2.845

2023影响因子

(CJCR)

  • 中文核心
  • EI
  • 中国科技核心
  • Scopus
  • CSCD
  • 英国科学文摘

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

未知外部输入传感器网络异步触发分布式滚动时域估计

徐晨辉 何德峰 杜海平

徐晨辉, 何德峰, 杜海平. 未知外部输入传感器网络异步触发分布式滚动时域估计. 自动化学报, xxxx, xx(x): x−xx doi: 10.16383/j.aas.c240802
引用本文: 徐晨辉, 何德峰, 杜海平. 未知外部输入传感器网络异步触发分布式滚动时域估计. 自动化学报, xxxx, xx(x): x−xx doi: 10.16383/j.aas.c240802
Xu Chen-Hui, He De-Feng, Du Hai-Ping. Asynchronous triggered distributed moving horizon estimation for sensor networks with unknown external inputs. Acta Automatica Sinica, xxxx, xx(x): x−xx doi: 10.16383/j.aas.c240802
Citation: Xu Chen-Hui, He De-Feng, Du Hai-Ping. Asynchronous triggered distributed moving horizon estimation for sensor networks with unknown external inputs. Acta Automatica Sinica, xxxx, xx(x): x−xx doi: 10.16383/j.aas.c240802

未知外部输入传感器网络异步触发分布式滚动时域估计

doi: 10.16383/j.aas.c240802 cstr: 32138.14.j.aas.c240802
基金项目: 国家自然科学基金(62173303, U24A20270)资助
详细信息
    作者简介:

    徐晨辉:浙江工业大学信息工程学院博士后. 2024年获得浙江工业大学博士学位. 主要研究方向为传感器网络分布式状态估计. E-mail: 2111903294@zjut.edu.cn

    何德峰:浙江工业大学信息工程学院教授. 2001年和2008年分别获得中南大学学士学位和中国科学技术大学博士学位. 主要研究方向为智能预测与最优控制, 网络系统优化控制. 本文通信作者. E-mail: hdfzj@zjut.edu.cn

    杜海平:伍伦贡大学电气、计算机和电信工程学院教授. 2002年获得上海交通大学博士学位. 主要研究方向为鲁棒控制理论与应用. E-mail: hdu@uow.edu.au

Asynchronous Triggered Distributed Moving Horizon Estimation for Sensor Networks With Unknown External Inputs

Funds: Supported by National Natural Science Foundation of China (62173303, U24A20270)
More Information
    Author Bio:

    XU Chen-Hui Postdoctor at the College of Information Engineering, Zhejiang University of Technology. He received his Ph.D. degree from Zhejiang University of Technology in 2024. His main research interest is distributed state estimation of sensor networks

    HE De-Feng Professor at the College of Information Engineering, Zhejiang University of Technology. He received his bachelor degree from Central South University in 2001 and his Ph.D. degree from University of Science and Technology of China in 2008, respectively. His research interest covers intelligent prediction and optimal control, optimization control of network systems. Corresponding author of this paper

    DU Hai-Ping Professor at the School of Electrical, Computer and Telecommunications Engineering, University of Wollongong. He received his Ph.D. degree from Shanghai Jiao Tong University in 2002. His research interest covers robust control theory and applications

  • 摘要: 考虑未知外部输入无线传感器网络的约束分布式状态估计问题, 提出一种新型异步触发分布式滚动时域估计方法. 首先针对传感器网络节点的有限观测能力与资源约束, 设计基于异步事件触发机制的数据交互策略. 同时为抑制异步事件触发可能引入的最坏影响, 构建基于min-max优化的分布式滚动时域状态估计器. 其次, 通过松弛输入矩阵条件, 建立保证估计误差满足输入−状态稳定性的充分条件, 并利用该条件离线确定估计器参数. 进一步, 将状态估计器等价转化为基于线性矩阵不等式的凸规划问题, 减轻估计器在线计算负担. 最后, 通过对比实验验证了本文方法的优越性.
  • 图  1  半车悬架物理系统

