Asynchronous Triggered Distributed Moving Horizon Estimation for Sensor Networks With Unknown External Inputs
-
摘要: 考虑未知外部输入无线传感器网络的约束分布式状态估计问题, 提出一种新型异步触发分布式滚动时域估计方法. 首先针对传感器网络节点的有限观测能力与资源约束, 设计基于异步事件触发机制的数据交互策略. 同时为抑制异步事件触发可能引入的最坏影响, 构建基于min-max优化的分布式滚动时域状态估计器. 其次, 通过松弛输入矩阵条件, 建立保证估计误差满足输入−状态稳定性的充分条件, 并利用该条件离线确定估计器参数. 进一步, 将状态估计器等价转化为基于线性矩阵不等式的凸规划问题, 减轻估计器在线计算负担. 最后, 通过对比实验验证了本文方法的优越性.Abstract: This paper considers the constrained distributed state estimation problem for wireless sensor networks with unknown external inputs, and a novel asynchronous triggered distributed moving horizon estimation method is proposed. For the limited observation capability and resources constraint of nodes in the sensor network, a data interaction strategy is firstly designed based on an asynchronous event trigger mechanism. Then to suppress the potential worst impacts induced by the asynchronous event trigger, a distributed moving horizon state estimator is built based on min-max optimization. Secondly, sufficient conditions are established by relaxing the conditions of input matrices, thereby ensuring the input-to-state stability of estimation errors. These conditions can be used to compute the parameters of the estimator offline. Moreover, to reduce the online computational burden, the state estimator is reformulated as an equivalent convex programming problem in the form of linear matrix inequality. Finally, some comparative experiments demonstrate the advantages of the proposed method.
-
表 1 理想网络环境下不同方法的MSE
Table 1 MSE of different methods in ideal network environment
误差分量 所提方法 OE CMHE $ \text{MSE}_{z_{rs,k}}\,\big(\left(\text{mm}\right)^2 \big) $ 0.0436 0.1391 0.1598 $ \text{MSE}_{v_{rs,k}}\,\big(\left(\text{mm}/\text{s}\right)^2\big) $ 1.3523 2.8916 1.9939 $ \text{MSE}_{z_{ru,k}}\,\big(\left(\text{mm}\right)^2 \big)$ 0.0394 0.1369 0.0404 $ \text{MSE}_{v_{ru,k}}\,\big(\left(\text{mm}/\text{s}\right)^2 \big) $ 2.8290 3.0533 3.0505 表 2 不同触发阈值下节点1和节点2的对比结果
Table 2 Comparison results of node 1 and node 2 under different triggering thresholds
$ \delta^{1,m} $, $ \delta^{1,s} $ 节点1的状态
估计触发频率节点1的测量
值触发频率节点2的
ACT (s)节点2的
MSE$ \delta^{1,m}=0 $,
$ \delta^{1,s}=0 $1.0000 1.0000 0.0865 1.4086 $ \delta^{1,m}=0 $,
$ \delta^{1,s}=5 $0.9301 1.0000 0.0909 2.6117 $ \delta^{1,m}=0 $,
$ \delta^{1,s}=10\sqrt2 $0.6088 1.0000 0.1036 54.2147 $ \delta^{1,m}=2 $,
$ \delta^{1,s}=0 $1.0000 0.8782 0.1076 1.4308 $ \delta^{1,m}=8 $,
$ \delta^{1,s}=0 $1.0000 0.5250 0.1173 1.3927 $ \delta^{1,m}=10\sqrt2 $,
$ \delta^{1,s}=0 $1.0000 0.3533 0.1266 1.4379 -
[1] 游康勇, 杨立山, 郭文彬. 无线传感器网络下基于压缩感知的多目标分层贪婪匹配定位. 自动化学报, 2019, 45(3): 480−489You Kang-Yong, Yang Li-Shan, Guo Wen-Bin. Hierarchical greedy matching pursuit for multi-target localization in wireless sensor networks using compressive sensing. Acta Automatica Sinica, 2019, 45(3): 480−489 [2] Xu C H, He D F, Du H P. Event-triggered distributed moving horizon estimation for smart sensor networks with fading channels and constraints. IEEE Transactions on Instrumentation and Measurement, 2023, 72: Article No. 1009912 [3] Yan J Q, Yang X, Mo Y L, You K Y. A distributed implementation of steady-state Kalman filter. IEEE Transactions on Automatic Control, 2023, 68(4): 2490−2497 doi: 10.1109/TAC.2022.3175925 [4] 王恒, 彭政岑, 马文巧, 李敏. 