2.793

2018影响因子

(CJCR)

  • 中文核心
  • EI
  • 中国科技核心
  • Scopus
  • CSCD
  • 英国科学文摘

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

优先发表

优先发表栏目展示本刊经同行评议确定正式录用的文章,这些文章目前处在编校过程,尚未确定卷期及页码,但可以根据DOI进行引用。
显示方式:
高速铁路信号系统运维分层架构模型研究
林鹏, 田宇, 袁志明, 张琦, 董海荣, 宋海锋, 阳春华
, doi: 10.16383/j.aas.c210109
摘要:
高速铁路信号系统是高速铁路安全可靠运营的核心装备, 实现高速铁路信号系统智能运维是降低高速铁路运行风险的必要基础保障. 目前我国高速铁路信号系统运维研究工作主要集中于器件级系统或基本单元系统, 系统层面的相关研究几乎为空白, 亟需从整体上建立全局架构理论模型. 为此, 定义了关联信号系统, 提出了分散式动态评估函数, 将动态调度纳入运维体系, 构建了分层架构模型. 在此基础上, 针对分层架构模型的决策层和关联信号层, 提出了动态定量评估、动态风险预警和故障诊断的研究方法, 并展望了所面临的挑战.
无监督多重非局部融合的图像去噪方法
陈叶飞, 赵广社, 李国齐, 王鼎衡
, doi: 10.16383/j.aas.c200138
摘要:
非局部均值去噪 (Non-local means, NLM) 算法利用图像的自相似性, 取得了很好的去噪效果. 然而, NLM 算法对图像中不相似的邻域块分配了过大的权重, 此外算法的搜索窗大小和滤波参数等通常是固定的且无法根据图像内容的变化做出自适应的调整. 针对上述问题, 本文提出一种无监督多重非局部融合 (Unsupervised multi-non-local fusion, UM-NLF) 的图像去噪方法, 即变换搜索窗等组合参数得到多个去噪结果, 并利用 SURE (Stein′s unbiased risk estimator) 对这些结果进行无监督的随机线性组合以获得最终结果. 首先, 为了滤除不相似或者相似度较低的邻域块, 本文引入一种基于可微分硬阈值函数的非局部均值 (Non-local means with a differential hard threshold function, NLM-DT) 算法, 并结合快速傅里叶变换 (Fast fourier transformation, FFT), 初步提升算法的去噪效果和速度; 其次, 针对不同的组合参数, 利用快速 NLM-DT 算法串联生成多个去噪结果; 然后, 采用蒙特卡洛随机采样的思想对上述多个去噪结果进行随机的线性组合, 并利用基于 SURE 特征加权的移动平均滤波算法来抑制多个去噪结果组合引起的抖动噪声; 最后, 利用噪声图像和移动平均滤波后图像的 SURE 进行梯度的反向传递来优化随机线性组合的系数. 在公开数据集上的实验结果表明: UM-NLF 算法去噪结果的峰值信噪比 (Peak signal to noise radio, PSNR) 超过了 NLM 及其大部分改进算法, 以及在部分图像上超过了 BM3D 算法. 同时, UM-NLF 相比于 BM3D 算法在视觉上产生更少的振铃伪影, 改善了图像的视觉质量.
面向Kullback-Leibler散度不确定集的正则化线性判别分析
梁志贞, 张磊
, doi: 10.16383/j.aas.c210434
摘要:
线性判别分析是一种统计学习方法. 针对线性判别分析的小样本奇异性问题和对污染样本敏感性问题, 目前许多线性判别分析的改进算法已被提出. 本文提出了基于Kullback-Leibler(KL)散度不确定集的判别分析方法. 提出的方法不仅利用了Ls范数定义类间距离和Lr范数定义类内距离, 而且对类内样本和各类中心的信息进行基于KL散度不确定集的概率建模. 本文首先通过优先考虑不利区分的样本提出了一种正则化对抗判别分析模型并利用广义Dinkelbach算法求解此模型. 这种算法的一个优点是在适当的条件下优化子问题不需要取得精确解. 投影(次)梯度法被用来求解优化子问题. 此外, 本文也提出了正则化乐观判别分析并采用交替优化技术求解广义Dinkelbach算法的优化子问题. 许多数据集上的实验表明了本文的模型优于现有的一些模型, 特别是在污染的数据集上, 正则化乐观判别分析由于优先考虑了类中心附近的样本点, 从而表现出良好的性能.
基于折扣广义值迭代的智能最优跟踪及应用验证
王鼎, 赵明明, 哈明鸣, 乔俊飞
, doi: 10.16383/j.aas.c210658
摘要:
设计了一种基于折扣广义值迭代的智能算法, 用于解决一类复杂非线性系统的最优跟踪控制问题. 通过选取合适的初始值, 值迭代过程中的代价函数将以单调递减的形式收敛到最优代价函数. 基于单调递减的值迭代算法, 在不同折扣因子的作用下, 讨论了迭代跟踪控制律的可容许性和误差系统的渐近稳定性. 为了促进算法的实现, 建立一个数据驱动的模型网络用于学习系统动态信息, 同时构造评判网络和执行网络用于近似迭代代价函数和计算迭代跟踪控制律. 值得注意的是, 我们提出了新颖的停止准则来保证迭代跟踪控制律的有效性. 这种停止准则包含两个条件, 一个条件用来保证迭代跟踪控制律的可用性, 这有利于评估误差系统的渐近稳定性; 而另一个条件用来确保跟踪控制律的近似最优性. 最后, 通过包括污水处理在内的两个应用实例验证了本文提出的近似最优跟踪控制方法的可行性和有效性.
面向对抗样本的深度神经网络可解释性分析
董胤蓬, 苏航, 朱军
, doi: 10.16383/j.aas.c200317
摘要:
虽然深度神经网络 (Deep neural networks, DNNs) 在许多任务上取得了显著的效果, 但是由于其可解释性 (Interpretability) 较差, 通常被当做“黑盒”模型. 本文针对图像分类任务, 利用对抗样本 (Adversarial examples) 从模型失败的角度检验深度神经网络内部的特征表示. 通过分析, 发现深度神经网络学习到的特征表示与人类所理解的语义概念之间存在着不一致性. 这使得理解和解释深度神经网络内部的特征变得十分困难. 为了实现可解释的深度神经网络, 使其中的神经元具有更加明确的语义内涵, 本文提出了加入特征表示一致性损失的对抗训练方式. 实验结果表明该训练方式可以使深度神经网络内部的特征表示与人类所理解的语义概念更加一致.
F范数度量下的鲁棒张量低维表征
王肖锋, 石乐岩, 杨璐, 刘军, 周海波
, doi: 10.16383/j.aas.c210375
摘要:
张量主成分分析(Tensor principle component analysis, TPCA)在彩色图像低维表征领域得到广泛深入研究, 采用\begin{document}$\textit{F}$\end{document}范数平方作为低维投影的距离度量方式, 表征含离群数据和噪声图像的鲁棒性较弱. \begin{document}$\textit{L}_{1}$\end{document}范数能够抑制噪声的影响, 但所获的低维投影数据缺乏重构误差约束, 其局部表征能力也较弱. 针对上述问题, 本文利用\begin{document}$\textit{F}$\end{document}范数作为目标函数的距离度量方式, 提出一种基于\begin{document}$\textit{F}$\end{document}范数的分块张量主成分分析算法(Block TPCA with \begin{document}$\textit{F}$\end{document}-norm, BlockTPCA-\begin{document}$\textit{F}$\end{document}), 提高张量低维表征的鲁棒性. 考虑到同时约束投影距离与重构误差, 提出一种基于比例\begin{document}$\textit{F}$\end{document}范数的分块张量主成分分析算法(Block TPCA with proportional \begin{document}$\textit{F}$\end{document}-norm, BlockTPCA-P\begin{document}$\textit{F}$\end{document}), 其最大化投影距离与最小化重构误差均得到了优化. 然后, 给出了其贪婪的求解算法, 并对其收敛性进行了理论证明. 最后, 对包含不同噪声块和具有实际遮挡的彩色人脸数据集进行实验, 结果表明, 本文所提算法在平均重构误差、图像重构与分类率等方面均得到了明显提升, 在张量低维表征中具有较强的鲁棒性.
目标跟踪中基于IoU和中心点距离预测的尺度估计
李绍明, 储珺, 冷璐, 涂序继
, doi: 10.16383/j.aas.c210356
摘要:
目标跟踪中基于IoU (Intersection over union, IoU)预测的尺度估计方法, 通过估计视频帧中候选框与真实目标框的重叠度训练尺度回归模型, 推理阶段通过最大化IoU对初始化边界框进行微调, 取得目标的尺度. 本文详细分析了基于IoU预测的尺度估计模型的梯度更新过程, 发现其在训练和推理过程仅将IoU作为度量, 缺乏对预测框和真实目标框中心点距离的约束, 导致外观模型更新过程中模板受到污染, 前景和背景分类时定位出现偏差. 基于此发现, 本文构建了一种结合IoU和中心点距离的新度量NDIoU (Normalization distance IoU), 在此基础上提出一种新的尺度估计方法, 并将其嵌入判别式跟踪框架. 即在训练阶段以NDIoU为标签, 设计了具有中心点距离约束的损失函数监督网络的学习, 在线推理期间通过最大化NDIoU微调目标尺度, 以帮助外观模型更新时获得更加准确的样本. 在七个数据上与相关主流方法进行对比, 本文方法在七个数据集上的综合性能优于所有对比算法. 特别是在GOT-10k数据集上, 本文方法的AO、\begin{document}$ S{R}_{0.5} $\end{document}\begin{document}$ S{R}_{0.75} $\end{document}三个指标达到了65.4%、78.7%和53.4%, 分别超过基线模型4.3%、7.0%和4.2%.
一种面向航空母舰甲板运动状态预估的鲁棒学习模型
王可, 徐明亮, 李亚飞, 姜晓恒, 鲁爱国, 李鉴
, doi: 10.16383/j.aas.c210064
摘要:
航母甲板在风、浪、流等因素影响下做六自由度不规则运动, 影响舰载机着舰精度. 航母甲板运动预估与补偿是自动着舰系统的重要功能之一, 也是提高舰载机着舰安全性与成功率的关键技术之一. 本文提出一种面向甲板运动预估的鲁棒学习模型, 通过基本构建单元自适应演化出复杂学习系统. 构建单元的训练采用非梯度的伪逆学习策略, 提高了训练效率, 简化了学习控制超参数调优;构建单元的架构设计采用数据驱动的策略, 简化了架构超参数调优;采用图拉普拉斯正则化方法提高了模型的鲁棒性. 通过某型航母在中等海况条件下以典型航速巡航时的仿真实验, 验证了所提方法在甲板纵摇、横摇以及垂荡运动预估问题中的有效性及鲁棒性.
基于最优工况迁移的高炉铁水硅含量预测方法
蒋朝辉, 许川, 桂卫华, 蒋珂
, doi: 10.16383/j.aas.c200980
摘要:
高炉铁水硅含量是铁水品质与炉况的重要表征, 冶炼过程关键参数频繁波动及大时滞特性给高炉铁水硅含量预测带来了巨大挑战. 提出一种基于最优工况迁移的高炉铁水硅含量预测方法. 首先, 针对过程变量频繁波动问题, 提出基于邦费罗尼指数的自适应密度峰值聚类算法, 实现对高炉冶炼过程变量的工况划分, 并建立不同工况硅含量预测子模型. 其次, 针对冶炼过程的大时滞特性, 定义相邻时间节点间的硅含量工况迁移代价函数, 并提出多源路径寻优算法, 实现冶炼过程中硅含量最优工况迁移路径及当前时刻硅含量最优预测值的求解. 最后, 基于工业现场数据验证了所提方法的有效性与准确性.