    Fig.  1  A half-car suspension physical system

    图  2  包含4个节点的WSN

    Fig.  2  A WSN with 4 nodes

    图  3  激光传感器

    Fig.  3  A laser sensor

    图  4  理想网络环境下不同方法的估计误差对比

    Fig.  4  Comparison of estimation errors of different methods in ideal network environment

    表  1  理想网络环境下不同方法的MSE

    Table  1  MSE of different methods in ideal network environment

    误差分量 所提方法 OE CMHE
    $ \text{MSE}_{z_{rs,k}}\,\big(\left(\text{mm}\right)^2 \big) $ 0.0436 0.1391 0.1598
    $ \text{MSE}_{v_{rs,k}}\,\big(\left(\text{mm}/\text{s}\right)^2\big) $ 1.3523 2.8916 1.9939
    $ \text{MSE}_{z_{ru,k}}\,\big(\left(\text{mm}\right)^2 \big)$ 0.0394 0.1369 0.0404
    $ \text{MSE}_{v_{ru,k}}\,\big(\left(\text{mm}/\text{s}\right)^2 \big) $ 2.8290 3.0533 3.0505
    下载: 导出CSV

    表  2  不同触发阈值下节点1和节点2的对比结果

    Table  2  Comparison results of node 1 and node 2 under different triggering thresholds

    $ \delta^{1,m} $, $ \delta^{1,s} $ 节点1的状态
    估计触发频率
    节点1的测量
    值触发频率
    节点2的
    ACT (s)
    节点2的
    MSE
    $ \delta^{1,m}=0 $,
    $ \delta^{1,s}=0 $
    1.0000 1.0000 0.0865 1.4086
    $ \delta^{1,m}=0 $,
    $ \delta^{1,s}=5 $
    0.9301 1.0000 0.0909 2.6117
    $ \delta^{1,m}=0 $,
    $ \delta^{1,s}=10\sqrt2 $
    0.6088 1.0000 0.1036 54.2147
    $ \delta^{1,m}=2 $,
    $ \delta^{1,s}=0 $
    1.0000 0.8782 0.1076 1.4308
    $ \delta^{1,m}=8 $,
    $ \delta^{1,s}=0 $
    1.0000 0.5250 0.1173 1.3927
    $ \delta^{1,m}=10\sqrt2 $,
    $ \delta^{1,s}=0 $
    1.0000 0.3533 0.1266 1.4379
    下载: 导出CSV
  • [1] 游康勇, 杨立山, 郭文彬. 无线传感器网络下基于压缩感知的多目标分层贪婪匹配定位. 自动化学报, 2019, 45(3): 480−489

    You Kang-Yong, Yang Li-Shan, Guo Wen-Bin. Hierarchical greedy matching pursuit for multi-target localization in wireless sensor networks using compressive sensing. Acta Automatica Sinica, 2019, 45(3): 480−489
    [2] Xu C H, He D F, Du H P. Event-triggered distributed moving horizon estimation for smart sensor networks with fading channels and constraints. IEEE Transactions on Instrumentation and Measurement, 2023, 72: Article No. 1009912
    [3] Yan J Q, Yang X, Mo Y L, You K Y. A distributed implementation of steady-state Kalman filter. IEEE Transactions on Automatic Control, 2023, 68(4): 2490−2497 doi: 10.1109/TAC.2022.3175925
    [4] 王恒, 彭政岑, 马文巧, 李敏. 免时间戳交互的无线传感网隐含节点同步参数估计算法. 自动化学报, 2022, 48(11): 2788−2796