免时间戳交互的无线传感网隐含节点同步参数估计算法. 自动化学报, 2022, 48(11): 2788−2796Wang Heng, Peng Zheng-Cen, Ma Wen-Qiao, Li Min. Synchronization parameter estimation algorithm of silent node in wireless sensor networks with timestamp-free exchange. Acta Automatica Sinica, 2022, 48(11): 2788−2796 [5] Liu H B, Yu H S. Event-triggered robust state estimation for wireless sensor networks. Asian Journal of Control, 2020, 22(4): 1649−1658 doi: 10.1002/asjc.2051 [6] Qu B G, Wang Z D, Shen B, Dong H L. Distributed state estimation for renewable energy microgrids with sensor saturations. Automatica, 2021, 131: Article No. 109730 doi: 10.1016/j.automatica.2021.109730 [7] 滕达, 徐雍, 鲍鸿, 王卓, 鲁仁全. 基于时滞测量的复杂网络分布式状态估计研究. 自动化学报, 2024, 50(4): 841−850Teng Da, Xu Yong, Bao Hong, Wang Zhuo, Lu Ren-Quan. Distributed state estimation for complex networks with delayed measurements. Acta Automatica Sinica, 2024, 50(4): 841−850 [8] Wang W H, Ho I W H, Chen Y, Wang Y H, Lin Y H. Real-time water quality monitoring and estimation in AIoT for freshwater biodiversity conservation. IEEE Internet of Things Journal, 2022, 9(16): 14366−14374 doi: 10.1109/JIOT.2021.3078166 [9] Cao G H, Wang J Z. Distributed unknown input observer. IEEE Transactions on Automatic Control, 2023, 68(12): 8244−8251 doi: 10.1109/TAC.2023.3293451 [10] Cao G H, Wang J Z. A distributed reduced-order unknown input observer. Automatica, 2023, 155: Article No. 111174 doi: 10.1016/j.automatica.2023.111174 [11] Yang G T, Barboni A, Rezaee H, Parisini T. State estimation using a network of distributed observers with unknown inputs. Automatica, 2022, 146: Article No. 110631 doi: 10.1016/j.automatica.2022.110631 [12] Gakis G, Smith M C. A deterministic least squares approach for simultaneous input and state estimation. IEEE Transactions on Automatic Control, 2023, 68(8): 4602−4617 doi: 10.1109/TAC.2022.3209415 [13] Zhang Q H, Delyon B. Boundedness of the optimal state estimator rejecting unknown inputs. IEEE Transactions on Automatic Control, 2023, 68(4): 2430−2435 doi: 10.1109/TAC.2022.3174447 [14] Emami A, Araújo R, Asvadi A. Distributed simultaneous estimation of states and unknown inputs. Systems & Control Letters, 2020, 138: Article No. 104660 [15] Dávila J, Tranninger M, Fridman L. Finite-time state observer for a class of linear time-varying systems with unknown inputs. IEEE Transactions on Automatic Control, 2022, 67(6): 3149−3156 doi: 10.1109/TAC.2021.3096863 [16] Zou L, Wang Z D, Hu J, Zhou D H. Moving horizon estimation with unknown inputs under dynamic quantization effects. IEEE Transactions on Automatic Control, 2020, 65(12): 5368−5375 doi: 10.1109/TAC.2020.2968975 [17] Battistelli G. Distributed moving-horizon estimation with arrival-cost consensus. IEEE Transactions on Automatic Control, 2019, 64(8): 3316−3323 doi: 10.1109/TAC.2018.2879598 [18] He D F, Xu C H, Zhu J W, Du H P. Moving horizon H∞ estimation of constrained multisensor systems with uncertainties and fading channels. IEEE Transactions on Instrumentation and Measurement, 2021, 70: Article No. 9511112 [19] 陈中, 潘俊迪, 蔡榕, 倪纯奕, 田江, 王毅. 基于事件触发加密的配电网预测辅助状态估计. 