多模态动态核主成分分析的气液两相流状态监测
董峰, 李昭, 李凌涵, 张淑美
, doi: 10.16383/j.aas.c210690
摘要:
气液两相流流动过程作为一种非平稳过程, 其状态的变化具有时变性、非线性、随机性等复杂流动过程的特点, 其流动状态的实时监测对掌握其流动过程的产生、发展及转化, 保障实际生产的安全稳定运行具有重要意义. 特别是流动状态的过渡过程反映了流动状态的发展及演化, 其流动结构非常复杂. 针对气液两相流的3种典型流动状态及过渡转化过程, 在多传感器获取流动状态测试数据的基础上, 提出一种多模态动态核主成分分析方法. 通过采用动态自相关、互相关方法提取流动过程测试数据中的动态特性, 采用核方法提取非线性特性, 结合主成分分析建立不同典型流动状态的监测模型; 利用模型对不同典型流动状态进行判别, 并进一步实现流动过渡状态的监测. 通过对气液两相流实验装置中不同流动状态实验测试数据进行处理, 验证了所提出方法对典型流动状态判别的准确性及对过渡状态监测的有效性.
Event-Triggered Tracking Control for a Class of Nonlinear Systems With Observer and Prescribed Performance
YOU Xing-Xing, YANG Dao-Wen, GUO Bin, LIU Kai, DIAN Song-Yi, ZHU Yu-Qi
, doi: 10.16383/j.aas.c210387
摘要:
This paper investigates an adaptive fuzzy tracking control method for a class of nonlinear systems with external disturbances. Firstly, fuzzy logic systems and the fuzzy state observer are implemented to approximate unknown nonlinear functions and estimate the unmeasured states of systems, respectively. Then, the tracking error can be constrained within the specified range by means of the performance function. Furthermore, an event-triggered adaptive fuzzy controller is designed by employing the backstepping method and Lyapunov functional with logarithm function. The proposed control strategy can ensure that all the signals of the closed-loop system are semiglobally uniformly ultimately bounded based on the Lyapunov stability theory and the properties of\begin{document}$\tanh$\end{document}function. Finally, a numerical simulation example is provided to verify the effectiveness of proposed method.
具有不确定控制增益严格反馈系统的自适应命令滤波控制
吴锦娃, 刘勇华, 苏春翌, 鲁仁全
, doi: 10.16383/j.aas.c210553
摘要:
针对一类具有不确定控制增益的严格反馈系统, 提出了一种基于命令滤波反推技术的自适应神经网络控制方法. 该方法采用神经网络对系统中的未知非线性函数进行逼近, 并引入命令滤波反推技术克服“计算膨胀”的问题. 与现有的命令滤波反推控制文献相比, 本文通过构造自适应误差补偿系统, 同时消除了滤波器产生的边界层误差和不确定控制增益对系统性能造成的影响. 仿真结果验证了所提控制方法的有效性.
面向行人重识别的局部特征研究进展、挑战与展望
姚足, 龚勋, 陈锐, 卢奇, 罗彬
, doi: 10.16383/j.aas.c190821
摘要:
行人重识别(Person re-identification, Re-ID)旨在跨区域、跨场景的视频中实现行人的检索及跟踪, 其成果在智能监控、刑事侦查、反恐防暴等领域具有广阔的应用前景. 由于真实场景下的行人图像存在光照差异大、拍摄视角不统一、物体遮挡等问题, 导致从图像整体提取的全局特征易受无关因素的干扰, 识别精度不高. 基于局部特征的方法通过挖掘行人姿态、人体部位、视角特征等关键信息, 可加强模型对人体关键区域的学习, 降低无关因素的干扰, 从而克服全局特征的缺陷, 也因此成为近几年的研究热点. 本文对近年基于局部特征的行人重识别文献进行梳理, 简述了行人重识别的发展历程, 将基于局部特征的方法归纳为基于姿势提取、基于特征空间分割、基于视角信息、基于注意力机制四类, 并详细阐述了每一类的原理及优缺点. 然后在三个主流行人数据集上对典型方法的识别性能进行了分析比较, 最后总结了目前基于局部特征算法的难点, 并对未来本领域的研究趋势和发展方向进行展望.
非线性动态突变系统的多模型自适应执行器故障补偿设计
文利燕, 陶钢, 姜斌, 杨杰
, doi: 10.16383/j.aas.c200318
摘要:
本文针对因多重不确定执行器故障而引起系统动态突变的非线性系统, 设计了一种基于多模型切换的自适应执行器故障补偿控制策略, 以提高系统应对动态突变的能力, 同时实现不确定执行器故障的快速精确补偿. 针对执行器故障模式的不确定性问题, 采用基于多模型的参数估计方法, 设计了自适应控制器组; 基于最优性能指标函数, 提出了一种控制切换机制, 以选择最佳的自适应控制器作为当前的控制器, 从而实现期望的故障补偿控制. 所设计的多模型自适应控制策略, 可以保证所有闭环系统信号有界, 且在出现有限数量的不确定性执行器故障情况下, 系统输出渐近跟踪所选择的参考系统输出; 同时, 当系统中出现持续间歇性执行器故障时, 此方法可以保证系统的输出跟踪误差是平均小的. 最后, 本文基于飞行器动力学模型, 进行仿真研究, 验证了所设计的自适应故障补偿策略的有效性.
基于最后逃逸时间的随机退化设备寿命预测方法
张建勋, 杜党波, 司小胜, 胡昌华, 郑建飞
, doi: 10.16383/j.aas.c200260
摘要:
现有基于随机退化过程建模的寿命预测研究中, 通常用退化过程的首达时间(First passage time, FPT)来定义寿命. 但是, 这种寿命定义较为保守, 可能会导致其明显小于设备实际寿命. 鉴于此, 基于最后逃逸时间(Last exit time, LET)的概念, 给出一种新的寿命与剩余寿命(Remaining useful life, RUL)定义方式. 在该新框架下, 提出一种基于最后逃逸时间的寿命预测方法, 推导得到最后逃逸时间下基于Wiener退化过程模型的寿命与剩余寿命表达形式, 讨论了该方法与传统首达时间下寿命预测方法之间的关系. 此外, 通过数值仿真验证了该方法的正确性, 并对模型参数进行了敏感性分析. 最后, 通过轴承以及激光器的实际退化数据说明了该方法的有效性、可行性以及潜在的工程应用价值.
基于多相关HMT模型的DT CWT域数字水印算法
王向阳, 牛盼盼, 杨红颖, 李丽
, doi: 10.16383/j.aas.c190075
摘要:
本文以双树复数小波变换(Dual-tree complex wavelet transform, DT CWT)及隐马尔科夫树(Hidden Markov tree, HMT)理论为基础, 提出了一种基于Weibull向量HMT模型的DT CWT域数字音频盲水印算法. 原始数字音频首先进行DT CWT, 然后利用局部信息熵刻画音频内容特征并据此确定出重要DT CWT系数段, 进而将水印信息乘性嵌入到重要DT CWT高频系数幅值内. 水印检测时, 首先根据DT CWT系数幅值的边缘分布及系数间的多种相关性(包括子带内、尺度间、分解树间等相关性), 构造出Weibull混合向量HMT统计模型, 并估计出其统计模型参数; 然后, 利用局部最大势能(Locally most powerful, LMP)检验理论构造出局部最优检测器(Locally optimum decoder, LOD)以盲提取水印信息. 仿真实验结果表明, 本文算法可以较好地获得不可感知性、鲁棒性、水印容量之间的良好平衡, 其总体性能优于现有同类音频水印算法.
一类非线性系统模糊自适应固定时间量化反馈控制
王焕清, 陈明, 刘晓平
, doi: 10.16383/j.aas.c190681
摘要:
研究了一类严格反馈不确定非线性系统的模糊自适应实际固定时间量化反馈控制问题. 基于李雅普诺夫有限时间稳定理论、自适应模糊控制理论及反演控制算法, 提出了一种非线性系统模糊自适应实际固定时间量化反馈跟踪控制方案. 所设计的控制方案能够保证闭环系统的输出跟踪误差在固定时间内收敛于原点的一个充分小邻域内, 且闭环系统内所有信号均有界. 最后, 数值示例验证了设计方案的有效性.
基于卦限卷积神经网络的3D点云分析
许翔, 帅惠, 刘青山
, doi: 10.16383/j.aas.c200080
摘要:
基于深度学习的三维点云数据分析技术得到了越来越广泛的关注, 然而点云数据的不规则性使得高效提取点云中的局部结构信息仍然是一大研究难点. 本文提出了一种能够作用于局部空间邻域的卦限卷积神经网络(Octant convolutional neural network, Octant-CNN), 它由卦限卷积模块和下采样模块组成. 针对输入点云, 卦限卷积模块在每个点的近邻空间中定位8个卦限内的最近邻点, 接着通过多层卷积操作将8卦限中的几何特征抽象成语义特征, 并将低层几何特征与高层语义特征进行有效融合, 从而实现了利用卷积操作高效提取三维邻域内的局部结构信息; 下采样模块对原始点集进行分组及特征聚合, 从而提高特征的感受野范围, 并且降低网络的计算复杂度. Octant-CNN通过对卦限卷积模块和下采样模块的分层组合, 实现了对三维点云进行由底层到抽象、从局部到全局的特征表示. 实验结果表明, Octant-CNN在对象分类、部件分割、语义分割和目标检测四个场景中均取得了较好的性能.
深海起重机系统的实时轨迹规划方法
王岳, 孙宁, 吴易鸣, 梁潇, 陈鹤, 方勇纯
, doi: 10.16383/j.aas.c200262
摘要:
近年来, 随着海洋资源的不断开发与海洋工程的全球化推进, 深海起重机得到了广泛应用, 其控制问题也引起研究人员的极大关注. 在深海作业环境中, 由于吊运过程受到水流作用力的影响, 负载摆动幅度增大, 系统状态量间非线性耦合关系增强, 使系统控制难度加大. 为此, 本文针对深海起重机系统提出了一种实时轨迹规划方法. 具体而言, 通过分析系统动力学特性和状态变量之间复杂的耦合关系, 提出了一种实时规划轨迹的方法, 并从理论上证明了该方法可在使台车准确快速到达指定位置的同时, 有效抑制负载摆动. 最后, 一系列仿真结果证明了所提方法的良好性能.
主成分提取信息准则的加权规则
杜柏阳, 孔祥玉, 罗家宇
, doi: 10.16383/j.aas.c190226
摘要:
并行主成分提取算法在信号特征提取中具有十分重要的作用, 采用加权规则将主子空间(Principal subspace, PS)提取算法转变为并行主成分提取算法是很有效的方式, 但研究加权规则对状态矩阵影响的理论分析非常少. 对加权规则影响的分析不仅可以提供加权规则下的主成分提取算法动力学的详细认知, 而且对于其他子空间跟踪算法转变为并行主成分提取算法的可实现性给出判断条件. 本文通过比较Oja的主子空间跟踪算法和加权Oja并行主成分提取算法, 通过两种算法的差异分析了加权规则对算法提取矩阵方向的影响. 首先, 针对二维输入信号, 研究了提取两个主成分时加权规则的信息准则对状态矩阵方向的作用方式. 进而, 针对大于二维输入信号的情况, 给出加权规则影响多个主成分提取方式的讨论. 最后, MATLAB仿真验证了所提出理论的有效性.
航天器任务调度模型、算法与通用求解技术综述
杜永浩, 邢立宁, 姚锋, 陈盈果
, doi: 10.16383/j.aas.c190656
摘要:
针对航天器任务调度大规模、复杂化的新常态和灵活组网、快速响应的新要求, 综述了航天器任务调度模型、算法与通用求解技术的发展现状. 首先, 基于遥感卫星、中继通信卫星、导航卫星和航天测控等航天器任务, 从任务排序模型和时间窗口分配模型两个角度出发, 揭示了不同航天器任务调度模型的决策形式和共性特征, 阐明提升模型兼容性、适用性的必要性. 其次, 基于启发式算法、精确求解算法和元启发式算法, 探讨了航天器任务调度算法的适用模型与编码特色, 指明“算法−模型”解耦、算法深度融合的重要性. 在此基础上, 介绍了CPLEX、STK/Scheduler、Europa2和“高景一号”任务调度分系统等航天器任务调度通用求解技术的模型、算法与主要功能, 说明我国自主研发通用求解技术的必要性和新的应用思路. 最后, 指出了开发航天器任务调度统一化建模语言、打造算法库与测试集等未来航天器任务调度研究的新方向.
