了改善合成语音自然度, 利用生成性能更好的相对生成对抗网络代替基于变分自编码生成对抗网络模型中的Wasserstein生成对抗网络, 通过构造相对鉴别器的方式, 使得鉴别器的输出依赖于真实样本和生成样本间的相对值, 克服了Wasserstein生成对抗网络性能不稳定和收敛速度较慢等问题. 进一步为了提升转换语音的说话人个性相似度, 在解码阶段, 引入含有丰富个性信息的i-vector, 以充分学习说话人的个性化特征. 客观和主观实验表明, 转换后的语音平均梅尔倒谱失真距离值较基准模型降低4.80 %, 平均意见得分值提升5.12 %, ABX 值提升8.60 %, 验证了该方法在语音自然度和个性相似度两个方面均有显著的提高, 实现了高质量的语音转换.
基于改进动态系统稳定估计器的机器人技能学习方法
金聪聪, 刘安东, STEVENLiu, 张文安
当前状态:  doi: 10.16383/j.aas.c200341
[摘要](557) [HTML全文](97) [PDF 2281KB](42)
摘要:
提出一种基于改进动态系统稳定估计器的机器人技能学习方法. 现有的动态系统稳定估计器方法可以通过非线性优化来确保学习系统的全局稳定性, 但是存在确定高斯混合分量个数困难以及稳定性和精度无法兼顾的问题. 因此, 根据贝叶斯非参数模型可以自动确定合适分量个数的特性, 采用狄利克雷过程高斯混合模型对演示进行初始拟合. 随后利用参数化二次李雅普诺夫函数重新推导新的稳定性约束, 有效的解决了动态系统稳定估计器方法中稳定性和精度难以兼顾的问题. 最后, 在人类手写数据库和Franka机器人上的实验验证了新方法的有效性和优越性.
弱对齐的跨光谱人脸检测
闫梦凯, 钱建军, 杨健
当前状态:  doi: 10.16383/j.aas.c210058
[摘要](577) [HTML全文](91) [PDF 1521KB](24)
摘要:
跨光谱人脸检测在活体人脸识别、体温筛查等领域有着重要的应用价值. 众所周知, 可见光人脸易于检测, 然而红外人脸难于检测, 因此借助可见光图像的人脸检测结果进而完成红外人脸检测是一种有效的解决方案. 但是跨光谱图像之间不可避免的存在偏差, 导致检测精度不高. 为了解决这一问题, 提出了一种弱对齐跨光谱图像的人脸检测算法, 该方法基于跨光谱图像之间的偏差设计了候选框布置策略, 并在此基础上提出了跨光谱特征表示方法用于选取最优候选框. 此外, 本文还构建了一个跨光谱人脸数据集. 最后, 在跨光谱人脸数据集和OTCBVS人脸数据集上的实验结果证明, 该方法能够较好地完成红外图像人脸检测任务.
基于双模型交互学习的半监督医学图像分割
方超伟, 李雪, 李钟毓, 焦李成, 张鼎文
当前状态:  doi: 10.16383/j.aas.c210667
[摘要](76) [HTML全文](29) [PDF 1633KB](23)
摘要:
在医学图像中, 器官或病变区域的精准分割对疾病诊断等临床应用有着至关重要的作用, 然而分割模型的训练依赖于大量标注数据. 为减少对标注数据的需求, 本文主要研究针对医学图像分割的半监督学习任务. 现有半监督学习方法广泛采用平均教师模型, 其缺点在于, 基于指数移动平均的参数更新方式使得老师模型累积学生模型的错误知识. 为避免上述问题, 本文提出一种双模型交互学习方法, 引入像素稳定性判断机制, 利用一个模型中预测结果更稳定的像素监督另一个模型的学习, 从而缓解了单个模型的错误经验的累积和传播. 本文提出的方法在心脏结构分割、肝脏肿瘤分割和脑肿瘤分割三个数据集中取得优于前沿半监督方法的结果. 在仅采用30%的标注比例时, 我们的方法在三个数据集上的戴斯指标分别达到89.13%, 94.15%, 87.02%.
基于广义PI观测器零点配置的抗扰残差评估和故障检测
胡宇翔, 代学武, 崔东亮, 周冬
当前状态:  doi: 10.16383/j.aas.c211235
[摘要](29) [HTML全文](6) [PDF 3295KB](9)
摘要:
针对一类存在周期性扰动的系统, 提出了一种新型的基于广义PI观测器零点配置的抗扰残差评估框架, 充分利用了广义PI观测器的零点可配置性, 通过调整传递函数矩阵在阻塞零点处的相位响应并利用该频点处矩阵的零特征向量对残差信号进行滤波, 实现了残差信号与周期性扰动的解耦. 此外, 还创新性地提出了一种基于矩阵条件数的优化目标函数, 改善了残差信号对故障的敏感性. 最后, 通过两轮自平衡小车的仿真对比实验和实物测试, 验证了所提方法在残差抑扰和故障检测方面的有效性.
面向非独立同分布数据的自适应联邦深度学习算法
张泽辉, 李庆丹, 富瑶, 何宁昕, 高铁杠
当前状态:  doi: 10.16383/j.aas.c201018
[摘要](1494) [HTML全文](799) [PDF 1770KB](183)
摘要:
近些年, 联邦学习由于能够打破数据壁垒, 实现孤岛数据价值变现, 受到了工业界和学术界的广泛关注. 然而, 在实际工程应用中, 联邦学习存在着数据隐私泄露和模型性能损失的问题. 对此, 首先对这两个问题进行了数学描述与分析. 然后, 提出了一种自适应模型聚合方案, 该方案能够设定各参与者的mini-batch值和自适应调整全局模型聚合间隔, 旨在保证模型精度的同时, 提高联邦学习训练效率. 并且, 混沌系统被首次引入联邦学习领域中, 用于构建一种基于混沌系统和同态加密的混合隐私保护方案, 从而进一步提升系统的隐私保护水平. 理论分析与实验结果表明, 提出的联邦学习算法能够保证参与者的数据隐私安全. 并且, 在非独立同分布数据的场景下, 该算法够在保证模型精度的前提下提高训练效率, 降低系统通信成本, 具备实际工业场景应用的可行性.
具有类万有引力的有界置信观点动力学分析与应用
刘青松, 习晓苗, 柴利
当前状态:  doi: 10.16383/j.aas.c211134
[摘要](24) [HTML全文](8) [PDF 1782KB](6)
摘要:
在社会网络中, Hegselmann-Krause模型描述了置信阈值内不同邻居对个体的观点影响权重都是相同的, 且邻居对个体的吸引力与他们的观点差值成正比, 这是不切实际的. 为了克服经典Hegselmann-Krause模型的不足, 提出了具有类万有引力的有界置信观点动力学模型, 描述个体观点的更新依赖于观点之间的差值和邻居的权威性, 且不同邻居对个体的观点影响权重不同. 根据置信矩阵的性质证明观点的收敛性, 并分析具有衰减置信阈值的观点动力学行为, 给出观点收敛速率的显式解. 最后, 利用本文提出的观点动力学模型研究社会心理学中的“权威效应”和“非零和效应”. 仿真分析表明, 邻居的权威性有利于观点达成一致.
基于关系网络的轴承剩余使用寿命预测方法
赵志宏, 张然, 孙诗胜
当前状态:  doi: 10.16383/j.aas.c211195
[摘要](50) [HTML全文](9) [PDF 1466KB](5)
摘要:
针对轴承全寿命周期数据获取困难、训练样本少的问题, 提出一种基于关系网络的轴承剩余使用寿命(Remaining useful life,RUL)预测方法. 关系网络是一种基于度量的元学习方法, 在少量训练样本下, 具有快速学习新任务的优点. 设计了一种基于关系网络的轴承健康评估模型, 利用关系网络的嵌入模块提取轴承状态特征, 利用关系模块度量轴承状态特征之间的相似性, 基于相似性构建轴承健康指标;对健康指标进行Savitzky-golay滤波平滑处理, 降低振荡对预测结果的影响;最后利用线性函数对健康指标进行拟合, 得到轴承RUL预测值. 为验证所提方法的有效性, 在PHM2012轴承实测数据集上进行实验. 结果表明所得健康指标能够反映轴承的退化趋势, 所得RUL预测结果与ConvLSTM、Transformer、RNN、LSTM、Attention mechanism方法相比, 误差百分比分别减少了1.68%、3.41%、9.03%、13.72%、30.49%. 方法在少量训练样本的基础上可以取得较好的预测结果, 具有一定的应用价值.