    Wang Heng, Peng Zheng-Cen, Ma Wen-Qiao, Li Min. Synchronization parameter estimation algorithm of silent node in wireless sensor networks with timestamp-free exchange. Acta Automatica Sinica, 2022, 48(11): 2788−2796
    [5] Liu H B, Yu H S. Event-triggered robust state estimation for wireless sensor networks. Asian Journal of Control, 2020, 22(4): 1649−1658 doi: 10.1002/asjc.2051
    [6] Qu B G, Wang Z D, Shen B, Dong H L. Distributed state estimation for renewable energy microgrids with sensor saturations. Automatica, 2021, 131: Article No. 109730 doi: 10.1016/j.automatica.2021.109730
    [7] 滕达, 徐雍, 鲍鸿, 王卓, 鲁仁全. 基于时滞测量的复杂网络分布式状态估计研究. 自动化学报, 2024, 50(4): 841−850

    Teng Da, Xu Yong, Bao Hong, Wang Zhuo, Lu Ren-Quan. Distributed state estimation for complex networks with delayed measurements. Acta Automatica Sinica, 2024, 50(4): 841−850
    [8] Wang W H, Ho I W H, Chen Y, Wang Y H, Lin Y H. Real-time water quality monitoring and estimation in AIoT for freshwater biodiversity conservation. IEEE Internet of Things Journal, 2022, 9(16): 14366−14374 doi: 10.1109/JIOT.2021.3078166
    [9] Cao G H, Wang J Z. Distributed unknown input observer. IEEE Transactions on Automatic Control, 2023, 68(12): 8244−8251 doi: 10.1109/TAC.2023.3293451
    [10] Cao G H, Wang J Z. A distributed reduced-order unknown input observer. Automatica, 2023, 155: Article No. 111174 doi: 10.1016/j.automatica.2023.111174
    [11] Yang G T, Barboni A, Rezaee H, Parisini T. State estimation using a network of distributed observers with unknown inputs. Automatica, 2022, 146: Article No. 110631 doi: 10.1016/j.automatica.2022.110631
    [12] Gakis G, Smith M C. A deterministic least squares approach for simultaneous input and state estimation. IEEE Transactions on Automatic Control, 2023, 68(8): 4602−4617 doi: 10.1109/TAC.2022.3209415
    [13] Zhang Q H, Delyon B. Boundedness of the optimal state estimator rejecting unknown inputs. IEEE Transactions on Automatic Control, 2023, 68(4): 2430−2435 doi: 10.1109/TAC.2022.3174447
    [14] Emami A, Araújo R, Asvadi A. Distributed simultaneous estimation of states and unknown inputs. Systems & Control Letters, 2020, 138: Article No. 104660
    [15] Dávila J, Tranninger M, Fridman L. Finite-time state observer for a class of linear time-varying systems with unknown inputs. IEEE Transactions on Automatic Control, 2022, 67(6): 3149−3156 doi: 10.1109/TAC.2021.3096863
    [16] Zou L, Wang Z D, Hu J, Zhou D H. Moving horizon estimation with unknown inputs under dynamic quantization effects. IEEE Transactions on Automatic Control, 2020, 65(12): 5368−5375 doi: 10.1109/TAC.2020.2968975
    [17] Battistelli G. Distributed moving-horizon estimation with arrival-cost consensus. IEEE Transactions on Automatic Control, 2019, 64(8): 3316−3323 doi: 10.1109/TAC.2018.2879598
    [18] He D F, Xu C H, Zhu J W, Du H P. Moving horizon H estimation of constrained multisensor systems with uncertainties and fading channels. IEEE Transactions on Instrumentation and Measurement, 2021, 70: Article No. 9511112
    [19] 陈中, 潘俊迪, 蔡榕, 倪纯奕, 田江, 王毅. 基于事件触发加密的配电网预测辅助状态估计. 电力系统自动化, 2024, 48(23): 145−155

    Chen Zhong, Pan Jun-Di, Cai Rong, Ni Chun-Yi, Tian Jiang, Wang Yi. Forecasting-aided state estimation for distribution networks based on event-triggering encryption. Automation of Electric Power Systems, 2024, 48(23): 145−155
    [20] 黄蔓云, 徐启颖, 孙国强, 卫志农, 孙康. 事件触发机制下配电网三相动态状态估计. 电力系统自动化, 2024, 48(13): 100−108 doi: 10.7500/AEPS20231106005