基于改进高斯混合模型的机器人运动状态估计
葛泉波, 王贺彬, 杨秦敏, 张兴国, 刘华平
, doi: 10.16383/j.aas.c200660
摘要:
针对复杂环境下机器人运动状态估计的精度改善问题, 提出一种面向非线性非高斯系统的改进高斯和容积Kalman滤波估计方法. 首先, 引入加权信息量概念来改进EM算法目标函数惩罚项, 使得在优化过程中能考虑更全面的参数信息, 以达到减少EM算法的迭代次数和提高收敛速度的目的. 此外, 以基于Mahalanobis距离和KL距离的高斯项合并方法为基础, 提出一种能有效联合两类高斯项合并方式的融合模式. 先单独使用Mahalanobis距离和KL距离进行高斯混合项合并, 再对获得的高斯混合项进行加权融合处理, 以改善高斯和滤波中多高斯项的合并性能和保真度. 最后, 应用非线性非高斯系统的高斯和容积Kalman滤波框架实现对复杂环境下机器人的运动状态估计. 理论分析与仿真结果表明, 本文提出的方法能实现对机器人运动更好的状态估计精度, 并具有更强的鲁棒性能, 同时两种不同的高斯项合并融合模式具有相当的估计性能.
基于动态注意力深度迁移网络的高炉铁水硅含量在线预测方法
蒋珂, 蒋朝辉, 谢永芳, 潘冬, 桂卫华
, doi: 10.16383/j.aas.c210524
摘要:
铁水硅含量是反映高炉冶炼过程中热状态变化的灵敏指示剂, 但无法实时在线检测, 造成铁水质量调控盲目. 为此, 本文提出一种基于动态注意力深度迁移网络的高炉铁水硅含量在线预测方法. 首先, 针对传统深度网络静态建模思路无法准确描述过程变量与铁水硅含量之间的关系, 提出了一种基于注意力机制模块的输入过程变量与输出硅含量之间的动态关系描述方法; 其次, 为降低硅含量预测模型训练时对标签数据的依赖, 考虑到铁水温度跟硅含量数据之间的正相关性, 利用小时级硅含量标签数据微调基于分钟级铁水温度数据预训练好的深度模型的结构, 进而提高基于动态注意力深度迁移网络的硅含量预测精度; 同时, 为了增强预测网络的可解释性, 实时地给出了基于动态注意力机制模块计算的每个样本各过程变量对铁水硅含量的贡献度. 最后, 基于某钢铁厂2#高炉的工业实验验证了本文所提方法的准确性、有效性和先进性.
基于运动引导的高效无监督视频目标分割网络
赵子成, 张开华, 樊佳庆, 刘青山
, doi: 10.16383/j.aas.c210626
摘要:
大量基于深度学习的无监督视频目标分割算法存在模型参数量与计算量较大的问题, 这显著地限制了算法在实际中的应用. 本文提出了基于运动引导的视频目标分割网络, 在大幅降低模型参数量与计算量的同时提升视频目标分割性能.整个模型由双流网络、运动引导模块、多尺度渐进融合模块三部分组成. 具体地,RGB图像与光流估计输入双流网络提取物体外观特征与运动特征. 然后,运动引导模块通过局部注意力提取运动特征中的语义信息,用于引导外观特征学习丰富的语义信息.最后,多尺度渐进融合模块获取双流网络的各个阶段输出的特征,将深层特征渐进地融入浅层特征, 最终提升边缘分割效果. 本文在三个标准数据集上进行了大量评测, 实验结果证明了本文方法的优越性能.
基于多对多生成对抗网络的非对称跨域迁移行人再识别
梁文琦, 王广聪, 赖剑煌
, doi: 10.16383/j.aas.c190303
摘要:
无监督跨域迁移学习是行人再识别中一个非常重要的任务. 给定一个有标注的源域和一个没有标注的目标域, 无监督跨域迁移的关键点在于尽可能地把源域的知识迁移到目标域. 然而, 目前的跨域迁移方法忽略了域内各视角分布的差异性, 导致迁移效果不好. 针对这个缺陷, 本文提出了一个基于多视角的非对称跨域迁移学习的新问题. 为了实现这种非对称跨域迁移, 提出了一种基于多对多生成对抗网络(Many-to-many generative adversarial network, M2M-GAN)的迁移方法. 该方法嵌入了指定的源域视角标记和目标域视角标记作为引导信息, 并增加了视角分类器用于鉴别不同的视角分布, 从而使模型能自动针对不同的源域视角和目标域视角组合采取不同的迁移方式. 在行人再识别基准数据集Market1501、DukeMTMC-reID和MSMT17上, 实验验证了本文的方法能有效提升迁移效果, 达到更高的无监督跨域行人再识别准确率.
基于潜在特征选择性集成建模的二噁英排放浓度软测量
汤健, 乔俊飞, 郭子豪
, doi: 10.16383/j.aas.c190254
摘要:
二噁英(Dioxin,DXN)是导致城市固废焚烧(Municipal solid waste incineration, MSWI)建厂存在“邻避效应”的主要原因之一. 工业现场多以月或季为周期采用离线化验手段检测MSWI排放尾气中DXN浓度, 难以满足污染物实时监视和减排控制的需求. 针对上述问题, 本文提出了基于潜在特征选择性集成(Selective ensemble, SEN)建模的DXN排放浓度软测量方法. 首先, 采用主元分析(Principal component analysis, PCA)分别提取依据工艺流程划分的阶段子系统及MSWI全流程系统过程变量的潜在特征, 并依据预设主元贡献率阈值进行潜在特征初选; 接着, 采用互信息(Mutual information, MI)度量初选潜在特征与DXN间的相关性, 并自适应确定多源潜在特征再选的上下限及阈值; 最后, 采用具有超参数自适应选择机制的最小二乘−支持向量机(Least squares — support vector machine, LS-SVM)算法建立多源再选潜在特征的候选子模型, 基于分支定界(Branch and bound, BB)优化和预测误差信息熵加权算法进行集成子模型的优化选择和加权组合, 进而得到DXN排放浓度软测量模型. 基于某MSWI焚烧厂近6年的DXN检测数据仿真验证了所提方法的有效性.
一种用于目标跟踪边界框回归的光滑IoU损失
李功, 赵巍, 刘鹏, 唐降龙
, doi: 10.16383/j.aas.c210525
摘要:
边界框回归分支是深度目标跟踪器的关键模块, 其性能直接影响跟踪器的精度. 评价精度的指标之一是交并比(Intersection over Union, IoU). 基于 IoU 的损失函数取代了\begin{document}$ \ell_n $\end{document}-norm 损失成为目前主流的边界框回归损失函数, 然而 IoU 损失函数存在两个固有缺陷: 一个是当预测框与真值框不相交时 IoU 为常量 0, 无法梯度下降更新边界框的参数; 另一个是在 IoU 取得最优值时其梯度不存在, 边界框很难收敛到 IoU 最优处. 本文揭示了在回归过程中 IoU 最优的边界框各参数之间蕴含的定量关系, 指出在边界框中心处于特定位置时存在多种尺寸不同的边界框使 IoU 损失最优的情况, 这增加了边界框尺寸回归的不确定性. 本文从优化两个统计分布之间散度的视角看待边界框回归问题, 提出了光滑 IoU 损失, 即构造了在全局上光滑 (即连续可微) 且极值唯一的损失函数, 该损失函数自然蕴含边界框各参数之间特定的最优关系, 其唯一取极值的边界框可使 IoU 达到最优. 光滑性确保了在全局上梯度存在使得边界框更容易回归到极值处, 而极值唯一确保了在全局上可梯度下降更新参数, 从而避开了 IoU 损失的固有缺陷. 提出的光滑 IoU 损失可以很容易取代 IoU 损失集成到现有的深度目标跟踪器上训练边界框回归, 在 LaSOT, GOT-10k, TrackingNet 和 OTB2015 等测试基准上所取得的结果验证了光滑 IoU 损失的易用性和有效性.
基于语义引导特征聚合的显著性目标检测网络
王正文, 宋慧慧, 樊佳庆, 刘青山
, doi: 10.16383/j.aas.c210425
摘要:
在显著性目标检测网络的设计中, U型结构使用广泛. 但是U型结构显著性检测方法中普遍存在空间位置细节丢失和边缘难以细化的问题, 针对这些问题, 本文提出了一个基于语义信息引导特征聚合的网络, 通过高效的特征聚合来获得精细的显著性图. 网络由3部分组成, 分别是混合注意力模块, 增大感受野模块以及多层次聚合模块. 首先, 利用增大感受野模块处理特征提取网络提取出的低层特征, 使其在保留原有边缘细节的同时增大感受野, 以获得更加丰富的空间上下文信息. 然后, 利用混合注意力模块处理特征提取网络的最后一层特征, 以增强其表征力, 并作为解码过程中的语义指导, 不断指导特征聚合. 最后, 多层次聚合模块对来自不同层次的特征进行有效聚合, 得到最终精细的显著性图. 本文在6个基准数据集上进行了广泛的实验, 结果证明了该方法能够有效的定位显著特征, 并且对边缘细节的细化也很有效.
面向负载均衡的高铁路网列车开行方案优化方法
吴兴堂, 杨明坤, 王洪伟, 周敏, 吕金虎, 董海荣
, doi: 10.16383/j.aas.c210612
摘要:
针对当前高速铁路运营过程中存在的运输需求与运力资源不匹配现象, 本文面向负载均衡原理研究了路网条件下运能可适配的高速铁路旅客列车开行方案优化与评估方法. 首先, 针对路网条件下列车开行方案优化, 构建以提升经济效益、社会效益和网络负载均衡为目标的非线性混合整数规划模型, 并设计基于遗传算法和粒子群算法的两阶段混合搜索求解算法. 在此基础上, 考虑开行列车在高速铁路网中的抗干扰能力, 建立了面向网络化运营场景的开行方案综合评估指标体系, 揭示了故障场景下高速铁路网络性能的演化规律. 最后, 以实际高速铁路线路数据和运营数据为场景进行仿真实验, 本文提出方法在保证运输需求和路局收益的同时能够有效地提升8.66%网络整体负载均衡性, 增强发生故障时网络的抗干扰能力.
通信延时环境下异质网联车辆队列非线性纵向控制
李永福, 何昌鹏, 朱浩, 郑太雄
, doi: 10.16383/j.aas.c190442
摘要:
针对通信延时环境下的异质车辆队列控制问题, 本文提出了一种基于三阶模型的分布式非线性车辆队列纵向控制器. 首先, 基于三阶动力学模型描述了车辆的异质特性. 考虑车辆跟驰行为以及异质通信延时, 提出一种通信延时环境下的异质车辆队列非线性控制器. 所提控制器不仅可以在通信延时以及车辆异质特性的影响下实现队列中车辆的位置、速度以及加速度的一致性, 而且可以有效避免负的车辆间距和不合理的加/减速度, 保证车辆的运动行为符合交通流理论. 然后, 利用Lyapunov-Krasovskii定理对车辆队列的稳定性进行分析, 得出车辆队列的稳定性条件和通信延时上界. 最后, 所提控制器的有效性和稳定性通过数值仿真得到验证.
信息能源系统的信-物融合稳定性分析
王睿, 孙秋野, 张化光
, doi: 10.16383/j.aas.c210480
摘要:
尽管信息物理系统的稳定性已经得到了广泛的研究, 但大部分的学者皆关注于通信网络延时或攻击下的信息物理系统的稳定性问题, 无网络通信的信息物理系统的信物融合稳定性分析策略亟待提出. 其中, 内嵌数字控制系统的并网逆变器系统是一种最简单、最典型的信息能源系统. 同时, 从效率的角度出发, 逆变器的开关/采样频率总是选择尽可能低的频率, 其势必产生系统固有延迟时间(控制理论中称为时间延迟). 这种延迟时间往往容易引起系统的低频/次同步振荡, 弱电网将加剧此现象. 为此, 本文提出了一种信息能源系统的信-物融合稳定性分析技术. 首先, 基于柏德近似方法, 建立了具有等效延迟时间的信息物理系统阻抗模型. 该等效延迟时间由三部分组成, 即信息/物理层的采样延迟时间、信息层的计算延迟时间和物理层的脉宽调制(Pulsewidth modulation, PWM)延迟时间, 其有效地反映了信息-物理相互融合作用的影响. 进而设计了稳定禁止区域判据, 利用空间映射使开关/采样频率求解过程转化为Hurwitz矩阵辨识问题. 在这些空间映射的基础上, 最小开关/采样频率通过自适应步长搜索算法获得. 最后, 仿真和实验结果验证了该方法的有效性.