基于时变障碍李雅普诺夫函数的变体无人机有限时间控制
李新凯, 张宏立, 范文慧
当前状态:  doi: 10.16383/j.aas.c200712
[摘要](843) [HTML全文](409) [PDF 8486KB](109)
摘要:
针对复杂扰动下可执行多种任务的复合式变体无人机, 提出了一种基于浸入与不变理论和隐含系统状态受限条件的复合时变障碍Lyapunov函数的控制方案. 设计了一种基于浸入与不变理论的扰动观测器, 构建了一种基于监督因子的有限时间动态尺度调节器. 在此基础上, 设计了一种基于复合时变障碍Lyapunov函数和动态滑模面的控制器, 保证系统状态始终在约束条件之内. 通过衍生定理证明轨迹跟踪误差是有限时间稳定的. 最终仿真结果验证了所提方案的有效性.
欺骗攻击下具备隐私保护的多智能体系统均值趋同控制
应晨铎, 伍益明, 徐明, 郑宁, 何熊熊
当前状态:  doi: 10.16383/j.aas.c210889
[摘要](37) [HTML全文](14) [PDF 1410KB](14)
摘要:
针对通信网络遭受欺骗攻击的离散时间多智能体系统, 研究其均值趋同和隐私保护问题. 首先, 考虑链路信道存在窃听者的情形, 提出一种基于状态分解思想的分布式网络节点值重构方法, 以阻止系统初始信息的泄露. 其次, 针对所构建的欺骗攻击模型, 利用重构后节点状态信息并结合现有的安全接受广播算法, 提出一种适用于无向通信网络的多智能体系统均值趋同控制方法. 理论分析表明, 所提方法能够有效保护节点初始状态信息的隐私, 并能消除链路中欺骗攻击的影响, 实现分布式系统中所有节点以初始值均值趋同. 最后, 通过数值仿真实验验证了该方法的有效性.
切换拓扑下动态事件触发多智能体系统固定时间一致性
孙梦薇, 任璐, 刘剑, 孙长银
当前状态:  doi: 10.16383/j.aas.c211123
[摘要](55) [HTML全文](20) [PDF 2278KB](24)
摘要:
针对有扰动的一阶非线性多智能体系统在切换拓扑下的实际固定时间平均一致性问题, 提出了基于动态事件触发机制的固定时间一致性协议. 该一致性协议在节约更多资源的情况下, 使多智能体系统以更快的速度达到一致. 相对于有限时间一致性控制算法, 固定时间一致性控制算法的收敛时间不依赖于初始状态, 并且可以通过选择合适的控制器参数设定相应的收敛时间上界. 通过设计一个包含双曲正切函数的测量误差, 证明系统不存在Zeno行为. 由于内部动态变量的引入, 大量不必要的触发被取消, 从而节省能量损耗. 最后, 通过仿真实验验证算法的可行性和有效性.
大幅面DLP3D打印机错位均摊接缝消除方法研究
张蓉, 王宜怀, 彭涛, 徐昕, 王绍丹
当前状态:  doi: 10.16383/j.aas.c190670
[摘要](24) [HTML全文](13) [PDF 2315KB](2)
摘要:
针对面曝光模式的数字光处理(Digital light processing, DLP)型3D打印机成型幅面较小问题, 提出一种移动拼接与错位均摊消除接缝痕迹相结合的大幅面技术方案. 该方案首先对三维模型进行均匀切片形成N层切面, 再对切面位图进行错位切分, 使得相邻层的拼接位置错开, 每张切面位图形成M张单元位图, 构成3D打印的数据源; 其次根据错位参数沿着X轴移动投影仪到达对应曝光位, 每层成型M张单元位图, 拼接构成一层切面薄片, 切面薄片的拼接位置逐层错开, 叠加生成三维模型实体. 实际打印结果表明, 该方案能够以较小的附加成本扩大成型尺寸, 提高模型整体质量.
多层异构生物网络候选疾病基因识别
丁苍峰, 王君, 张紫芸
当前状态:  doi: 10.16383/j.aas.c210577
[摘要](85) [HTML全文](28) [PDF 5492KB](18)
摘要:
现有大多数用于识别候选疾病基因的随机游走方法通常优先访问高度连接的基因, 而可能与已知疾病有关的不知名或连接性差的基因易被忽略或难以识别. 此外, 这些方法仅访问单个基因网络或各种基因数据的聚合网络, 导致偏差和不完整性. 因此, 设计一种能控制随机游走运动方向和整合多种数据源的候选疾病基因识别方法将是一个迫切需要解决的问题. 为此, 本文首先构建多层网络和多层异构基因网络. 然后, 提出了一种游走于多层和多层异构网络的拓扑偏置随机游走(Biased random walk with restart, BRWR)算法来识别疾病基因. 实验结果表明, 游走于不同类型网络上的识别候选疾病基因的BRWR算法优于现有的算法. 最后, 应用于多层异构网络上的BRWR算法能预测未诊断的新生儿类早衰综合征中涉及的疾病基因.
不确定性环境下维纳模型的随机变分贝叶斯学习
刘切, 李俊豪, 王浩, 曾建学, 柴毅
当前状态:  doi: 10.16383/j.aas.c210925
[摘要](53) [HTML全文](11) [PDF 1486KB](18)
摘要:
多重不确定性环境下的非线性系统辨识是一个开放问题.贝叶斯学习在描述、处理不确定性方面具有显著优势, 已在线性系统辨识方面得到广泛应用, 但在非线性系统辨识的应用较少, 面临概率估计复杂、计算量大等困难.本文针对上述问题, 以典型维纳非线性过程为对象, 提出基于随机变分贝叶斯的非线性系统辨识方法.首先对过程噪声、测量噪声以及参数不确定性进行概率描述;然后利用随机变分贝叶斯方法对模型参数进行后验估计.在估计过程中, 利用随机优化思想, 仅利用部分中间变量概率信息估计模型参数分布的自然梯度期望, 与利用所有中间变量概率信息估计模型参数比较, 显著降低了计算复杂性.该方法是首次在系统辨识领域中的应用.本文利用一个仿真实例和一个维纳模型的Benchmark问题, 证明了该方法在对大规模数据系统辨识时的有效性.
基于RAGAN的工业过程运行指标前馈 − 反馈多步校正
杨宇晴, 王德睿, 丁进良
当前状态:  doi: 10.16383/j.aas.c210408
[摘要](36) [HTML全文](18) [PDF 1997KB](6)
摘要:
针对工业过程运行指标反馈校正存在滞后及一步校正模型可解释性差的问题, 提出了基于递归注意力生成对抗网络(RAGAN)的运行指标前馈-反馈多步校正方法. 该方法采用基于负相关正则化的集成随机权神经网络建立综合生产指标预报模型为校正提供前馈信息补偿反馈校正的滞后性. 所提的RAGAN校正采用多步校正实现一次调整的思想, 将当前时刻运行指标映射到低维潜变量空间简化数据复杂度, 利用长短期记忆(LSTM)模型实现数据的分步输入, 提高模型可解释性; 采用分布式注意力机制构建数据读入网络, 使校正环节获取任务相关性更高的数据, 降低任务复杂度, 减小噪声干扰, 利用校正后的运行指标保证系统的综合指标尽可能的跟随设定值运行. 采用我国西部地区最大选矿厂实际数据的仿真实验验证了所提方法的有效性.
城市污水处理过程自适应滑模控制
韩红桂, 秦晨辉, 孙浩源, 乔俊飞
当前状态:  doi: 10.16383/j.aas.c210798
[摘要](69) [HTML全文](27) [PDF 1701KB](16)
摘要:
针对城市污水处理过程时滞导致难以稳定控制的问题, 文中提出了一种自适应滑模控制方法. 首先, 分析了推流时滞对城市污水处理生化反应过程的影响, 建立了时滞影响下的城市污水处理运行控制模型; 其次, 设计了一种基于模糊神经网络的预估补偿模型, 完成了滞后变量的准确预测, 实现了控制模型中变量时刻的统一; 最后, 设计了一种具有自适应开关增益系数的滑模控制器, 实现了溶解氧和硝态氮的稳定控制. 将提出的自适应滑模控制方法应用于城市污水处理过程基准仿真平台, 实验结果显示该方法能够实现城市污水处理运行过程稳定控制.
城市固废焚烧过程烟气含氧量自适应预测控制
孙剑, 蒙西, 乔俊飞
当前状态:  doi: 10.16383/j.aas.c210935
[摘要](42) [HTML全文](11) [PDF 1484KB](7)
摘要:
在城市固废焚烧过程中, 烟气含氧量是影响焚烧效果的重要工艺参数. 由于固废焚烧过程的复杂性, 实际应用过程中难以实现烟气含氧量的有效控制. 面向城市固废焚烧过程烟气含氧量控制的实际需求, 文中提出了一种基于数据驱动的烟气含氧量自适应预测控制方法. 首先, 采用自适应模糊C均值 (Fuzzy C-means, FCM) 算法辅助确定径向基函数 (Radial basis function, RBF) 神经网络隐含层神经元个数及初始中心, 建立基于FCM算法的RBF神经网络预测模型, 并在控制过程中通过自适应更新策略在线调节预测模型参数; 然后, 利用梯度下降算法求解控制律, 并基于李亚普诺夫理论分析了所提控制方法的稳定性; 最后, 基于城市固废焚烧厂实际数据, 验证了所提控制方法的有效性.