    Huang Man-Yun, Xu Qi-Ying, Sun Guo-Qiang, Wei Zhi-Nong, Sun Kang. Three-phase dynamic state estimation for distribution network in event-triggered mechanism. Automation of Electric Power Systems, 2024, 48(13): 100−108 doi: 10.7500/AEPS20231106005
    [21] Zhao L, Cao X Y, Li L J, Yang H. Event-triggered distributed fusion for multirate multisensor systems with heavy-tailed noises. IEEE Transactions on Systems, Man, and Cybernetics: Systems, 2022, 52(5): 3137−3150 doi: 10.1109/TSMC.2021.3063889
    [22] Huang C, Mei P, Wang J. Event-triggering robust fusion estimation for a class of multi-rate systems subject to censored observations. ISA Transactions, 2021, 110: 28−38 doi: 10.1016/j.isatra.2020.10.038
    [23] Li C Y, Wang Z D, Song W H, Zhao S X, Wang J N, Shan J Y. Resilient unscented Kalman filtering fusion with dynamic event-triggered scheme: Applications to multiple unmanned aerial vehicles. IEEE Transactions on Control Systems Technology, 2023, 31(1): 370−381 doi: 10.1109/TCST.2022.3180942
    [24] Yin X Y, Liu J F. Event-triggered state estimation of linear systems using moving horizon estimation. IEEE Transactions on Control Systems Technology, 2021, 29(2): 901−909 doi: 10.1109/TCST.2020.2978908
    [25] Yin X Y, Huang B. Event-triggered distributed moving horizon state estimation of linear systems. IEEE Transactions on Systems, Man, and Cybernetics: Systems, 2022, 52(10): 6439−6451 doi: 10.1109/TSMC.2022.3146182
    [26] Yu D D, Xia Y Q, Zhai D H. Distributed moving-horizon estimation with event-triggered communication over sensor networks. IEEE Transactions on Automatic Control, 2023, 68(12): 7982−7988 doi: 10.1109/TAC.2023.3255201
    [27] Rao C V, Rawlings J B, Lee J H. Constrained linear state estimation——A moving horizon approach. Automatica, 2001, 37(10): 1619−1628 doi: 10.1016/S0005-1098(01)00115-7
    [28] Li X, Wei G L, Wang L C. Distributed set-membership filtering for discrete-time systems subject to denial-of-service attacks and fading measurements: A zonotopic approach. Information Sciences, 2021, 547: 49−67 doi: 10.1016/j.ins.2020.07.041
    [29] Huang Z H, Chen Z J, Liu C, Xu Y, Shi P. Consensus-based distributed moving horizon estimation with constraints. Information Sciences, 2023, 637: Article No. 118963 doi: 10.1016/j.ins.2023.118963
    [30] Ghaoui L E, Lebret H. Robust solutions to least-squares problems with uncertain data. SIAM Journal on Matrix Analysis and Applications, 1997, 18(4): 1035−1064 doi: 10.1137/S0895479896298130
    [31] 俞立. 鲁棒控制: 线性矩阵不等式处理方法. 北京: 清华大学出版社, 2002. 241−267

    Yu Li. Robust Control: Linear Matrix Inequality Approaches. Beijing: Tsinghua University Press, 2002. 241−267
    [32] Xia X J, Ning D H, Liao Y L, Liu P F, Du H P, Li W H, et al. Multiobjective control strategies of a novel multifunction electrically interconnected suspension. IEEE/ASME Transactions on Mechatronics, 2023, 28(6): 3339−3351 doi: 10.1109/TMECH.2023.3264049
  • 加载中
计量
  • 文章访问数:  24
  • HTML全文浏览量:  23
  • 被引次数: 0
出版历程
  • 收稿日期:  2024-12-20
  • 录用日期:  2025-03-23
  • 网络出版日期:  2025-06-12

目录

    /

    返回文章
    返回