机器人运动轨迹的模仿学习综述
黄艳龙, 徐德, 谭民
, doi: 10.16383/j.aas.c210033
摘要:
作为机器人技能学习中的一个重要分支, 模仿学习近年来在机器人系统中得到了广泛的应用. 模仿学习能够将人类的技能以一种相对直接的方式迁移到机器人系统中, 其思路是先从少量示教样本中提取相应的运动特征, 然后将该特征泛化到新的情形. 本文针对机器人运动轨迹的模仿学习进行综述. 首先 详细解释模仿学习中的技能泛化、收敛性和外插等基本问题; 其次从原理上对动态运动基元、概率运动基元和核化运动基元等主要的模仿学习算法进行介绍; 然后深入地讨论模仿学习中姿态和刚度矩阵的学习问题、协同和不确定性预测的问题以及人机交互中的模仿学习等若干关键问题; 最后本文探讨了结合因果推理的模仿学习等几个未来的发展方向.
基于时空共现模式的视觉行人再识别
钱锦浩, 宋展仁, 郭春超, 赖剑煌, 谢晓华
, doi: 10.16383/j.aas.c200897
摘要:
基于视频图像的视觉行人再识别是指利用计算机视觉技术关联非重叠域摄像头网络下的相同行人, 在视频安防和商业客流分析中具有重要应用. 目前视觉行人再识别技术已经取得了相当不错的进展, 但依旧面临很多挑战, 比如摄像机的拍摄视角不同、遮挡现象和光照变化等所导致的行人表观变化和匹配不准确问题. 为了克服单纯视觉匹配困难问题, 本文提出一种结合行人表观特征跟行人时空共现模式的行人再识别方法. 所提方法利用目标行人的邻域行人分布信息来辅助行人相似度计算, 有效地利用时空上下文信息来加强视觉行人再识别. 在行人再识别两个权威公开数据集Market-1501和DukeMTMC-ReID上的实验验证了所提方法的有效性.
基于多阶段注意力机制的多种导航传感器故障识别研究
王亚朝, 赵伟, 徐海洋, 刘建业
, doi: 10.16383/j.aas.c190435
摘要:
导航传感器在使用过程中容易发生故障, 针对传统方法对其间歇性和渐变性故障识别率低的问题提出了一种基于多阶段注意力机制的多传感器故障识别算法. 该算法采用基于长短期记忆神经网络和注意力机制的编码器−解码器结构, 根据多类导航传感器数据之间的空间相关性和时间相关性来进行多传感器的故障互判. 经验证, 该算法对多种类传感器的故障识别率高达97.5%, 可以高效地实现故障的检测和分类. 该方法可以准确识别出故障传感器和故障类型, 具有很强的工程应用价值.
基于非凸复合函数的稀疏信号恢复算法
周洁容, 李海洋, 凌军, 陈浩, 彭济根
, doi: 10.16383/j.aas.c200666
摘要:
基于泛函深度作用的思想, 通过将两种非凸稀疏泛函进行复合, 构造了一种新的稀疏信号重构模型, 实现了对0范数的深度逼近. 综合运用MM (Majorize minimization)技术、外点罚函数法和共轭梯度法, 提出一种求解该模型的算法, 称为NCCS (Non-convex composite sparse bases)算法. 为降低重构信号陷入局部极值的可能性, 提出在算法的每步迭代中以BP (Basis pursuit)模型的解作为初始迭代值. 为验证所建模型和所提算法的有效性, 进行了多项数值实验. 实验结果表明, 相较于SL0 (Smoothed \begin{document}$\mathop \ell \nolimits_0 $\end{document})算法、IRLS (Iterative reweighed least squares)算法、SCSA (Successive concave sparsity approximation)算法以及BP (Smoothed \begin{document}$\mathop \ell \nolimits_0 $\end{document})算法等经典算法, 提出的算法在重构误差、信噪比、归一化均方差、支撑集恢复成功率等方面都有更优的表现.在重构误差、信噪比、归一化均方差、支撑集恢复成功率等方面都有更优的表现.
一种噪声容错弱监督矩阵补全的生存分析方法
陈蕾, 邵楷, 林腾涛, 陈兴国
, doi: 10.16383/j.aas.c190740
摘要:
生存分析旨在预测某个感兴趣事件发生前的延续等待时间, 已广泛应用于临床治疗中患者的生存状态分析. 然而, 受限于研究代价高昂和环境因素的影响, 现有的生存分析方法不可避免地面临着高维小样本挑战以及复杂环境所引起的噪声敏感等问题. 为了克服上述缺陷, 本文提出一类噪声容错弱监督直推式矩阵补全(Weakly supervised transductive matrix completion, WSTMC)生存分析方法. 该方法首先将生存分析问题建模为多任务直推式矩阵补全模型, 然后引入高斯混合分布拟合真实数据中的复杂噪声以减轻模型的噪声敏感性, 同时设计了一类多任务直推式特征选择机制来缓解高维小样本所带来的过拟合缺陷. 此外, 设计了一类有效的拟期望最大化优化算法用于求解所提出的WSTMC模型. 最后, 5个微阵列基因表达数据集上的实验结果证实了所提出的WSTMC模型优于当前广泛使用的18种生存分析方法.
基于池的无监督线性回归主动学习
刘子昂, 蒋雪, 伍冬睿
, doi: 10.16383/j.aas.c200071
摘要:
在许多现实的机器学习应用场景中, 获取大量未标注的数据是很容易的, 但标注过程需要花费大量的时间和经济成本. 因此, 在这种情况下, 需要选择一些最有价值的样本进行标注, 从而只利用较少的标注数据就能训练出较好的机器学习模型. 目前, 主动学习(Active learning)已广泛应用于解决这种场景下的问题. 但是, 大多数现有的主动学习方法都是基于有监督场景: 能够从少量带标签的样本中训练初始模型, 基于模型查询新的样本, 然后迭代更新模型. 无监督情况下的主动学习却很少有人考虑, 即在不知道任何标签信息的情况下最佳地选择要标注的初始训练样本. 这种场景下, 主动学习问题变得更加困难, 因为无法利用任何标签信息. 针对这一场景, 本文研究了基于池的无监督线性回归问题, 提出了一种新的主动学习方法, 该方法同时考虑了信息性、代表性和多样性这三个标准. 本文在3个不同的线性回归模型(岭回归、LASSO (Least absolute shrinkage and selection operator)和线性支持向量回归)和来自不同应用领域的12个数据集上进行了广泛的实验, 验证了其有效性.
基于误差回传机制的多尺度去雾网络
杨爱萍, 李晓晓, 张腾飞, 王朝臣, 王建
, doi: 10.16383/j.aas.c210264
摘要:
针对现有图像去雾方法因空间上下文信息丢失而无法准确估计大尺度目标特征, 导致图像结构被破坏或去雾不彻底等问题, 本文提出了一种基于误差回传机制的多尺度去雾网络. 网络由误差回传多尺度去雾群组(Error-backward Multi-scale Dehazing Group, EMDG)、门控融合模块和优化模块组成. 其中EMDG包括误差回传模块和雾霾感知单元, 误差回传模块度量相邻尺度网络特征图之间的差异, 并将生成的差值图回传至上一尺度, 实现对结构信息和上下文信息的有效复用; 雾霾感知单元是各尺度子网络的核心, 其由残差密集块和雾浓度自适应检测块组成, 可充分提取局部信息并能够根据雾浓度实现自适应去雾. 不同于已有融合方法直接堆叠各尺度特征, 提出的门控融合模块逐像素学习每个子网络特征图对应的最优权重, 有效避免了干扰信息对图像结构和细节信息的破坏. 再经优化模块, 可得最终的无雾图像. 在合成数据集和真实数据集上的大量实验表明, 本文方法优于目前的主流去雾方法, 尤其是对远景雾气去除效果更佳.
基于事件相机的连续光流估计
付婧祎, 余磊, 杨文, 卢昕
, doi: 10.16383/j.aas.c210242
摘要:
事件相机对场景的亮度变化进行成像, 输出异步的事件流, 具有极低的延时, 受运动模糊问题影响较少. 因此, 可以利用事件相机解决高速运动场景下的光流估计问题. 本文基于亮度恒定假设和事件产生模型, 利用事件相机输出事件流的低延时性质, 融合存在运动模糊的亮度图像帧, 提出了基于事件相机的连续光流估计算法, 提升了高速运动场景下的光流估计精度. 实验结果表明, 相比于现有的基于事件相机的光流估计算法, 本文提出的算法在平均端点误差(AEE)、平均角度误差(AAE)和均方误差(MSE)三个指标上分别提升11%、45% 和8%. 在高速运动场景下, 本文的算法能够准确重建出高速运动目标的连续光流, 从而保证了存在运动模糊情况时光流估计的精度.
眼动跟踪研究进展与展望
苟超, 卓莹, 王康, 王飞跃
, doi: 10.16383/j.aas.c210514
摘要:
眼动跟踪是指自动检测瞳孔中心位置或者识别三维视线方向及注视点的过程, 被广泛应用于人机交互、智能驾驶、人因工程等. 由于不同场景下的光照变化、个体眼球生理构造差异、遮挡、头部姿态多样等原因, 眼动跟踪的研究目前仍然是一个具有挑战性的热点问题. 本文根据作者多年来的研究与积累, 针对眼动跟踪领域,首先概述眼动跟踪研究内容; 然后分别论述近年来瞳孔中心检测及视线估计领域的国内外研究进展; 综述目前眼动跟踪主要数据集、评价指标及研究成果; 接着介绍眼动跟踪在人机交互、智能驾驶等领域的应用; 最后对眼动跟踪领域的未来发展趋势进行展望.
兵棋推演的智能决策技术与挑战
尹奇跃, 赵美静, 倪晚成, 张俊格, 黄凯奇
, doi: 10.16383/j.aas.c210547
摘要:
近年来, 以人机对抗为途径的智能决策技术取得了飞速发展, 人工智能技术AlphaGo、AlphaStar等分别在围棋、星际争霸等游戏环境中战胜了顶尖人类选手. 兵棋推演, 作为一种人机对抗策略验证环境, 由于其非对称环境决策、更接近真实环境的随机性与高风险决策等特点受到智能决策技术研究者的广泛关注. 本文将梳理兵棋推演与目前主流人机对抗环境如围棋、德扑、星际争霸等对抗环境的区别, 阐述兵棋推演智能决策技术的发展现状, 并分析当前主流技术的局限与瓶颈, 对兵棋推演中的智能决策技术研究进行了思考, 期望能对兵棋推演相关研究人员的智能决策技术研究带来启发.
基于主视通路结构分级响应模型的轮廓检测方法
陈树楠, 范影乐, 房涛, 武薇
, doi: 10.16383/j.aas.c200046
摘要:
基于视通路结构分级响应与动态传递的方式, 本文提出了一种图像轮廓检测的新方法. 针对视网膜感光细胞的暗视觉特性, 建立亮度自适应的暗视野调节模型, 利用多尺度经典感受野的方位选择性, 构建高级轮廓与全局轮廓的检测路径; 模拟LGN细胞特性对信息进行纹理稀疏编码, 并结合非经典感受野的侧抑制作用抑制背景强纹理; 另外在外侧膝状体(Lateral geniculate nucleus, LGN)区提出微动整合机制, 减少纹理冗余信息, 再经适应性突触实现信息关联传递; 最后将初级轮廓响应跨视区前馈至V1区并经全局轮廓修正后, 与高级轮廓响应实现快速融合. 分别以RuG40、BSDS500图像库中的自然图像作为实验数据, 检测结果与基准轮廓图的平均最优P指标分别为0.50、0.32, 结果表明本方法能更有效地区分轮廓与纹理边缘, 凸显主体轮廓. 本文利用视神经细胞的内在机制以及神经信息的动态传递过程实现图像轮廓信息的编码与检测, 也为研究后续高级视皮层的视觉感知提供了新思路.