一种基于条件梯度的加速分布式在线学习算法
吴庆涛, 朱军龙, 葛泉波, 张明川
当前状态:  doi: 10.16383/j.aas.c210830
[摘要](43) [HTML全文](13) [PDF 1505KB](11)
摘要:
由于容易实施, 基于投影梯度的分布式在线优化模型逐渐成为一种主流的在线学习方法. 然而, 在处理大数据应用时, 投影步骤成为了该方法的计算瓶颈. 近年来, 研究者提出了面向凸代价函数的分布式在线条件梯度算法, 其悔界为\begin{document}${\rm O}(T^{3/4})$\end{document}, 其中\begin{document}$T$\end{document}是一个时间范围. 该算法存在两方面的问题, 一是其悔界劣于公认的悔界\begin{document}${\rm O}(\sqrt{T})$\end{document}; 二是没有分析非凸代价函数的收敛性能, 而实际应用中代价函数大部分是非凸函数. 因此, 本文提出了一种基于条件梯度的加速分布式在线学习算法, 使用Frank-Wolfe 步骤替代投影步骤, 避免了昂贵的投影计算. 文中证明了当局部代价函数为凸函数时, 所提算法达到公认的悔界\begin{document}${\rm O}(\sqrt{T})$\end{document}; 当局部代价函数为潜在非凸函数时, 所提算法以速率\begin{document}${\rm O}(\sqrt{T})$\end{document}收敛到平稳点. 最后, 仿真实验验证了所提算法的性能与理论证明的结论.
通信延时环境下基于观测器的智能网联车辆队列分层协同纵向控制
朱永薪, 李永福, 朱浩, 于树友
当前状态:  doi: 10.16383/j.aas.c210311
[摘要](688) [HTML全文](136) [PDF 14335KB](101)
摘要:
考虑通信延时影响的车辆队列控制问题, 提出了一种基于观测器的分布式车辆队列纵向控制器. 首先, 基于分层控制策略分别设计上下层控制器, 通过上层控制器优化期望加速度, 下层控制器克服车辆模型非线性实现期望加速度和实际加速度的一致, 上层控制器设计过程中, 基于三阶线性化车辆模型, 考虑观测器、车辆动态耦合特性和通信延时, 提出一种通信延时环境下基于观测器的车辆队列控制器, 利用观测器估计领导车辆加速度信息从而减轻通信负担. 然后利用Lyapunov-Krasovskii方法分析了车辆队列的稳定性, 并得出了通信延时上界, 同时利用传递函数方法分析了串稳定性. 最后通过数值仿真验证上层控制器的有效性和稳定性, 在此基础上, 利用PreScan软件中高保真车辆动态模型, 验证了所提分层控制策略的有效性.
高超声速飞行器指定时间时变高增益反馈跟踪控制
张康康, 周彬, 蔡光斌, 侯明哲
当前状态:  doi: 10.16383/j.aas.c210895
[摘要](60) [HTML全文](22) [PDF 1606KB](13)
摘要:
研究了高超声速飞行器控制通道存在未知环境干扰时的指定时间跟踪控制问题. 基于高超声速飞行器的输入输出线性化模型, 借助参量 Lyapunov方程的一些性质, 设计一种光滑、有界的时变高增益控制律. 相比于现有的高超声速飞行器有限/固定时间控制方法, 该算法不会出现抖振现象, 同时收敛时间不依赖于初始状态且可以事先设定. 当高超声速飞行器存在未知的有界环境匹配干扰时, 该控制器能使高度和速度在指定时间跟踪上参考信号. 最后仿真结果验证了方法的有效性.
基于单字符注意力的全品类鲁棒车牌识别
穆世义, 徐树公
当前状态:  doi: 10.16383/j.aas.c211210
[摘要](50) [HTML全文](16) [PDF 4418KB](6)
摘要:
复杂场景下的高精度车牌识别仍然存在着许多挑战, 除了光照、分辨率不可控和运动模糊等因素导致的车牌图像质量低之外, 还包括车牌品类多样产生的行数不一和字数不一等困难, 以及因拍摄角度多样出现的大倾角等问题. 针对这些挑战, 提出了一种基于单字符注意力的场景鲁棒的高精度车牌识别算法, 在无单字符位置标签信息的情况下, 使用注意力机制对车牌全局特征图进行单字符级特征分割, 以处理多品类车牌和倾斜车牌中的二维字符布局问题. 另外, 该算法通过使用共享参数的多分支结构代替现有算法的串行解码结构, 降低了分类头参数量并实现了并行化推理. 实验结果表明, 该算法在公开车牌数据集上实现了超越现有算法的精度, 同时具有较快的识别速度.
路网约束下异构机器人系统路径规划方法
陈梦清, 陈洋, 陈志环, 赵新刚
当前状态:  doi: 10.16383/j.aas.c200806
[摘要](641) [HTML全文](85) [PDF 23939KB](53)
摘要:
由无人机和地面移动机器人组成的异构机器人系统在协作执行任务时, 可以充分发挥两类机器人各自的优势. 无人机运动灵活, 但通常续航能力有限; 地面机器人载荷多, 适合作为无人机的着陆平台和移动补给站, 但运动受路网约束. 本文研究这类异构机器人协作路径规划问题. 为了降低完成任务的时间代价, 本文提出一种由蚁群算法和遗传算法相结合的两步法对地面机器人和无人机的路线进行解耦, 同时规划地面机器人和无人机的路线. 第一步使用蚁群算法为地面机器人搜索可行路线. 第二步对无人机的最优路径建模, 采用遗传算法求解并将无人机路径长度返回至第一步中, 用于更新路网的信息素参数, 从而实现异构协作系统路径的整体优化. 为了进一步降低无人机的飞行时间代价, 还研究了无人机在其续航能力内连续完成多任务的协作路径规划问题. 最后通过大量仿真实验验证了所提方法的有效性.
RFNet: 用于三维点云分类的卷积神经网络
单铉洋, 孙战里, 曾志刚
当前状态:  doi: 10.16383/j.aas.c210532
[摘要](62) [HTML全文](36) [PDF 1707KB](13)
摘要:
由于点云的非结构性和无序性, 目前已有的点云分类网络在精度上仍然需要进一步提高. 通过考虑局部结构的构建、全局特征聚合和损失函数改进三个方面, 本文构造了一个有效的点云分类网络. 首先, 针对点云的非结构性,通过学习中心点特征与近邻点特征之间的关系, 为不规则的近邻点分配不同的权重, 以此构建局部结构. 此外,使用注意力的思想, 提出了加权平均池化, 通过自注意力的方式, 学习每个高维特征的注意力分数, 在应对点云无序性的同时, 可以有效地聚合冗余的高维特征. 另外,利用了交叉熵损失与中心损失之间的互补关系, 提出了联合损失, 在增大类间距离的同时减小了类内距离, 进一步提高了网络的分类能力. 本文在合成数据集ModelNet40、ShapeNetCore和真实世界数据集ScanObjectNN上进行了实验, 与目前性能最好的多个网络相比较, 验证了本文整体网络结构的优越性.
一种基于区块链的DNSSEC公钥验证机制
陈闻宇, 李晓东, 杨学, 徐彦之
当前状态:  doi: 10.16383/j.aas.c201082
[摘要](431) [HTML全文](172) [PDF 1691KB](29)
摘要:
针对中心化域名安全扩展(Domain name system security extensions, DNSSEC)架构所导致的信任链复杂性和单边控制模式, 提出了一种去中心化的DNSSEC公钥验证机制. 该机制结合区块链结构、密码学累加器和共识算法设计, 创新性地实现使用区块链技术的密钥绑定、轮转和验证操作, 无需中心化权威节点即可使用可信公钥验证域名记录. 进一步的分析和实验表明, 所提出的机制在保证密钥管理安全性的同时, 提高了密钥验证的效率.