电力系统自动化, 2024, 48(23): 145−155Chen Zhong, Pan Jun-Di, Cai Rong, Ni Chun-Yi, Tian Jiang, Wang Yi. Forecasting-aided state estimation for distribution networks based on event-triggering encryption. Automation of Electric Power Systems, 2024, 48(23): 145−155 [20] 黄蔓云, 徐启颖, 孙国强, 卫志农, 孙康. 事件触发机制下配电网三相动态状态估计. 电力系统自动化, 2024, 48(13): 100−108 doi: 10.7500/AEPS20231106005Huang Man-Yun, Xu Qi-Ying, Sun Guo-Qiang, Wei Zhi-Nong, Sun Kang. Three-phase dynamic state estimation for distribution network in event-triggered mechanism. Automation of Electric Power Systems, 2024, 48(13): 100−108 doi: 10.7500/AEPS20231106005 [21] Zhao L, Cao X Y, Li L J, Yang H. Event-triggered distributed fusion for multirate multisensor systems with heavy-tailed noises. IEEE Transactions on Systems, Man, and Cybernetics: Systems, 2022, 52(5): 3137−3150 doi: 10.1109/TSMC.2021.3063889 [22] Huang C, Mei P, Wang J. Event-triggering robust fusion estimation for a class of multi-rate systems subject to censored observations. ISA Transactions, 2021, 110: 28−38 doi: 10.1016/j.isatra.2020.10.038 [23] Li C Y, Wang Z D, Song W H, Zhao S X, Wang J N, Shan J Y. Resilient unscented Kalman filtering fusion with dynamic event-triggered scheme: Applications to multiple unmanned aerial vehicles. IEEE Transactions on Control Systems Technology, 2023, 31(1): 370−381 doi: 10.1109/TCST.2022.3180942 [24] Yin X Y, Liu J F. Event-triggered state estimation of linear systems using moving horizon estimation. IEEE Transactions on Control Systems Technology, 2021, 29(2): 901−909 doi: 10.1109/TCST.2020.2978908 [25] Yin X Y, Huang B. Event-triggered distributed moving horizon state estimation of linear systems. IEEE Transactions on Systems, Man, and Cybernetics: Systems, 2022, 52(10): 6439−6451 doi: 10.1109/TSMC.2022.3146182 [26] Yu D D, Xia Y Q, Zhai D H. Distributed moving-horizon estimation with event-triggered communication over sensor networks. IEEE Transactions on Automatic Control, 2023, 68(12): 7982−7988 doi: 10.1109/TAC.2023.3255201 [27] Rao C V, Rawlings J B, Lee J H. Constrained linear state estimation——A moving horizon approach. Automatica, 2001, 37(10): 1619−1628 doi: 10.1016/S0005-1098(01)00115-7 [28] Li X, Wei G L, Wang L C. Distributed set-membership filtering for discrete-time systems subject to denial-of-service attacks and fading measurements: A zonotopic approach. Information Sciences, 2021, 547: 49−67 doi: 10.1016/j.ins.2020.07.041 [29] Huang Z H, Chen Z J, Liu C, Xu Y, Shi P. Consensus-based distributed moving horizon estimation with constraints. Information Sciences, 2023, 637: Article No. 118963 doi: 10.1016/j.ins.2023.118963 [30] Ghaoui L E, Lebret H. Robust solutions to least-squares problems with uncertain data. SIAM Journal on Matrix Analysis and Applications, 1997, 18(4): 1035−1064 doi: 10.1137/S0895479896298130 [31] 俞立. 鲁棒控制: 线性矩阵不等式处理方法. 北京: 清华大学出版社, 2002. 241−267Yu Li. Robust Control: Linear Matrix Inequality Approaches. Beijing: Tsinghua University Press, 2002. 241−267 [32] Xia X J, Ning D H, Liao Y L, Liu P F, Du H P, Li W H, et al. Multiobjective control strategies of a novel multifunction electrically interconnected suspension. IEEE/ASME Transactions on Mechatronics, 2023, 28(6): 3339−3351 doi: 10.1109/TMECH.2023.3264049 -
计量
- 文章访问数: 24
- HTML全文浏览量: 23
- 被引次数: 0