基于 PID 自整定功能的自适应双路输出的黑体温度控制
张海弟
, doi: 10.16383/j.aas.c190277
摘要:
首先, 通过分析黑体温度控制系统的物理模型, 推演出黑体传递函数的表达式.推演过程中得知黑体易受环境温度和空气散热的影响, 所以黑体温度控制系统是个非线性时变系统.结合实验黑体的阶跃响应数据, 采用阶跃响应法对传递函数进行近似计算, 得出黑体温控系统的传递函数是极点在左半轴的二阶系统, 该系统等效于二阶低通滤波器.经过低通滤波器的信号, 会滤除高频部分, 当用继电器法进行参数自整定时, 仅需计算能量较大的基波信号.通过对基波信号进行比较, 得出继电器法的整定公式, 并参照Ziegler-Nichols整定法则计算出PID参数.同时, 本文针对黑体加热器具有双路输出的特点, 提出了一种双路动态输出法, 通过理论分析了该方法可以消除环境对黑体温度的影响.对于环境温度变化较大的, 采用继电器法PID参数自整定的方式来消除; 对于黑体运行过程中环境温度变化较小的, 采用双路动态输出法来减少影响.最后, 结合实验数据, 引入性能指标, 验证了本文所述方法对黑体的温度控制性能有一定的提升.
金字塔结构逻辑运用二值脉冲对简单图形处理
王上
, doi: 10.16383/j.aas.c190619
摘要:
本文根据元胞自动机模型划分方法, 将二维图像分解为2×2矩阵单元结构. 提出了几种逻辑运算式, 用以分类由黑白二值点构成的2×2矩阵图形. 本文通过CNN神经网络的多层结构形式, 分析了金字塔结构逻辑在相似的组合形式下, 对二值图形边缘检测和池化的功能. 通过同步脉冲形式能将灰度图像, 分解为多个时间维度的二值图形, 方便多层金字塔逻辑运算处理. 分析了如何采用延时继电器使金字塔结构逻辑具有记忆的特性. 讨论了3×3输入金字塔模型, 在不规律脉冲情况下, 通过逻辑运算对线性交点检测的可能.
面向多智能体协作的注意力意图与交流学习方法
俞文武, 杨晓亚, 李海昌, 王瑞, 胡晓惠
, doi: 10.16383/j.aas.c210430
摘要:
对于部分可观测环境下的多智能体交流协作任务, 现有工作大多只利用了当前时刻的网络隐藏层信息, 限制了信息的来源. 本文研究如何使用团队奖励训练一组独立的策略以及如何提升这组独立策略的协同表现, 提出了多智能体注意力意图交流算法, 增加了意图信息模块来扩大交流信息的来源, 并且改善了交流模式. 本文将智能体历史上表现最优的网络作为意图网络, 且从中提取策略意图信息, 按时间顺序保留成一个向量, 最后结合注意力机制推断出更为有效的交流信息. 本文在星际争霸环境上通过实验对比分析, 验证了算法的有效性.
无人机反应式扰动流体路径规划
吴健发, 王宏伦, 王延祥, 刘一恒
, doi: 10.16383/j.aas.c210231
摘要:
针对复杂三维障碍环境, 提出一种基于深度强化学习的无人机反应式扰动流体路径规划架构. 该架构以一种受约束扰动流体动态系统算法作为路径规划的基本方法, 根据无人机与各障碍的相对状态以及障碍物类型, 通过经深度确定性策略梯度算法训练得到的动作网络在线生成对应障碍的反应系数和方向系数, 继而可计算相应的总和扰动矩阵并以此修正无人机的飞行路径, 实现反应式避障. 此外, 还研究了与所提路径规划方法相适配的深度强化学习训练环境规范性建模方法. 仿真结果表明, 在路径质量大致相同的情况下, 所提方法在实时性方面明显优于基于预测控制的在线路径规划方法.
融合多策略的黄金正弦黑猩猩优化算法
刘成汉, 何庆
, doi: 10.16383/j.aas.c210313
摘要:
针对黑猩猩优化算法(Chimp optimization algorithm, ChOA)存在收敛速度慢、精度低和易陷入局部最优值的问题, 提出一种融合多策略的黄金正弦黑猩猩优化算法(IChOA). 引入Halton序列初始化种群, 提高初始化种群的多样性, 加快算法收敛, 提高收敛精度; 考虑到收敛因子和权重因子对于平衡算法勘探和开发能力的重要作用, 引入改进的非线性收敛因子和自适应权重因子, 平衡算法的搜索能力; 结合黄金正弦算法相关思想更新个体位置, 提高算法对于局部极值的处理能力. 通过对23个基准测试函数的寻优对比分析和Wilcoxon秩和统计检验以及部分CEC2014测试函数寻优结果对比可知, 改进的算法具有更好的鲁棒性, 最后, 通过2个实际工程优化问题的实验对比分析, 进一步验证了IChOA在处理现实优化问题上的优越性.
异构集成代理辅助的区间多模态粒子群优化算法
季新芳, 张勇, 巩敦卫, 郭一楠, 孙晓燕
, doi: 10.16383/j.aas.c210223
摘要:
现实生活中的很多黑盒优化问题可归为高计算代价的多模态优化问题, 即昂贵多模态优化问题. 在处理该类问题时, 决策者希望以尽量少的计算代价(即尽量少的真实函数评价次数)找到多个高质量的最优解. 然而, 已有代理辅助的进化优化算法很少考虑问题的多模态属性, 运行一次仅可获得问题的一个最优解. 鉴于此, 研究一种异构集成代理辅助的区间多模态粒子群优化算法. 首先, 借助异构集成的思想构建一个由多个基础代理模型组成的模型池; 随后, 依据待评价粒子与已发现模态之间的匹配关系, 从模型池中自主选择部分基础代理模型进行集成, 并使用集成后的代理模型预测该粒子的适应值. 进一步, 为节约代理模型管理的代价, 设计一种增量式的代理模型管理策略; 为减少代理模型预测误差对算法性能的影响, 首次将区间排序关系引入到进化过程中. 将所提算法与当前流行的5种代理辅助进化优化算法和7 种经典的多模态优化算法进行对比, 在20个测试函数和1个建筑节能实际问题上的结果表明, 所提算法可以在较少计算代价下获得问题的多个高竞争最优解.
混合动力电动汽车的跟车控制与能量管理
赵秀春, 郭戈
, doi: 10.16383/j.aas.c200136
摘要:
混合动力电动汽车(Hybrid electric vehicles, HEVs)的能量管理问题至关重要, 而混合动力电动汽车的跟车控制不仅涉及跟车效果与安全性, 也影响着能量的高效利用. 将HEVs的跟车控制与能量管理相结合, 提出一种基于安全距离的HEVs车辆跟踪与能量管理控制方法. 首先, 考虑坡度、载荷变动建立了HEVs车辆跟车系统的非线性模型, 并基于安全距离, 提出一种基于道路观测器的动态面控制(Dynamic surface control, DSC)进行车辆跟踪控制. 然后, 结合跟踪控制下工况循环, 采用滚动动态规划(Dynamic programming, DP)算法进行混合动力电动汽车能量实时优化控制. 最后, 通过仿真研究进行验证.
中值互补集合经验模态分解
刘淞华, 何冰冰, 郎恂, 陈启明, 张榆锋, 苏宏业
, doi: 10.16383/j.aas.c201031
摘要:
针对经验模态分解(Empirical mode decomposition, EMD)系列方法存在的模态分裂(Mode Splitting, MS)问题, 本文提出中值互补集合经验模态分解(Median complementary ensemble EMD, MCEEMD)算法. 通过概率模型量化互补集合经验模态分解(Complementary ensemble EMD, CEEMD)的MS问题, 证明了使用中值算子替代算术平均算子对抑制MS的有效性. MCEEMD算法首先添加N对互补的白噪声至原信号中, 并经过EMD分解得到2N组固有模态函数(Intrinsic mode functions, IMFs), 然后分别对其中互补相关的IMFs两两取平均得到N组IMFs, 最后使用中值算子处理上述N组IMFs得到输出结果. 对仿真信号与实测信号的分析结果表明, 本文提出的MCEEMD方法不仅有效抑制了CEEMD的MS问题, 而且避免了单一使用中值算子的两个缺点, 即: 1)分解完备性差和2) IMFs中存在毛刺现象.
基于 GBDT 的铁路事故类型预测及成因分析
钟敏慧, 张婉露, 李有儒, 朱振峰, 赵耀
, doi: 10.16383/j.aas.c190630
摘要:
运用数据挖掘技术进行铁路事故类型预测及成因分析, 对于建立铁路事故预警机制具有重要意义. 为此, 本文提出一种基于梯度提升决策树(Grandient boosting decision tree, GBDT)的铁路事故类型预测及成因分析算法. 针对铁路事故记录数据缺失的问题, 提出一种基于属性分布概率的补全算法, 最大程度保持原有数据分布, 从而降低数据缺失对事故类型预测造成的影响. 针对铁路事故记录数据类别失衡的问题, 提出一种集成的GBDT模型, 完成对事故类型的鲁棒性预测. 在此基础上, 根据GBDT预测模型中特征重要度排序, 实现事故成因分析. 通过在开放数据库上进行实验, 验证了本文模型的有效性.
基于多模型融合的肺部CT新冠肺炎病灶区域自动分割
史天意, 程枫, 李震, 郑传胜, 许永超, 白翔
, doi: 10.16383/j.aas.c210400
摘要:
自2019年末以来, 全球蔓延的新型冠状病毒(Coronavirus disease 2019, COVID-19)已经给世界人民造成了严重的健康威胁. 其中COVID-19患者的计算机断层扫描(Computed tomography, CT)图像通过肺炎病灶分割技术可以为医学诊断提供有价值的量化信息. 虽然目前基于深度学习的方法已经在COVID-19肺炎病灶分割任务上取得了良好的效果, 但是在面对不同中心数据的情况下分割效果往往会大幅下降. 因此, 研究一种具有更好泛化性能的COVID-19肺炎病灶分割算法具有重要意义. 本文中, 我们提出了一种新冠肺炎病灶多模型融合分割方法. 具体来说, 我们通过训练3DUnet模型和2DUnet结合方向场(2DUnetDF)模型, 利用多种模型各自优点进行分割结果的融合, 得到更好的泛化性能. 通过同中心和跨中心数据集的实验, 我们的方法能够有效提高新冠肺炎病灶分割的泛化性能, 为医学诊断分析提供帮助.
电熔镁砂熔炼过程电极电流饱和约束一步最优控制
富月, 李宝
, doi: 10.16383/j.aas.c200896
摘要:
电熔镁砂熔炼过程通过电极电流熔化物料, 采用埋弧方式, 边熔化边加料, 其被控对象是以转动方向与频率为输入, 以电极电流为输出的三相电机. 本文通过引入中间变量并转化控制目标, 将电熔镁砂熔炼过程三相电极电流的复杂非线性控制问题简化为线性控制问题, 提出了一种简化的电极电流饱和约束一步最优控制方法, 并通过引入拉格朗日乘子向量和松弛向量验证了该方法的最优性. 理论分析和仿真对比实验结果表明本文所提简化控制方法的有效性和优越性. 此外, 当考虑电熔镁砂熔炼过程中存在的不可测外部干扰时, 在上述简化的电极电流饱和约束算法的基础上设计了高阶干扰观测器, 理论分析和仿真结果验证了具有高阶干扰观测器的简化算法的优越性.
带有资源冲突的Seru在线并行调度算法
江煜舟, 李冬妮, 靳洪博, 殷勇
, doi: 10.16383/j.aas.c190698
摘要:
随着大规模定制的市场需求日趋显著, 赛如生产系统(Seru production system, SPS)应运而生, 逐渐成为研究和应用领域的热点. 本文针对带有资源冲突的Seru在线并行调度问题进行研究, 即需要在有限的空间位置上安排随动态需求而构建的若干Seru, 以总加权完工时间最小为目标, 决策Seru的构建顺序及时间. 先基于平均延迟最短加权处理时间(Average delayed shortest weighted processing time, AD-SWPT)算法, 针对其竞争比不为常数的局限性, 引入调节参数, 得到竞争比为常数的无资源冲突的Seru在线并行调度算法. 接下来, 引入冲突处理机制, 得到有资源冲突的Seru在线并行调度算法, αAD-I (α-average delayed shortest weighted processing time-improved)算法, 特殊实例下可通过实例归约的方法证明其竞争比与无资源冲突的情况相同. 最后, 通过实验, 验证了在波动的市场环境下算法对于特殊实例与一般实例的优越性.