一种用于两人零和博弈对手适应的元策略演化学习算法
吴哲, 李凯, 徐航, 兴军亮
当前状态:  doi: 10.16383/j.aas.c211003
[摘要](45) [HTML全文](25) [PDF 2922KB](11)
摘要:
围绕两人零和博弈所开展的一系列研究, 近年来在围棋、德州扑克等问题中取得了里程碑式的突破. 现有的两人零和博弈求解方案大多在理性对手的假设下围绕纳什均衡解开展, 是一种力求不败的保守型策略, 但在实际博弈中由于对手非理性等原因并不能保证收益最大化. 对手建模为最大化博弈收益提供了一种新途径, 但仍存在建模困难等问题. 结合元学习的思想提出了一种能够快速适应对手策略的元策略演化学习求解框架. 在训练阶段, 首先通过种群演化的方法不断生成风格多样化的博弈对手作为训练数据, 然后利用元策略更新方法来调整元模型的网络权重, 使其获得快速适应的能力. 在Leduc扑克、两人有限注德州扑克和RoboSumo上的大量实验结果表明, 本算法能够有效克服现有方法的弊端, 实现针对未知风格对手的快速适应, 从而为两人零和博弈收益最大化求解提供了一种新思路.
数字孪生驱动的长距离带式输送机运行优化方法
杨春雨, 卜令超, 陈斌
当前状态:  doi: 10.16383/j.aas.c210979
[摘要](52) [HTML全文](13) [PDF 8709KB](10)
摘要:
长距离带式输送机是矿山、港口等领域运输散装物料的主要工具. 针对长距离带式输送机的安全节能运行问题, 本文研究数字孪生驱动的运行优化方法. 首先, 构建由数字孪生模型、模型同步算法、控制策略和现实带式输送机组成的数字孪生驱动运行优化框架; 然后, 建立数字孪生模型, 包括基于变质量牛顿第二定律和有限元分析法的输送带动力学模型、物料流动态模型和动态能耗模型; 最后, 提出数字孪生驱动的“计算决策-仿真评估-优化校正”(Decision-Simulation-Correction, DSC)优化决策方法, 优化带式输送机的稳态和暂态运行带速, 形成可行带速设定曲线. 实验表明, 数字孪生驱动的带式输送机运行优化方法可以实现带式输送机安全节能运行. 与传统控制方法相比, 能够根据运行工况实时调速, 提高输送带填充率, 节能13.87%.
基于循环显著性校准网络的胰腺分割方法
邱成健, 刘青山, 宋余庆, 刘哲
当前状态:  doi: 10.16383/j.aas.c210865
[摘要](31) [HTML全文](25) [PDF 4968KB](8)
摘要:
胰腺的准确分割对于胰腺癌的识别和分析至关重要. 胰腺作为形态变异较大、空间走形复杂的小体积后腹膜腔器官, 其三维形状及位置变化极具个体化解剖差异, 这使得胰腺分割极具挑战性. 研究者提出通过第一阶段粗分割掩码的位置信息缩小第二阶段细分割网络输入的由粗到细分割方法, 尽管极大地提升了分割精度, 但是在胰腺分割过程中对于上下文信息的利用却存在以下两个问题: 1) 粗分割和细分割阶段分开训练, 细分割阶段缺少粗分割阶段分割掩码信息, 抑制了阶段间上下文信息的流动, 导致部分细分割阶段结果无法比粗分割阶段更准确; 2) 粗分割和细分割阶段单批次相邻预测分割掩码之间缺少信息互监督, 丢失切片上下文信息, 增加了误分割风险. 针对上述问题, 提出了一种基于循环显著性校准网络的胰腺分割方法. 通过循环使用前一阶段输出的胰腺分割掩码作为当前阶段输入的空间权重, 进行两阶段联合训练, 实现阶段间上下文信息的有效利用; 提出卷积自注意力校准模块进行胰腺预测分割掩码切片上下文信息跨顺序互监督, 显著改善了相邻切片误分割现象. 提出的方法在公开的数据集上进行了验证, 实验结果表明, 其改善误分割结果的同时提升了平均分割精度.
基于改进多隐层极限学习机的电网虚假数据注入攻击检测
席磊, 何苗, 周博奇, 李彦营
当前状态:  doi: 10.16383/j.aas.c211127
[摘要](145) [HTML全文](128) [PDF 2037KB](17)
摘要:
虚假数据注入攻击严重威胁了电力信息物理系统的状态估计, 而目前大多数检测方法侧重于攻击存在性检测, 无法获取准确的受攻击位置. 故本文提出了一种基于灰狼优化多隐层极限学习机的电力信息物理系统虚假数据注入攻击检测方法. 所提方法将攻击检测看作是一个多标签二分类问题, 不仅将用于特征提取与分类训练的极限学习机由单隐层变为多隐层, 以解决极限学习机特征表达能力有限的问题, 且融入了具有强全局搜索能力的灰狼优化算法以提高多隐层极限学习机分类精度和泛化性能. 进而自动识别系统各个节点状态量的异常, 获取受攻击的精确位置. 通过在不同场景下对IEEE-14和57节点测试系统上进行大量实验, 验证了所提方法的有效性, 且分别与极限学习机、未融入灰狼优化的多隐层极限学习机以及支持向量机相比, 所提方法具有更精确的定位检测性能.
异构集成代理辅助的区间多模态粒子群优化算法
季新芳, 张勇, 巩敦卫, 郭一楠, 孙晓燕
当前状态:  doi: 10.16383/j.aas.c210223
[摘要](415) [HTML全文](188) [PDF 1287KB](37)
摘要:
现实生活中的很多黑盒优化问题可归为高计算代价的多模态优化问题, 即昂贵多模态优化问题. 在处理该类问题时, 决策者希望以尽量少的计算代价(即尽量少的真实函数评价次数)找到多个高质量的最优解. 然而, 已有代理辅助的进化优化算法很少考虑问题的多模态属性, 运行一次仅可获得问题的一个最优解. 鉴于此, 研究一种异构集成代理辅助的区间多模态粒子群优化算法. 首先, 借助异构集成的思想构建一个由多个基础代理模型组成的模型池; 随后, 依据待评价粒子与已发现模态之间的匹配关系, 从模型池中自主选择部分基础代理模型进行集成, 并使用集成后的代理模型预测该粒子的适应值. 进一步, 为节约代理模型管理的代价, 设计一种增量式的代理模型管理策略; 为减少代理模型预测误差对算法性能的影响, 首次将区间排序关系引入到进化过程中. 将所提算法与当前流行的5种代理辅助进化优化算法和7 种经典的多模态优化算法进行对比, 在20个测试函数和1个建筑节能实际问题上的结果表明, 所提算法可以在较少计算代价下获得问题的多个高竞争最优解.
基于不确定性的多元时间序列分类算法研究
张旭, 张亮, 金博, 张红哲
当前状态:  doi: 10.16383/j.aas.c210302
[摘要](480) [HTML全文](285) [PDF 3138KB](68)
摘要:
多元时间序列(Multivariate time series, MTS)分类是许多领域中的重要问题, 准确的分类结果可以有效地帮助决策. 当前的MTS分类算法在个体的表征学习阶段难以自动建模多元变量之间复杂的交互关系, 并且无法评估分类结果的可信度, 这会导致模型性能受限, 以及缺乏具备统计意义的可靠性解释. 本文提出了一种基于不确定性的多元时间序列分类算法, 变分贝叶斯共享图神经网络, 即VBSGNN (Variational bayes shared graph neural network). 首先通过图神经网络提取多元变量之间的交互特征, 然后利用贝叶斯神经网络为预测过程引入了不确定性. 最后在10个公开MTS数据集上进行了算法实验, 并与当前提出的7类算法进行了比较, 结果表明VBSGNN可有效学习多元变量之间的交互关系, 提升了分类效果, 并使得模型具备一定的可靠性评估能力.
基于扩展PI抗扰补偿器的高精度时间同步控制
代学武, 贾志安, 崔东亮, 柴天佑
当前状态:  doi: 10.16383/j.aas.c210676
[摘要](132) [HTML全文](70) [PDF 1613KB](22)
摘要:
高精度时间同步是任务关键型工业网络控制系统的核心支撑技术, 针对工业环境中普遍存在周期性振动等扰动信号导致晶振频率漂移, 影响时间同步精度的问题, 本文基于扩展比例积分(Proportional Integral, \begin{document}$ \mathrm{P}\mathrm{I} $\end{document})观测器, 提出了一种新型的抗扰补偿器结构, 用于消除周期性扰动的影响, 并构建了相应的精细抗干扰反馈控制方法, 用于实现高精度时间同步. 与传统的扰动观测器相比, 所提出的扩展\begin{document}$ \mathrm{P}\mathrm{I} $\end{document}抗扰补偿器克服了传统扰动观测器零点不变局限性, 提出了零点配置方法, 以充分利用闭环系统的传递函数矩阵(Transfer Function Matrix, TFM)在系统零点处降秩的特性, 实现了对于特定频率扰动信号的补偿作用. 并给出了所提出的控制器和抗扰补偿器的稳定性证明和控制器参数的稳定域. 通过基于实测参数的无线网络仿真实验, 验证了在\begin{document}$ 5\mathrm{g} $\end{document}周期性振动干扰下, 本文提出的方法明显优于传统滤波器和补偿器, 达到了同步误差在4 \begin{document}$ \mu s $\end{document}以内, 实现了高精度时间同步.