基于静-动态特性协同感知的复杂工业过程运行状态评价
褚菲, 许杨, 尚超, 王福利, 高福荣, 马小平
, doi: 10.16383/j.aas.c201035
摘要:
针对当前过程监测和运行状态评价方法等对工况信息感知不全面, 漏报和误报现象严重等问题, 本文在深入研究工业现场数据静-动态特性协同感知方法的基础上, 提出综合经济指标驱动的慢特征分析算法. 将综合经济指标信息融入至慢特征分析中, 协同感知复杂工业过程的静-动态特性变化, 并进一步通过计算潜变量之间的相似度及其一阶差分之间的相似度实现对过程稳态和过渡的评价, 在此基础上建立了基于静-动态特性协同感知的过程运行状态评价统一框架. 针对非优状态, 提出了基于稀疏学习的非优因素识别方法, 实现对非优因素变量的准确识别. 最后, 通过重介质选煤过程实际生产数据和田纳西·伊斯曼过程数据验证了所提方法的有效性.
基于ACP理论的微型扑翼飞行器的姿态控制
金龙, 李嘉昌, 常振强, 卢经纬, 程龙
, doi: 10.16383/j.aas.c210646
摘要:
微型扑翼飞行器(Flapping wing micro aerial vehicle, FWMAV)因飞行效率高、质量轻、耗能低、机动性强等显著优点, 在飞行器研究和应用中占据重要地位. 当下, FWMAV姿态控制成为飞行器控制研究领域的研究热点. 针对FWMAV姿态控制问题, 基于平行智能理论框架提出了一种FWMAV抗扰动姿态控制器. 通过建立人工系统(Artificial systems, A)、计算实验(Computational experiments, C)、平行执行(Parallel execution, P)三个过程, 得到一个能够有效解决FWMAV姿态控制过程中扰动问题的控制器, 并通过理论分析和数值仿真证明了该控制器的有效性.
面向智能血糖管理的餐前胰岛素剂量贝叶斯学习优化方法
史大威, 蔡德恒, 刘蔚, 王军政, 纪立农
, doi: 10.16383/j.aas.c210067
摘要:
餐前胰岛素剂量精准决策是改善糖尿病患者血糖管理的关键. 临床治疗中胰岛素剂量调整一般在较短时间内完成, 具有典型的小样本特征; 数据驱动建模在该情形下无法准确学习患者餐后血糖代谢规律, 难以确保胰岛素剂量的安全、有效决策. 针对这一问题, 本文设计了一种临床经验辅助的餐前胰岛素剂量自适应优化决策框架, 构建高斯过程血糖预测模型和模型有效性在线评估机制, 提出基于历史剂量和临床经验决策约束的贝叶斯优化方法, 实现小样本下餐后血糖轨迹的安全预测和餐前胰岛素注射剂量的优化决策. 该方法的安全性和有效性通过美国食品药品监督管理局(Food and drug administration, FDA)接受的UVA/Padova T1DM平台测试结果和1型糖尿病患者实际临床数据决策结果充分验证. 本文工作可为餐前胰岛素剂量智能决策及临床试验提供方法基础和技术支持, 也为我国糖尿病患者血糖管理水平的有效改善提供精准医学治疗手段.
基于深度学习LDAMP网络的量子状态估计
林文瑞, 丛爽
, doi: 10.16383/j.aas.c210156
摘要:
本文设计出一种基于学习去噪的近似消息传递(Learned denoising-based approximate message passing, LDAMP)的深度学习网络, 将其应用于量子状态的估计. 该网络将去噪卷积神经网络(Denoising convolutional neural network, DnCNN)与基于去噪的近似消息传递(Denoising-based approximate message passing, DAMP)算法相结合, 利用量子系统输出的测量值作为网络输入, 通过设计出的带有DnCNN的LDAMP网络重构出原始密度矩阵, 从大量的训练样本中提取各种不同类型密度矩阵的结构特征, 来实现对量子本征态、叠加态以及混合态的估计. 在对4个量子位的量子态估计的具体实例中, 我们分别在无和有测量噪声干扰情况下, 对基于LDAMP网络的量子态估计进行了仿真实验性能研究, 并与基于压缩感知的交替方向乘子法(Alternating direction multiplier method, ADMM)和三维块匹配近似消息传递(Block matching 3D AMP, BM3D-AMP)等算法进行估计性能对比研究. 数值仿真实验结果表明, 所设计的LDAMP网络可以在较少的测量的采样率下同时完成对四种量子态的更高精度估计.
图像异常检测研究现状综述
吕承侃, 沈飞, 张正涛, 张峰
, doi: 10.16383/j.aas.c200956
摘要:
图像异常检测是计算机视觉领域的一个热门研究课题, 其目标是在不使用真实异常样本的情况下, 利用现有的正常样本构建模型以检测可能出现的各种异常图像, 在工业外观缺陷检测, 医学图像分析, 高光谱图像处理等领域有较高的研究意义和应用价值. 本文首先介绍了异常的定义以及常见的异常类型. 然后, 本文根据在模型构建过程中有无神经网络的参与, 将图像异常检测方法分为基于传统方法和基于深度学习两大类型, 并分别对相应的检测方法的设计思路、优点和局限性进行了综述与分析. 其次, 梳理了图像异常检测任务中面临的主要挑战. 最后, 对该领域未来可能的研究方向进行了展望.
基于光流与多尺度上下文的图像序列运动遮挡检测
冯诚, 张聪炫, 陈震, 李兵, 黎明
, doi: 10.16383/j.aas.c210324
摘要:
针对非刚性运动和大位移场景下运动遮挡检测的准确性与鲁棒性问题, 本文提出一种基于光流与多尺度上下文的图像序列运动遮挡检测方法. 首先, 设计基于扩张卷积的多尺度上下文信息聚合网络, 通过图像序列多尺度上下文信息获取更大范围的图像特征; 然后, 采用特征金字塔构建基于多尺度上下文与光流的端到端运动遮挡检测网络模型, 利用光流优化非刚性运动和大位移区域的运动遮挡信息; 最后, 构造基于运动边缘的网络模型训练损失函数, 获取准确的运动遮挡边界. 分别采用MPI-Sintel和KITTI测试数据集对本文方法与现有的代表性遮挡检测模型进行实验对比与分析. 实验结果表明, 本文方法能够有效提高运动遮挡检测的准确性, 尤其在非刚性运动和大位移等困难场景下具有更好的遮挡检测鲁棒性.
通信延时环境下基于观测器的智能网联车辆队列分层协同纵向控制
朱永薪, 李永福, 朱浩, 于树友
, doi: 10.16383/j.aas.c210311
摘要:
考虑通信延时影响的车辆队列控制问题, 本文提出了一种基于观测器的分布式车辆队列纵向控制器. 首先, 基于分层控制策略分别设计上下层控制器, 通过上层控制器优化期望加速度, 下层控制器克服车辆模型非线性实现期望加速度和实际加速度的一致, 上层控制器设计过程中, 基于三阶线性化车辆模型, 考虑观测器、车辆动态耦合特性和通信延时, 提出一种通信延时环境下基于观测器的车辆队列控制器, 利用观测器估计领导车辆加速度信息从而减轻通信负担. 然后利用Lyapunov-Krasovskii方法分析了车辆队列的稳定性, 并得出了通信延时上界, 同时利用传递函数方法分析了串稳定性. 最后通过数值仿真验证上层控制器的有效性和稳定性, 在此基础上, 利用PreScan软件中高保真车辆动态模型, 验证了所提分层控制策略的有效性.
带时间相关乘性噪声多传感器系统的分布式融合估计
马静, 杨晓梅, 孙书利
, doi: 10.16383/j.aas.c210147
摘要:
本文研究了带时间相关乘性噪声多传感器系统的分布式融合估计问题. 其中时间相关的乘性噪声满足一阶Gauss-Markov过程. 通过引入虚拟状态和虚拟过程噪声, 构建了虚拟状态的递推方程. 基于新息分析方法, 分别对系统状态和虚拟状态设计了局部一步预报器. 然后基于一步预报器设计了状态的局部线性滤波器、多步预报器和平滑器. 推导了任意两个局部状态估计误差之间的互协方差矩阵. 进而, 基于线性最小方差意义下的矩阵加权、对角矩阵加权和标量加权融合算法, 给出了相应的分布式融合状态估值器. 最后, 分析了算法的稳定性. 仿真研究验证了所提算法的有效性.
基于多维度特征融合的云工作流任务执行时间预测方法
李慧芳, 黄姜杭, 徐光浩, 夏元清
摘要:
任务执行时间估计是云数据中心环境下工作流调度的前提. 本文针对现有工作流任务执行时间预测方法缺乏类别型和数值型数据特征的有效提取问题, 提出了基于多维度特征融合的预测方法. 首先, 通过构建具有注意力机制的堆叠残差循环网络, 将类别型数据从高维稀疏的特征空间映射到低维稠密的特征空间, 以增强类别型数据的解析能力, 有效提取类别型特征. 其次, 采用极限梯度提升算法对数值型数据进行离散化编码, 通过对稠密空间的输入向量进行稀疏化处理, 提高了数值型特征的非线性表达能力. 在此基础上, 设计多维异质特征融合策略, 将所提取的类别型、数值型特征与样本的原始输入特征进行融合, 建立基于多维融合特征的预测模型, 实现了云工作流任务执行时间的精准预测. 为了验证本文方法的有效性和优越性, 我们在真实云数据中心集群数据集上进行了仿真实验. 结果表明相对于已有的基准算法, 本文方法具有较好的预测精度, 可用于大数据驱动的云工作流任务执行时间预测.
面向网络空间防御的对抗机器学习研究综述
余正飞, 闫巧, 周鋆
, doi: 10.16383/j.aas.c210089
摘要:
机器学习以强大的自适应性、自学习能力, 成为网络空间防御的研究热点和重要方向. 然而, 机器学习模型在网络空间环境下存在受到对抗攻击的潜在风险, 可能成为防御体系中最为薄弱的环节, 从而危害整个系统的安全. 为此, 科学分析安全问题场景, 从运行机理上探索算法可行性、安全性, 对运用机器学习模型构建网络空间防御系统大有裨益. 本文全面综述对抗机器学习这一跨学科研究领域在网络空间防御中取得的成果及以后的发展方向. 首先介绍了网络空间防御、对抗机器学习等背景知识. 其次, 针对机器学习在网络空间防御中可能遭受的攻击, 引入机器学习敌手模型概念, 目的是科学评估其在特定威胁场景下的安全属性. 而后, 针对网络空间防御的机器学习算法, 分别论述了在测试阶段发动规避攻击、在训练阶段发动投毒攻击、在机器学习全阶段发动隐私窃取的方法, 进而研究如何在网络空间对抗环境下, 强化机器学习模型的防御方法. 最后, 展望了网络空间防御中对抗机器学习研究的未来方向和有关挑战.
单幅图像超分辨率重建技术研究进展
张芳, 赵东旭, 肖志涛, 耿磊, 吴骏, 刘彦北
, doi: 10.16383/j.aas.c20777
摘要:
图像分辨率是衡量一幅图像质量的重要标准. 在军事、医学和安防等领域, 高分辨率图像是专业人士分析问题并做出准确判断的前提. 根据成像采集设备、退化因素等条件对低分辨率图像进行超分辨率重建成为一个既具有研究价值又极具挑战性的难点问题. 本文首先简述了图像超分辨率重建的概念、重建思想和方法分类; 然后重点分析用于单幅图像超分辨率重建的空域方法, 梳理基于插值和基于学习两大类重建方法中的代表性算法及其特点; 之后结合用于超分辨率重建技术的数据集, 重点分析比较了传统超分辨率重建方法和基于深度学习的典型超分辨率重建方法的性能, 分析表明, 基于深度学习的超分辨率重建方法较于传统超分辨率重建方法在准确率与鲁棒性方面性能更佳; 最后对图像超分辨率重建未来的发展趋势进行展望.
基于扩张状态观测器的四旋翼吊挂飞行系统非线性控制
范云生, 陈欣宇, 赵永生, 宋保健
, doi: 10.16383/j.aas.c210001
摘要:
针对一类四旋翼飞行器吊挂飞行系统的负载摆动抑制和轨迹跟踪精确控制的问题, 考虑系统存在未知外界扰动和模型动态不确定的情况, 提出了一种基于扩张状态观测器(Extended state observer, ESO)的吊挂负载摆动抑制的非线性轨迹跟踪控制方法. 本文将四旋翼吊挂飞行系统分解为姿态, 位置和负载摆动控制三个动态子系统, 分别设计非线性控制器实现欠驱动约束下的解耦控制; 设计了一种扩张状态观测器, 用以估计和补偿四旋翼与吊挂负载耦合飞行的未知外界扰动与模型动态不确定性, 并证明了闭环系统的稳定性, 跟踪误差及吊挂负载摆动所有信号的一致最终有界. 最后利用Quanser公司的QBall2飞行器进行三维空间螺旋轨迹的跟踪控制, 仿真结果验证了未知干扰下基于扩张状态观测器的四旋翼吊挂飞行非线性控制的有效性和优越性, 实现了四旋翼吊挂系统轨迹跟踪的精确控制和飞行过程中负载摆动的快速抑制.
面向无人艇的T-DQN智能避障算法研究
周治国, 余思雨, 于家宝, 段俊伟, 陈龙, 陈俊龙
, doi: 10.16383/j.aas.c210080
摘要:
无人艇作为一种具有广泛应用前景的无人系统, 其自主决策能力尤为关键. 由于水面运动环境较为开阔, 传统避障决策算法难以在量化规则下自主规划最优路线, 而一般强化学习方法在大范围复杂环境下难以快速收敛. 针对这些问题, 本文提出一种基于阈值的深度Q网络(Threshold deep Q network, T-DQN)避障算法, 在深度Q网络(Deep Q network, DQN)基础上增加长短期记忆(Long short term memory, LSTM)网络来保存训练信息, 并设定经验回放池阈值加速算法的收敛. 通过在不同尺度的栅格环境中进行实验仿真, 其结果表明所提出的T-DQN算法能快速地收敛到最优路径, 其整体收敛步数相比Q-Learning算法, DQN算法分别减少69.1 %与24.8 %, 引入的阈值筛选机制使整体收敛步数降低41.1 %. 在Unity 3D强化学习仿真平台中验证了复杂地图场景下的避障任务完成情况, 实验结果表明, 该算法能实现无人艇的精细化避障和智能安全行驶.
自适应变化响应的动态多目标进化算法
梁正平, 李辉才, 王志强, 胡凯峰, 朱泽轩
, doi: 10.16383/j.aas.c210121
摘要:
动态多目标优化问题的目标函数发生变化时, 需要采取变化响应策略对种群进行重新初始化, 以快速追踪新环境中的最优解集. 现有动态多目标优化算法对不同个体不同维度的决策变量缺乏针对性的变化响应, 导致重新初始化的效果尚存在较大改进空间. 为此, 本文提出了一种对不同个体不同维度的决策变量分别进行自适应变化响应的动态多目标进化算法(DMOEA-ACR). 该算法包括两个核心部分, 首先是对t时间步最优种群和t−1时间步最优种群中对应个体各维度决策变量之间的差异进行计算, 自适应选择变异策略或预测策略重新初始化不同个体不同维度的决策变量. 其次, 在每轮迭代或重新初始化后, 对非支配个体进行存档, 基于存档中心构建预测策略. 为了验证DMOEA-ACR的有效性, 将其与动态多目标优化领域的6种先进算法在最新测试问题集SDP和DF上进行对比, 实验结果表明DMOEA-ACR在求解动态多目标优化问题时具有明显的优势.
模型辅助的计算费时进化高维多目标优化
孙超利, 李贞, 金耀初
, doi: 10.16383/j.aas.c200969
摘要:
代理模型能够辅助进化算法在计算资源有限的情况下加快找到问题的最优解集, 因此建立高效的代理模型辅助多目标进化搜索逐渐受到了人们的重视. 然而, 随着目标数量的增加, 对每个目标分别建立高斯过程模型时个体整体估值的不确定度会随之增加. 因此, 本文通过对模型最优解集的搜索探索原问题潜在的非支配解集, 并基于个体的收敛性, 种群的多样性和估值的不确定度, 提出了一种新的期望提高计算方法, 用于辅助从潜在的非支配解集中选择使用真实目标函数计算的个体, 从而更新代理模型, 使其能够在有限的计算资源下更有效地辅助优化算法找到好的非支配解集. 在7个DTLZ 基准测试问题上的实验对比结果表明, 本文算法在求解计算费时高维多目标优化问题上是有效的, 且具有较强的竞争力.
工业铸件缺陷无损检测技术的应用进展与展望
张辉, 张邹铨, 陈煜嵘, 吴天月, 钟杭, 王耀南
, doi: 10.16383/j.aas.c210161
摘要:
铸造产业一直是人类现代生产生活中重要的、不可替代的产业, 铸件产品既是工业制造产品, 也是大型机械的组成部分. 随着经济水平和工业自动化程度的不断提升, 人们对于铸件的需求量呈指数爆炸式增长, 铸件价值辐射到各行各业. 与此同时, 铸件在铸造、服役过程中经常会出现各种缺陷, 而传统低效的人工检测方法难以保障工业界对中高端铸件的性能需求. 因此亟需对铸件检测技术进行革新. 本文首先对铸件铸造过程以及服役过程中各类缺陷的形成机理进行分析. 然后阐述了基于声学、光学、电磁学等主流检测技术及其常规信号处理方法、磁粉检测技术与渗透检测技术等其他检测技术, 并对近年来新兴的基于神经网络的信号处理方法进行了说明. 在此基础上, 分析了近年来铸件缺陷无损检测技术以及基于神经网络的信号处理方法的研究现状. 最后, 对铸件缺陷无损检测技术及应用的发展趋势进行了展望.
解耦表征学习综述
文载道, 王佳蕊, 王小旭, 潘泉
, doi: 10.16383/j.aas.c210096
摘要:
在大数据时代下, 以高效自主隐式特征提取能力闻名的深度学习引发了新一代人工智能的热潮, 然而其背后黑箱不可解释的“捷径学习”现象成为制约其进一步发展的关键性瓶颈问题. 解耦表征学习通过探索大数据内部蕴含的物理机制和逻辑关系复杂性, 从数据生成的角度解耦数据内部多层次、多尺度的潜在生成因子, 促使深度网络模型学会像人类一样对数据进行自主智能感知, 逐渐成为新一代基于复杂性的可解释深度学习领域内重要研究方向, 具有重大的理论意义和应用价值. 本文系统地综述了解耦表征学习的研究进展, 对当前解耦表征学习中的关键技术及典型方法进行了分类阐述, 分析并汇总了现有各类算法的适用场景并对此进行了可视化实验性能展示, 最后指明了解耦表征学习今后的发展趋势以及未来值得研究的方向.
弱对齐的跨光谱人脸检测
闫梦凯, 钱建军, 杨健
, doi: 10.16383/j.aas.c210058
摘要:
跨光谱人脸检测在活体人脸识别、体温筛查等领域有着重要的应用价值. 众所周知, 可见光人脸易于检测, 然而红外人脸难于检测, 因此借助可见光图像的人脸检测结果进而完成红外人脸检测是一种有效的解决方案. 但是跨光谱图像之间不可避免的存在偏差, 导致检测精度不高. 为了解决这一问题, 本文提出了一种弱对齐跨光谱图像的人脸检测算法, 该方法基于跨光谱图像之间的偏差设计了候选框布置策略, 并在此基础上提出了跨光谱特征表示方法用于选取最优候选框. 此外, 本文还构建了一个跨光谱人脸数据集(Cross-spectrum face简称为CSF). 最后, 在CSF和OTCBVS (OTCBVS Benchmark dataset collection)人脸数据集上的实验结果证明, 本文的方法能够较好地完成红外图像人脸检测任务.
知识和数据协同驱动的群体智能决策方法研究综述
蒲志强, 易建强, 刘振, 丘腾海, 孙金林, 李非墨
, doi: 10.16383/j.aas.c210118
摘要:
群体智能系统拥有广泛的应用前景. 当前的群体智能决策方法主要包括知识驱动、数据驱动两大类, 但各自存在优缺点. 本文指出, 知识与数据协同驱动将为群体智能决策提供新解法. 文章系统梳理了知识与数据协同驱动可能存在的不同方法路径, 从知识与数据的架构级协同、算法级协同两个层面对典型方法进行了分类, 同时将算法级协同方法进一步划分为算法的层次化协同和组件化协同, 前者包含神经网络树、遗传模糊树、分层强化学习等层次化方法, 后者进一步总结为知识增强的数据驱动、数据调优的知识驱动、知识与数据的互补结合等方法. 最后, 从理论发展与实际应用的需求出发, 指出了知识与数据协同驱动的群体智能决策中未来几个重要的研究方向.
一种针对德州扑克AI的对手建模与策略集成框架
张蒙, 李凯, 吴哲, 臧一凡, 徐航, 兴军亮
, doi: 10.16383/j.aas.c210127
摘要:
以德州扑克游戏为代表的大规模不完美信息博弈是现实世界中常见的一种博弈类型. 现有以求解纳什均衡策略为目标的主流德州扑克求解算法存在依赖博弈树模型、算力消耗大、策略过于保守等问题, 导致智能体在面对不同对手时无法最大化自身收益. 为解决上述问题, 本文提出一种轻量高效且能快速适应对手策略变化进而剥削对手的不完美信息博弈求解框架. 本框架分为智能体离线训练和在线博弈两阶段. 第一阶段基于演化学习思想训练智能体, 得到能够剥削不同博弈风格对手的策略神经网络. 在博弈阶段中, 智能体在线建模并适应未知风格对手, 利用种群策略集成的方法最大化剥削对手. 在两人无限注德州扑克环境中的实验结果表明, 本框架在面对动态对手策略时, 相比已有方法能够大幅提升博弈性能.
大数据下数模联动的随机退化设备剩余寿命预测技术
李天梅, 司小胜, 刘翔, 裴洪
, doi: 10.16383/j.aas.c201068
摘要:
本文面向大数据背景下随机退化设备剩余寿命预测的现实需求, 结合随机退化设备监测大数据特点及剩余寿命预测不确定性量化这一核心问题, 深入分析了机理模型与数据混合驱动的剩余寿命预测技术、基于机器学习的剩余寿命预测技术、统计数据驱动的剩余寿命预测技术以及机器学习和统计数据驱动相结合的剩余寿命预测技术的基本研究思想和发展动态, 剖析了当前研究存在的局限性和共性难题. 针对存在的局限性和共性难题, 以多源传感监测大数据下剩余寿命预测问题为例, 提出了一种数模联动的大数据下随机退化设备剩余寿命预测解决思路, 并通过航空发动机多源监测数据初步验证了该思路的可行性和有效性. 最后, 借鉴数模联动思路, 综合考虑机器学习方法和统计数据驱动方法的优势, 紧紧扭住大数据背景下随机退化设备剩余寿命预测不确定性量化问题, 提出了大数据背景下深度学习与随机退化建模交互联动、监测大数据与剩余寿命及其预测不确定性映射机制、非理想大数据下的剩余寿命预测等亟待解决的关键科学问题.
基于辅助信息补偿和控制信号编码的重放攻击检测方法
张正道, 杨佳佳, 谢林柏
, doi: 10.16383/j.aas.c210092
摘要:
在最优控制信号中加入编码信号是实现信息物理系统重放攻击检测的有效方法, 但会造成系统控制性能的损失. 如何在保证重放攻击检测率条件下降低系统的控制性能损失是一个值得研究的问题. 本文提出了一种基于辅助信息补偿的控制信号编码检测方法, 通过向测量值添加辅助信号补偿控制编码信号对最优状态估计的影响. 首先, 论文证明了此方案下重放攻击的可检测性, 导出了检测率的上界和检测函数阈值间的定量关系. 其次证明了加入辅助信号后系统控制信号与未添加编码信息时相同, 之前时刻的控制编码信号不会造成累积效应. 因此系统当前时刻的控制性能损失仅与当前时刻编码信号的大小有关. 最后, 将编码信号的协方差矩阵, 检测率和检测阈值之间的关系表示成一个最优化问题, 给出了编码信号方差的计算方法. 仿真结果表明, 本文方法能有效地检测重放攻击的发生, 且系统控制的性能损失较小.