基于滚动时域强化学习的智能车辆侧向控制算法
张兴龙, 陆阳, 李文璋, 徐昕
当前状态:  doi: 10.16383/j.aas.c210555
[摘要](255) [HTML全文](147) [PDF 2276KB](42)
摘要:
本文针对智能车辆的高精度侧向控制问题, 提出了一种基于滚动时域强化学习(Receding horizon reinforcement learning, RHRL)的侧向控制方法. 车辆的侧向控制量由前馈和反馈两部分构成, 前馈控制量由参考路径的曲率以及动力学模型直接计算得出; 而反馈控制量通过采用滚动时域强化学习算法求解最优跟踪控制问题得到. 本文提出的方法结合滚动时域优化机制, 将无限时域最优控制问题转化为若干有限时域控制问题进行求解. 与已有的有限时域执行器-评价器学习不同, 在每个预测时域采用时间独立型执行器-评价器网络结构学习最优值函数和控制策略. 与模型预测控制(Model predictive control, MPC)方法求解开环控制序列不同, RHRL控制器的输出是一个显式状态反馈控制律, 兼具直接离线部署和在线学习部署的能力. 此外, 本文从理论上证明了RHRL算法在每个预测时域的收敛性, 并分析了闭环系统的稳定性. 在仿真环境中完成了结构化道路下的车辆侧向控制测试, 仿真结果表明提出的RHRL方法在控制性能方面优于预瞄控制器和启发式动态规划算法, 在计算效率方面优于MPC; 与最近流行的软执行器-评价器(Soft actor-critic, SAC)算法和深度确定性策略梯度(Deep deterministic policy gradient, DDPG)算法相比控制性能更好, 且具有更低的样本复杂度和更高的学习效率. 最后, 以红旗E-HS3电动汽车作为实车平台, 在封闭结构化城市测试道路和乡村起伏砂石道路下进行了侧向控制实验. 实验结果显示, RHRL在结构化城市道路中的侧向控制性能优于预瞄控制, 在乡村道路中具有较强的路面适应能力和较好的控制性能.
基于混合数据增强的MSWI过程燃烧状态识别
郭海涛, 汤健, 丁海旭, 乔俊飞
当前状态:  doi: 10.16383/j.aas.c210843
[摘要](111) [HTML全文](98) [PDF 2074KB](9)
摘要:
国内城市固废焚烧(Municipal solid waste incineration, MSWI)过程通常依靠运行专家观察炉内火焰识别燃烧状态后再结合自身经验修正控制策略以维持稳定燃烧, 存在智能化水平低、识别结果具有主观性与随意性等问题. 因MSWI过程的火焰图像具有强污染、多噪声等特性, 并且存在异常工况数据较为稀缺等问题, 导致传统目标识别方法难以适用. 对此, 本文提出了一种基于混合数据增强的MSWI过程燃烧状态识别方法. 首先, 结合领域专家经验与焚烧炉排结构对燃烧状态进行标定; 接着, 设计由粗调和精调两级组成的深度卷积生成对抗网络(Deep convolutional generative adversarial network, DCGAN)以获取多工况火焰图像; 然后, 采用弗雷歇距离(Fréchet inception distance, FID)对生成式样本进行自适应选择; 最后, 通过非生成式数据增强对样本进行再次扩充, 获得混合增强数据构建卷积神经网络以识别燃烧状态. 基于某MSWI电厂实际运行数据实验, 表明该方法有效地提高了识别网络的泛化性与鲁棒性, 具有良好的识别精度.
基于序列注意力和局部相位引导的骨超声图像分割网络
陈芳, 张道强, 廖洪恩, 赵喆
当前状态:  doi: 10.16383/j.aas.c210298
[摘要](103) [HTML全文](82) [PDF 1215KB](15)
摘要:
在超声辅助的骨科手术导航中, 需要从采集的超声图像序列中精确分割出骨结构, 并展示给医生, 来辅助医生进行术中决策. 但是, 图像噪声、成像伪影以及模糊的骨边界导致从超声图像序列中精确分割提取骨结构十分困难. 为解决该问题, 本文提出了一种新的基于序列注意力与局部相位引导的骨超声图像分割网络. 该网络一方面自适应地利用了超声序列帧之间的关系即序列注意力来辅助骨结构的语义分割. 另一方面, 该网络通过引入局部相位引导模块, 突出骨边缘信息, 进一步提高分割精度. 利用包含19050张图像的骨超声数据集, 进行了交叉实验、消融实验并与最新的超声骨分割方法进行了比较. 实验结果表明本文方法对骨结构分割精度高, 优于现有的超声骨分割方法.
基于网格重构学习的染色体分类模型
张林, 易先鹏, 王广杰, 范心宇, 刘辉, 王雪松
当前状态:  doi: 10.16383/j.aas.c210303
[摘要](85) [HTML全文](51) [PDF 1257KB](15)
摘要:
染色体的分类识别是核型分析的重要任务之一. 因其柔软易弯曲, 且类间差异小、类内差异大等特点, 其精准分类已成为挑战性难题. 本文提出基于网格重构学习(GRid reConstruction learning, GRiCoL)的染色体分类模型. 该模型首先将染色体图像网格化, 提取局部分类特征; 再通过重构网络对全局特征进行二次提取, 最后完成分类. 相比于现有几种方法, GRiCoL同时兼顾局部和全局特征提取更有效的分类特征, 有效改善染色体弯曲导致的分类性能下降, 参数规模合理. 通过基于G带、荧光原位杂交、Q带染色体公开数据集的实验表明: GRiCoL能够更好地弱化染色体弯曲带来的影响, 在不同数据集上的分类准确度均优于现有分类方法.
多层异质复杂网络系统的能控性
曹连谦, 王立夫, 孔芝, 郭戈
当前状态:  doi: 10.16383/j.aas.c210654
[摘要](247) [HTML全文](110) [PDF 1356KB](30)
摘要:
本文研究了节点状态为高维的多层复杂网络系统的能控性问题. 讨论了节点的异质性、层间耦合、层内耦合对网络能控性的影响. 发现当节点状态由同质变为异质, 内耦合矩阵由相同变为不同, 对网络能控性均有影响(网络既可由能控变为不能控, 又可由不能控变为能控); 对层间耦合模式为驱动响应模式和相互依赖模式, 分别给出了网络系统能控的充分条件或必要条件. 相比于直接应用经典的能控性判据, 这些条件更易于验证, 且驱动响应模式比相互依赖模式实现系统完全能控所需的条件更弱.
融合属性偏好和多阶交互信息的可解释评分预测研究
郑建兴, 李沁文, 王素格, 李德玉
当前状态:  doi: 10.16383/j.aas.c210457
[摘要](243) [HTML全文](90) [PDF 3014KB](26)
摘要:
已有推荐系统主要基于用户-项目交互矩阵来学习用户和项目的向量表示, 而当交互矩阵稀疏时, 推荐系统的精度较低, 推荐的结果缺乏可解释性. 本文考虑了用户-项目交互行为中的评分标签信息, 提出了一种融合属性偏好和多阶交互信息的可解释评分预测方法, 并根据属性偏好对推荐结果进行了解释. 首先, 基于注意力机制分析了用户和项目属性信息与评分标签的关系, 建模了节点的属性偏好特征表示; 然后, 聚合了用户-项目交互矩阵中节点自身、交互邻居和评分标签信息, 通过图神经网络学习了节点的多阶交互行为特征表示; 最后, 融合了节点的属性偏好特征和交互行为特征, 在异质类型信息空间下学习了用户和项目的语义特征表示, 利用多层感知机实现了评分预测, 并在MovieLens和Douban数据集上验证了方法的有效性. 实验结果表明, 本文方法在MAE和RMSE指标上有效提高了推荐系统的精度, 缓解了数据稀疏场景下推荐模型性能较低的问题, 提升了推荐结果的可解释性.
基于预训练表示模型的英语词语简化方法
强继朋, 钱镇宇, 李云, 袁运浩, 朱毅
当前状态:  doi: 10.16383/j.aas.c200723
[摘要](131) [HTML全文](25) [PDF 1095KB](11)
摘要:
词语简化(Lexical simplification, LS)是将给定句子中的复杂词替换成意义相等的简单替代词,从而达到简化句子的目的. 已有的词语简化方法只依靠复杂词本身而不考虑其上下文信息来生成候选替换词, 这将不可避免地产生大量的虚假候选词. 为此, 提出了一种基于预训练表示模型BERT的词语简化方法BERT-LS, 利用BERT进行候选替换词的生成和排序. BERT-LS在候选词生成过程中, 不仅不需要任何语义词典和平行语料, 而且能够充分考虑复杂词本身和上下文信息产生候选替代词. 在候选替代词排序过程中, BERT-LS采用了五个高效的特征, 除了常用的词频和词语之间相似度特征之外, 还利用了BERT的预测排序、基于BERT的上下文产生概率和复述数据库PPDB这三个新特征. 通过三个基准数据集进行验证, BERT-LS取得了明显的进步, 整体性能平均比最先进的方法准确率高出29.8%.
高速公路无人驾驶的分层抽样多动态窗口轨迹规划算法
张琳, 薛建儒, 马超, 李庚欣, 李勇强
当前状态:  doi: 10.16383/j.aas.c210673
[摘要](209) [HTML全文](124) [PDF 2660KB](23)
摘要:
高速公路无人驾驶轨迹规划面临着实时性强、安全性高的挑战. 本文提出了一种分层抽样多动态窗口的轨迹规划算法(Stratied sampling based multi-dynamic window trajectory planner, SMWTP). 首先, 用多动态窗口表征可行轨迹的搜索空间, 并基于贝叶斯网络构建了车辆轨迹分布模型. 其次, 采用先速度后路径的分层抽样策略生成符合动态场景约束的候选轨迹集合. 最后, 利用引入障碍车辆速度估计不确定性的责任敏感安全模型(Responsibility sensitive safety, RSS)从中选择最优轨迹. 大量仿真实验和实际交通场景测试验证了算法的有效性, 对比实验结果表明所提算法性能显著优于人工势场最优轨迹规划算法和多动态窗口模拟退火轨迹规划算法.
基于事件相机的机器人感知与控制综述
粟傈, 杨帆, 王向禹, 郭川东, 童良乐, 胡权
当前状态:  doi: 10.16383/j.aas.c210263
[摘要](366) [HTML全文](293) [PDF 2248KB](57)
摘要:
事件相机作为一种新型动态视觉传感器, 通过各个像素点独立检测光照强度变化并异步输出“事件流”信号, 它具有数据量小、延迟低、动态范围高等优秀特性, 给机器人控制带来新的可能. 本文主要介绍了近年来涌现的一系列事件相机与无人机、机械臂和人形机器人等机器人感知与运动控制结合的研究成果, 同时聚焦基于事件相机的控制新方法、新原理以及控制效果, 并指出基于事件相机的机器人控制的应用前景和发展趋势.
基于事件触发的直流微电网无差拍预测控制
王本斐, 张荣辉, 冯国栋, ManandharUjjal, 郭戈
当前状态:  doi: 10.16383/j.aas.c210585
[摘要](138) [HTML全文](48) [PDF 2603KB](29)
摘要:
本文针对光伏-电池-超级电容直流微电网系统中光伏发电间歇性造成的功率失配, 提出了一种基于事件触发的无差拍预测控制(Event-triggered deadbeat predictive control, ETDPC)方法, 实现有效的能量管理. ETDPC控制方法结合事件触发控制策略和无差拍预测控制策略的优点, 该方法根据微电网的拓扑结构构建状态空间模型, 用于设计适用于微电网能量管理的触发条件: 当ETDPC的触发条件满足时, ETDPC中无差拍预测控制模块被激活, 可以在一个控制周期内产生最优控制信号, 实现对于扰动的快速响应, 减小母线电压纹波; 当系统状态不满足ETDPC中的触发条件时, 无差拍预测控制模块被挂起, 从而消除非必要运算, 以减轻实现能量管理的运算负担. 因此, 基于电池-超级电容器混合储能系统, ETDPC控制能够缓解间歇性光伏发电同负荷需求之间的功率失衡, 以稳定母线电压. 最后, 数字仿真和硬件在环实验结果表明, 相较于传统事件触发无差拍控制方法, 运算负担减小了50.63%, 母线电压纹波小于0.73%, 验证了ETDPC控制方法的有效性与性能优势, 为直流微电网的能量管理提供了一种参考.
基于RRT森林算法的高层消防无人机室内协同路径规划
陈锦涛, 李鸿一, 任鸿儒, 鲁仁全
当前状态:  doi: 10.16383/j.aas.c210368
[摘要](302) [HTML全文](232) [PDF 1603KB](50)
摘要:
在多无人机协同执行高层消防救援任务的场景中, 室内复杂火场环境下路径规划是亟待解决难题之一. 本文针对快速搜索随机树算法 (Rapidly-exploring random tree, RRT) 搜索区域受限、耗时较长、结果可行性差等问题, 提出RRT森林算法. 通过随机选取根节点、生成随机树、连接合并随机树, 使高层消防多无人机在复杂室内环境下协同路径规划效率显著提高. 此外, 采用两次动态规划以及改进障碍物接近检测方法, 进一步提高路径的可行性. 最终, 通过仿真验证算法的有效性.
基于非凸复合函数的稀疏信号恢复算法
周洁容, 李海洋, 凌军, 陈浩, 彭济根
当前状态:  doi: 10.16383/j.aas.c200666
[摘要](754) [HTML全文](94) [PDF 1617KB](99)
摘要:
基于泛函深度作用的思想, 通过将两种非凸稀疏泛函进行复合, 构造了一种新的稀疏信号重构模型, 实现了对0范数的深度逼近. 综合运用MM (Majorize minimization)技术、外点罚函数法和共轭梯度法, 提出一种求解该模型的算法, 称为NCCS (Non-convex composite sparse)算法. 为降低重构信号陷入局部极值的可能性, 提出在算法的每步迭代中以BP (Basis pursuit)模型的解作为初始迭代值. 为验证所建模型和所提算法的有效性, 进行了多项数值实验. 实验结果表明, 相较于SL0 (Smoothed \begin{document}$L_0$\end{document})算法、IRLS (Iterative reweighed least squares)算法、SCSA (Successive concave sparsity approximation)算法以及BP 算法等经典算法, 提出的算法在重构误差、信噪比、归一化均方差、支撑集恢复成功率等方面都有更优的表现.
F范数度量下的鲁棒张量低维表征
王肖锋, 石乐岩, 杨璐, 刘军, 周海波
当前状态:  doi: 10.16383/j.aas.c210375
[摘要](287) [HTML全文](157) [PDF 1848KB](20)
摘要:
张量主成分分析(Tensor principle component analysis, TPCA)在彩色图像低维表征领域得到广泛深入研究, 采用\begin{document}$\textit{F}$\end{document}范数平方作为低维投影的距离度量方式, 表征含离群数据和噪声图像的鲁棒性较弱. \begin{document}$\textit{L}_{1}$\end{document}范数能够抑制噪声的影响, 但所获的低维投影数据缺乏重构误差约束, 其局部表征能力也较弱. 针对上述问题, 本文利用\begin{document}$\textit{F}$\end{document}范数作为目标函数的距离度量方式, 提出一种基于\begin{document}$\textit{F}$\end{document}范数的分块张量主成分分析算法(Block TPCA with \begin{document}$\textit{F}$\end{document}-norm, BlockTPCA-\begin{document}$\textit{F}$\end{document}), 提高张量低维表征的鲁棒性. 考虑到同时约束投影距离与重构误差, 提出一种基于比例\begin{document}$\textit{F}$\end{document}范数的分块张量主成分分析算法(Block TPCA with proportional \begin{document}$\textit{F}$\end{document}-norm, BlockTPCA-P\begin{document}$\textit{F}$\end{document}), 其最大化投影距离与最小化重构误差均得到了优化. 然后, 给出了其贪婪的求解算法, 并对其收敛性进行了理论证明. 最后, 对包含不同噪声块和具有实际遮挡的彩色人脸数据集进行实验, 结果表明, 本文所提算法在平均重构误差、图像重构与分类率等方面均得到了明显提升, 在张量低维表征中具有较强的鲁棒性.
目标跟踪中基于IoU和中心点距离预测的尺度估计
李绍明, 储珺, 冷璐, 涂序继
当前状态:  doi: 10.16383/j.aas.c210356
[摘要](226) [HTML全文](90) [PDF 1482KB](27)
摘要:
目标跟踪中基于IoU (Intersection over union, IoU)预测的尺度估计方法, 通过估计视频帧中候选框与真实目标框的重叠度训练尺度回归模型, 推理阶段通过最大化IoU对初始化边界框进行微调, 取得目标的尺度. 本文详细分析了基于IoU预测的尺度估计模型的梯度更新过程, 发现其在训练和推理过程仅将IoU作为度量, 缺乏对预测框和真实目标框中心点距离的约束, 导致外观模型更新过程中模板受到污染, 前景和背景分类时定位出现偏差. 基于此发现, 本文构建了一种结合IoU和中心点距离的新度量NDIoU (Normalization distance IoU), 在此基础上提出一种新的尺度估计方法, 并将其嵌入判别式跟踪框架. 即在训练阶段以NDIoU为标签, 设计了具有中心点距离约束的损失函数监督网络的学习, 在线推理期间通过最大化NDIoU微调目标尺度, 以帮助外观模型更新时获得更加准确的样本. 在七个数据上与相关主流方法进行对比, 本文方法在七个数据集上的综合性能优于所有对比算法. 特别是在GOT-10k数据集上, 本文方法的AO、\begin{document}$ S{R}_{0.5} $\end{document}\begin{document}$ S{R}_{0.75} $\end{document}三个指标达到了65.4%、78.7%和53.4%, 分别超过基线模型4.3%、7.0%和4.2%.
一种面向航空母舰甲板运动状态预估的鲁棒学习模型
王可, 徐明亮, 李亚飞, 姜晓恒, 鲁爱国, 李鉴
当前状态:  doi: 10.16383/j.aas.c210064
[摘要](280) [HTML全文](37) [PDF 1404KB](31)
摘要:
航母甲板在风、浪、流等因素影响下做六自由度不规则运动, 影响舰载机着舰精度. 航母甲板运动预估与补偿是自动着舰系统的重要功能之一, 也是提高舰载机着舰安全性与成功率的关键技术之一. 本文提出一种面向甲板运动预估的鲁棒学习模型, 通过基本构建单元自适应演化出复杂学习系统. 构建单元的训练采用非梯度的伪逆学习策略, 提高了训练效率, 简化了学习控制超参数调优;构建单元的架构设计采用数据驱动的策略, 简化了架构超参数调优;采用图拉普拉斯正则化方法提高了模型的鲁棒性. 通过某型航母在中等海况条件下以典型航速巡航时的仿真实验, 验证了所提方法在甲板纵摇、横摇以及垂荡运动预估问题中的有效性及鲁棒性.
Event-Triggered Tracking Control for a Class of Nonlinear Systems With Observer and Prescribed Performance
YOU Xing-Xing, YANG Dao-Wen, GUO Bin, LIU Kai, DIAN Song-Yi, ZHU Yu-Qi
当前状态:  doi: 10.16383/j.aas.c210387
[摘要](309) [HTML全文](260) [PDF 1908KB](70)
摘要:
This paper investigates an adaptive fuzzy tracking control method for a class of nonlinear systems with external disturbances. Firstly, fuzzy logic systems and the fuzzy state observer are implemented to approximate unknown nonlinear functions and estimate the unmeasured states of systems, respectively. Then, the tracking error can be constrained within the specified range by means of the performance function. Furthermore, an event-triggered adaptive fuzzy controller is designed by employing the backstepping method and Lyapunov functional with logarithm function. The proposed control strategy can ensure that all the signals of the closed-loop system are semiglobally uniformly ultimately bounded based on the Lyapunov stability theory and the properties of\begin{document}$\tanh$\end{document}function. Finally, a numerical simulation example is provided to verify the effectiveness of proposed method.
具有不确定控制增益严格反馈系统的自适应命令滤波控制
吴锦娃, 刘勇华, 苏春翌, 鲁仁全
当前状态:  doi: 10.16383/j.aas.c210553
[摘要](388) [HTML全文](180) [PDF 1258KB](39)
摘要:
针对一类具有不确定控制增益的严格反馈系统, 提出了一种基于命令滤波反推技术的自适应神经网络控制方法. 该方法采用神经网络对系统中的未知非线性函数进行逼近, 并引入命令滤波反推技术克服“计算膨胀”的问题. 与现有的命令滤波反推控制文献相比, 本文通过构造自适应误差补偿系统, 同时消除了滤波器产生的边界层误差和不确定控制增益对系统性能造成的影响. 仿真结果验证了所提控制方法的有效性.
基于改进高斯混合模型的机器人运动状态估计
葛泉波, 王贺彬, 杨秦敏, 张兴国, 刘华平
当前状态:  doi: 10.16383/j.aas.c200660
[摘要](499) [HTML全文](215) [PDF 2166KB](42)
摘要:
针对复杂环境下机器人运动状态估计的精度改善问题, 提出一种面向非线性非高斯系统的改进高斯和容积Kalman滤波估计方法. 首先, 引入加权信息量概念来改进EM算法目标函数惩罚项, 使得在优化过程中能考虑更全面的参数信息, 以达到减少EM算法的迭代次数和提高收敛速度的目的. 此外, 以基于Mahalanobis距离和KL距离的高斯项合并方法为基础, 提出一种能有效联合两类高斯项合并方式的融合模式. 先单独使用Mahalanobis距离和KL距离进行高斯混合项合并, 再对获得的高斯混合项进行加权融合处理, 以改善高斯和滤波中多高斯项的合并性能和保真度. 最后, 应用非线性非高斯系统的高斯和容积Kalman滤波框架实现对复杂环境下机器人的运动状态估计. 理论分析与仿真结果表明, 本文提出的方法能实现对机器人运动更好的状态估计精度, 并具有更强的鲁棒性能, 同时两种不同的高斯项合并融合模式具有相当的估计性能.
基于动态注意力深度迁移网络的高炉铁水硅含量在线预测方法
蒋珂, 蒋朝辉, 谢永芳, 潘冬, 桂卫华
当前状态:  doi: 10.16383/j.aas.c210524
[摘要](374) [HTML全文](154) [PDF 1878KB](39)
摘要:
铁水硅含量是反映高炉冶炼过程中热状态变化的灵敏指示剂, 但无法实时在线检测, 造成铁水质量调控盲目. 为此, 本文提出一种基于动态注意力深度迁移网络的高炉铁水硅含量在线预测方法. 首先, 针对传统深度网络静态建模思路无法准确描述过程变量与铁水硅含量之间的关系, 提出了一种基于注意力机制模块的输入过程变量与输出硅含量之间的动态关系描述方法; 其次, 为降低硅含量预测模型训练时对标签数据的依赖, 考虑到铁水温度跟硅含量数据之间的正相关性, 利用小时级硅含量标签数据微调基于分钟级铁水温度数据预训练好的深度模型的结构, 进而提高基于动态注意力深度迁移网络的硅含量预测精度; 同时, 为了增强预测网络的可解释性, 实时地给出了基于动态注意力机制模块计算的每个样本各过程变量对铁水硅含量的贡献度. 最后, 基于某钢铁厂2#高炉的工业实验验证了本文所提方法的准确性、有效性和先进性.
基于运动引导的高效无监督视频目标分割网络
赵子成, 张开华, 樊佳庆, 刘青山
当前状态:  doi: 10.16383/j.aas.c210626
[摘要](323) [HTML全文](105) [PDF 1196KB](21)
摘要:
大量基于深度学习的无监督视频目标分割算法存在模型参数量与计算量较大的问题, 这显著地限制了算法在实际中的应用. 本文提出了基于运动引导的视频目标分割网络, 在大幅降低模型参数量与计算量的同时提升视频目标分割性能.整个模型由双流网络、运动引导模块、多尺度渐进融合模块三部分组成. 具体地,RGB图像与光流估计输入双流网络提取物体外观特征与运动特征. 然后,运动引导模块通过局部注意力提取运动特征中的语义信息,用于引导外观特征学习丰富的语义信息.最后,多尺度渐进融合模块获取双流网络的各个阶段输出的特征,将深层特征渐进地融入浅层特征, 最终提升边缘分割效果. 本文在三个标准数据集上进行了大量评测, 实验结果证明了本文方法的优越性能.
一种用于目标跟踪边界框回归的光滑IoU损失
李功, 赵巍, 刘鹏, 唐降龙
当前状态:  doi: 10.16383/j.aas.c210525
[摘要](418) [HTML全文](165) [PDF 2984KB](23)
摘要:
边界框回归分支是深度目标跟踪器的关键模块, 其性能直接影响跟踪器的精度. 评价精度的指标之一是交并比(Intersection over Union, IoU). 基于 IoU 的损失函数取代了\begin{document}$ \ell_n $\end{document}-norm 损失成为目前主流的边界框回归损失函数, 然而 IoU 损失函数存在两个固有缺陷: 一个是当预测框与真值框不相交时 IoU 为常量 0, 无法梯度下降更新边界框的参数; 另一个是在 IoU 取得最优值时其梯度不存在, 边界框很难收敛到 IoU 最优处. 本文揭示了在回归过程中 IoU 最优的边界框各参数之间蕴含的定量关系, 指出在边界框中心处于特定位置时存在多种尺寸不同的边界框使 IoU 损失最优的情况, 这增加了边界框尺寸回归的不确定性. 本文从优化两个统计分布之间散度的视角看待边界框回归问题, 提出了光滑 IoU 损失, 即构造了在全局上光滑 (即连续可微) 且极值唯一的损失函数, 该损失函数自然蕴含边界框各参数之间特定的最优关系, 其唯一取极值的边界框可使 IoU 达到最优. 光滑性确保了在全局上梯度存在使得边界框更容易回归到极值处, 而极值唯一确保了在全局上可梯度下降更新参数, 从而避开了 IoU 损失的固有缺陷. 提出的光滑 IoU 损失可以很容易取代 IoU 损失集成到现有的深度目标跟踪器上训练边界框回归, 在 LaSOT, GOT-10k, TrackingNet 和 OTB2015 等测试基准上所取得的结果验证了光滑 IoU 损失的易用性和有效性.
基于语义引导特征聚合的显著性目标检测网络
王正文, 宋慧慧, 樊佳庆, 刘青山
当前状态:  doi: 10.16383/j.aas.c210425
[摘要](324) [HTML全文](172) [PDF 1203KB](43)
摘要:
在显著性目标检测网络的设计中, U型结构使用广泛. 但是U型结构显著性检测方法中普遍存在空间位置细节丢失和边缘难以细化的问题, 针对这些问题, 本文提出了一个基于语义信息引导特征聚合的网络, 通过高效的特征聚合来获得精细的显著性图. 网络由3部分组成, 分别是混合注意力模块, 增大感受野模块以及多层次聚合模块. 首先, 利用增大感受野模块处理特征提取网络提取出的低层特征, 使其在保留原有边缘细节的同时增大感受野, 以获得更加丰富的空间上下文信息. 然后, 利用混合注意力模块处理特征提取网络的最后一层特征, 以增强其表征力, 并作为解码过程中的语义指导, 不断指导特征聚合. 最后, 多层次聚合模块对来自不同层次的特征进行有效聚合, 得到最终精细的显著性图. 本文在6个基准数据集上进行了广泛的实验, 结果证明了该方法能够有效的定位显著特征, 并且对边缘细节的细化也很有效.
信息能源系统的信-物融合稳定性分析
王睿, 孙秋野, 张化光
当前状态:  doi: 10.16383/j.aas.c210480
[摘要](235) [HTML全文](186) [PDF 1575KB](48)
摘要:
尽管信息物理系统的稳定性已经得到了广泛的研究, 但大部分的学者皆关注于通信网络延时或攻击下的信息物理系统的稳定性问题, 无网络通信的信息物理系统的信物融合稳定性分析策略亟待提出. 其中, 内嵌数字控制系统的并网逆变器系统是一种最简单、最典型的信息能源系统. 同时, 从效率的角度出发, 逆变器的开关/采样频率总是选择尽可能低的频率, 其势必产生系统固有延迟时间(控制理论中称为时间延迟). 这种延迟时间往往容易引起系统的低频/次同步振荡, 弱电网将加剧此现象. 为此, 本文提出了一种信息能源系统的信-物融合稳定性分析技术. 首先, 基于柏德近似方法, 建立了具有等效延迟时间的信息物理系统阻抗模型. 该等效延迟时间由三部分组成, 即信息/物理层的采样延迟时间、信息层的计算延迟时间和物理层的脉宽调制(Pulsewidth modulation, PWM)延迟时间, 其有效地反映了信息-物理相互融合作用的影响. 进而设计了稳定禁止区域判据, 利用空间映射使开关/采样频率求解过程转化为Hurwitz矩阵辨识问题. 在这些空间映射的基础上, 最小开关/采样频率通过自适应步长搜索算法获得. 最后, 仿真和实验结果验证了该方法的有效性.
基于误差回传机制的多尺度去雾网络
杨爱萍, 李晓晓, 张腾飞, 王朝臣, 王建
当前状态:  doi: 10.16383/j.aas.c210264
[摘要](233) [HTML全文](103) [PDF 1505KB](13)
摘要:
针对现有图像去雾方法因空间上下文信息丢失而无法准确估计大尺度目标特征, 导致图像结构被破坏或去雾不彻底等问题, 本文提出了一种基于误差回传机制的多尺度去雾网络. 网络由误差回传多尺度去雾群组(Error-backward Multi-scale Dehazing Group, EMDG)、门控融合模块和优化模块组成. 其中EMDG包括误差回传模块和雾霾感知单元, 误差回传模块度量相邻尺度网络特征图之间的差异, 并将生成的差值图回传至上一尺度, 实现对结构信息和上下文信息的有效复用; 雾霾感知单元是各尺度子网络的核心, 其由残差密集块和雾浓度自适应检测块组成, 可充分提取局部信息并能够根据雾浓度实现自适应去雾. 不同于已有融合方法直接堆叠各尺度特征, 提出的门控融合模块逐像素学习每个子网络特征图对应的最优权重, 有效避免了干扰信息对图像结构和细节信息的破坏. 再经优化模块, 可得最终的无雾图像. 在合成数据集和真实数据集上的大量实验表明, 本文方法优于目前的主流去雾方法, 尤其是对远景雾气去除效果更佳.
基于事件相机的连续光流估计
付婧祎, 余磊, 杨文, 卢昕
当前状态:  doi: 10.16383/j.aas.c210242
[摘要](522) [HTML全文](178) [PDF 1202KB](31)
摘要:
事件相机对场景的亮度变化进行成像, 输出异步的事件流, 具有极低的延时, 受运动模糊问题影响较少. 因此, 可以利用事件相机解决高速运动场景下的光流估计问题. 本文基于亮度恒定假设和事件产生模型, 利用事件相机输出事件流的低延时性质, 融合存在运动模糊的亮度图像帧, 提出了基于事件相机的连续光流估计算法, 提升了高速运动场景下的光流估计精度. 实验结果表明, 相比于现有的基于事件相机的光流估计算法, 本文提出的算法在平均端点误差(AEE)、平均角度误差(AAE)和均方误差(MSE)三个指标上分别提升11%、45% 和8%. 在高速运动场景下, 本文的算法能够准确重建出高速运动目标的连续光流, 从而保证了存在运动模糊情况时光流估计的精度.
兵棋推演的智能决策技术与挑战
尹奇跃, 赵美静, 倪晚成, 张俊格, 黄凯奇
当前状态:  doi: 10.16383/j.aas.c210547
[摘要](1150) [HTML全文](588) [PDF 1502KB](151)
摘要:
近年来, 以人机对抗为途径的智能决策技术取得了飞速发展, 人工智能技术AlphaGo、AlphaStar等分别在围棋、星际争霸等游戏环境中战胜了顶尖人类选手. 兵棋推演, 作为一种人机对抗策略验证环境, 由于其非对称环境决策、更接近真实环境的随机性与高风险决策等特点受到智能决策技术研究者的广泛关注. 本文将梳理兵棋推演与目前主流人机对抗环境如围棋、德扑、星际争霸等对抗环境的区别, 阐述兵棋推演智能决策技术的发展现状, 并分析当前主流技术的局限与瓶颈, 对兵棋推演中的智能决策技术研究进行了思考, 期望能对兵棋推演相关研究人员的智能决策技术研究带来启发.
基于 PID 自整定功能的自适应双路输出的黑体温度控制
张海弟
当前状态:  doi: 10.16383/j.aas.c190277
[摘要](287) [HTML全文](65) [PDF 1412KB](31)
摘要:
首先, 通过分析黑体温度控制系统的物理模型, 推演出黑体传递函数的表达式.推演过程中得知黑体易受环境温度和空气散热的影响, 所以黑体温度控制系统是个非线性时变系统.结合实验黑体的阶跃响应数据, 采用阶跃响应法对传递函数进行近似计算, 得出黑体温控系统的传递函数是极点在左半轴的二阶系统, 该系统等效于二阶低通滤波器.经过低通滤波器的信号, 会滤除高频部分, 当用继电器法进行参数自整定时, 仅需计算能量较大的基波信号.通过对基波信号进行比较, 得出继电器法的整定公式, 并参照Ziegler-Nichols整定法则计算出PID参数.同时, 本文针对黑体加热器具有双路输出的特点, 提出了一种双路动态输出法, 通过理论分析了该方法可以消除环境对黑体温度的影响.对于环境温度变化较大的, 采用继电器法PID参数自整定的方式来消除; 对于黑体运行过程中环境温度变化较小的, 采用双路动态输出法来减少影响.最后, 结合实验数据, 引入性能指标, 验证了本文所述方法对黑体的温度控制性能有一定的提升.
面向多智能体协作的注意力意图与交流学习方法
俞文武, 杨晓亚, 李海昌, 王瑞, 胡晓惠
当前状态:  doi: 10.16383/j.aas.c210430
[摘要](322) [HTML全文](215) [PDF 2169KB](48)
摘要:
对于部分可观测环境下的多智能体交流协作任务, 现有工作大多只利用了当前时刻的网络隐藏层信息, 限制了信息的来源. 本文研究如何使用团队奖励训练一组独立的策略以及如何提升这组独立策略的协同表现, 提出了多智能体注意力意图交流算法, 增加了意图信息模块来扩大交流信息的来源, 并且改善了交流模式. 本文将