基于多伯努利滤波的厚尾噪声条件下多扩展目标跟踪
陈辉, 张星星
, doi: 10.16383/j.aas.c201061
摘要:
针对厚尾噪声条件下不规则星凸形多扩展目标跟踪问题, 本文提出了一种基于多伯努利滤波的厚尾噪声条件下多扩展目标跟踪方法. 首先, 采用学生t分布对厚尾过程噪声和量测噪声进行建模, 并基于有限集统计理论(Finite set statistics, FISST)利用随机超曲面模型(Random matrix model, RHM)建立不规则星凸形多扩展目标的跟踪滤波模型. 然后, 利用学生t混合(Student's t mixture, STM)模型来表征多伯努利密度, 提出学生t混合多扩展目标多伯努利滤波算法, 并进一步基于鲁棒学生t容积滤波算法提出了非线性鲁棒学生t混合星凸形多扩展目标多伯努利滤波算法. 最后, 通过构造厚尾噪声条件下星凸形多扩展目标和多群目标的跟踪仿真实验验证了所提方法的有效性.
基于元学习的双目深度估计在线适应算法
张振宇, 杨健
, doi: 10.16383/j.aas.c200286
摘要:
双目深度估计的在线适应是一个有挑战性的问题, 其要求模型能够在不断变化的目标场景中在线连续地自我调整并适应于当前环境. 为处理该问题, 本文提出了一种新的在线元学习适应算法(Online meta-learning model with adaptation, OMLA), 其贡献主要体现在两方面: 首先引入在线特征对齐方法处理目标域和源域特征的分布偏差, 以减少数据域转移的影响, 然后利用在线元学习方法调整特征对齐过程和网络权重, 使模型实现快速收敛.此外, 本文提出了一种新的基于元学习的预训练方法, 以获得适用于在线学习场景的深度网络参数, 相关实验分析表明, OMLA和元学习预训练算法均能帮助模型快速适应于新场景, 在KITTI数据集上的实验对比表明, 本文方法的效果超越了当前最佳的在线适应算法, 接近甚至优于在目标域离线训练的理想模型.
一类具有未知幂次的高阶不确定非线性系统的自适应控制
刘玉发, 刘勇华, 苏春翌, 鲁仁全
, doi: 10.16383/j.aas.c200893
摘要:
本文研究了一类具有未知幂次的高阶不确定非线性系统的自适应跟踪控制问题. 在无需系统函数先验知识的条件下, 采用积分反推技术和障碍李雅普诺夫方法, 提出了一种新颖的自适应跟踪控制算法. 该控制算法的显著特点是所设计的自适应控制器均与系统幂次无关, 并且能够保证闭环系统的所有信号皆有界. 仿真算例验证了该控制算法的有效性.
惯性组合导航系统性能评估方法研究进展
董铭涛, 程建华, 赵琳, 刘萍
, doi: 10.16383/j.aas.c210377
摘要:
性能评估方法能够解决试验法无法评估定性指标, 以及试验难以开展时无法评估性能的问题, 已成为支撑各类军民装备现代化的重要技术手段. 然而, 性能评估方法的指标体系, 无量纲化方法及权重方法均存在不足, 难以满足精确性的要求. 对于指标具有模糊性和不可公度性, 且包含多个指标, 指标间具有多层次关系的系统而言, 例如, 惯性组合导航系统, 性能评估方法精确性尤为重要. 本文梳理了惯性组合导航系统性能评估方法研究进展. 首先, 介绍了惯性组合导航系统性能评估方法概述, 包括性能评估方法概念分析, 惯性组合导航系统特殊性讨论及惯性组合导航系统与性能评估方法关系分析. 其次, 分析了惯性组合导航系统指标体系, 无量纲化方法, 组合权重方法及评估方法等内容. 最后, 阐述惯性组合导航系统性能评估方法存在的问题及未来研究方向.
基于层次特征复用的视频超分辨率重建
周圆, 王明非, 杜晓婷, 陈艳芳
, doi: 10.16383/j.aas.c210095
摘要:
当前的深度卷积神经网络方法, 在视频超分辨率任务上实现的性能提升相对于图像超分辨率任务略低一些, 部分原因是它们对层次结构特征中的某些关键帧间信息的利用不够充分. 为此, 本文提出了一个称作层次特征复用网络(Hierarchical feature reuse network, HFRNet)的结构, 用以解决上述问题. 该网络保留运动补偿帧的低频内容, 并采用密集层次特征块(Dense hierarchical feature block, DHFB)自适应地融合其内部每个残差块的特征, 之后用长距离特征复用融合多个DHFB间的特征, 从而促进高频细节信息的恢复. 实验结果表明, 本文提出的方法在定量和定性指标上均优于当前的方法.
具有遗忘群体的社会网络多维观点动力学分析与应用
刘青松, 李明鹏, 柴利
, doi: 10.16383/j.aas.c210091
摘要:
在个体观点演化过程中, 由于通讯技术和实际环境的限制, 个体之间往往不能进行充分地交流. 另一方面, 由于社会群体的从众压力影响, 个体会改变已形成的观点. 本文研究具有遗忘群体和从众压力的拟强连通社会网络中表达/私人观点演化问题. 为了刻画不同话题之间表达/私人观点的相互影响, 提出一个新的多维观点动力学模型. 根据逻辑矩阵和网络影响子矩阵的正则性, 给出了表达和私人观点收敛的充分条件. 应用本文所提出的观点动力学模型, 复现了“多元无知”的社会现象. 仿真分析表明, 从众压力的恢复力越小, 表达观点与私人观点的差异越大.
基于流形正则化框架和MMD的域自适应BLS模型
赵慧敏, 郑建杰, 郭晨, 邓武
, doi: 10.16383/j.aas.c210009
摘要:
宽度学习系统(Broad learning system, BLS)作为一种基于随机向量函数型网络(Random vector functional link network, RVFLN)的高效增量学习系统, 具有快速自适应模型结构选择能力和高精度的特点. 但针对目标分类任务中有标签数据匮乏问题, 传统的BLS难以借助相关领域知识来提升目标域的分类效果, 为此本文提出一种基于流形正则化框架和最大均值差异(Maximum mean discrepancy, MMD)的域适应BLS(DABLS)模型, 实现目标域无标签条件下的跨域图像分类. DABLS模型首先构造BLS的特征节点和增强节点, 从源域和目标域数据中有效提取特征; 再利用流形正则化框架构造拉普拉斯矩阵, 以探索目标域数据中的流形特性, 挖掘目标域数据的潜在信息. 接着基于迁移学习方法构建源域数据与目标域数据之间的MMD惩罚项, 以匹配源域和目标域之间的投影均值; 将特征节点、增强节点、MMD惩罚项和目标域拉普拉斯矩阵相结合, 构造目标函数, 并采用岭回归分析法对其求解, 获得输出系数, 从而提高模型的跨域分类性能. 最后在不同图像数据集上进行大量的验证与对比实验, 结果表明DABLS在不同图像数据集上均能获得较好的跨域分类性能, 具有较强的泛化能力和较好的稳定性.
数据驱动的燃煤发电装备运行工况监控——现状与展望
赵春晖, 胡赟昀, 郑嘉乐, 陈军豪
, doi: 10.16383/j.aas.c200993
摘要:
大容量、高参数、低能耗的百万千瓦超超临界机组是燃煤发电领域的重大装备, 已成为全国电力工业发展的主流方向, 其安全可靠运行对推动发电企业转型升级具有重要意义. 本文从分析以百万千瓦超超临界机组为代表的燃煤发电装备的本质特性出发, 揭示了其变负荷深度调峰导致的非平稳运行特性和全流程复杂耦合特性, 总结了燃煤发电过程区别于一般连续过程的问题, 指出了研究燃煤发电装备运行工况监控算法的必要性. 进而, 基于这些特性, 我们对面向燃煤发电装备工况监控的数据驱动算法近30年的发展进行回顾和分析, 展示了算法发展的不同阶段. 在此基础上, 梳理了目前燃煤发电装备工况监控中存在的问题, 并进一步介绍了燃煤发电装备工况监控未来可能的发展方向.
基于线性变换的领导-跟随多智能体系统动态反馈均方一致性控制
郑维, 张志明, 刘和鑫, 张明泉, 孙富春
, doi: 10.16383/j.aas.c200850
摘要:
本文研究了基于半马尔科夫(Markov)跳变的领导-跟随多智能体系统的均方一致性控制问题. 首先, 针对多智能体系统同时存在通信时滞和执行器故障的问题, 提出基于线性变换的动态反馈控制策略. 其次, 将实现领导-跟随多智能体系统的均方一致性问题转化为多智能体误差系统的稳定性控制问题. 再次, 设计动态反馈控制器, 利用李亚谱诺夫(Lyapunov)函数抑制系统的非线性特性, 解决由控制器未知增益矩阵产生的非线性问题. 使领导-跟随多智能体系统达到均方一致, 并给出系统的\begin{document}${H_{\infty} }$\end{document}性能指标分析系统的鲁棒性. 最后, 仿真结果表明基于线性变换设计的动态反馈控制策略具有良好的控制性能, 并且能够提高领导-跟随多智能体系统的动态特性.
机械臂变长度误差跟踪迭代学习控制
陈强, 陈凯杰, 施卉辉, 孙明轩
, doi: 10.16383/j.aas.c200701
摘要:
针对任意初始状态下机械臂轨迹跟踪问题, 本文提出一种变长度误差跟踪迭代学习控制方法. 首先, 构造不依赖于期望轨迹的双曲余弦型期望误差轨迹, 放宽经典迭代学习控制的初始状态要求严格一致条件. 由于该误差轨迹只需设置一个常数项, 因而能够有效减少计算量, 使得期望误差轨迹的设计更为简单. 其次, 考虑机械臂运行区间随迭代次数变化的问题, 构建虚拟误差变量补偿机制, 通过定义虚拟误差变量对未运行区间进行信息补偿, 放宽经典迭代学习控制的迭代长度不变条件. 在此基础上, 基于Lyapunov-like理论设计迭代学习控制器和全限幅学习律, 实现机械臂关节位置在指定区间上跟踪给定的期望轨迹和保证未知参数估计值的有界性. 最后, 仿真结果验证了本文所提方法的有效性.
数据驱动的溶解氧浓度在线自组织控制方法
权利敏, 杨翠丽, 乔俊飞
, doi: 10.16383/j.aas.c210041
摘要:
针对城市污水处理过程的非线性, 不确定性以及非高斯等特点, 提出一种基于数据驱动的溶解氧浓度在线自组织控制方法. 首先, 设计了一种基于相关熵的自组织模糊神经网络控制器(Correntropy-based self-organizing fuzzy neural network, CSOFNN), 采用相关熵与规则贡献度指标实现控制器结构与参数的自动构建或修剪. 其次, 设计了基于相关熵诱导准则的补偿控制器及参数自适应律, 充分利用了相关熵抑制非高斯噪声的能力, 能够有效地降低系统中的不确定性. 然后, 分析了所提出的控制方法的稳定性, 从而保证其在实际应用中的可靠性. 最后, 基于基准仿真1号模型的实验验证了所提方法的有效性.
多阶段注意力胶囊网络的图像分类
宋燕, 王勇
, doi: 10.16383/j.aas.c210012
摘要:
本文针对胶囊网络特征提取不充分的问题, 提出了一种图像分类的多阶段注意力胶囊网络模型. 首先在卷积层对低层特征和高层特征分别采用空间和通道注意力来提取有效特征; 然后提出基于向量方向的注意力机制作用于动态路由层, 增加对重要胶囊的关注, 进而提高低层胶囊对高层胶囊预测的准确性; 最后, 在五个公共数据集上进行对比实验, 结果表明本文提出的模型在分类精度和鲁棒性上优于其他胶囊网络模型, 在仿射变换图像重构上也表现良好.
一种基于自训练的众包标记噪声纠正算法
杨艺, 蒋良孝, 李超群
, doi: 10.16383/j.aas.c210051
摘要:
针对众包标记经过标记集成后仍然存在噪声的问题, 提出了一种基于自训练的众包标记噪声纠正算法(Self-training-based label noise correction, STLNC). STLNC整体分为三个阶段: 第一阶段利用过滤器将带集成标记的众包数据集分为噪声集和干净集. 第二阶段利用加权密度峰值聚类算法构建数据集中低密度实例指向高密度实例的空间结构关系. 第三阶段首先根据发现的空间结构关系设计噪声实例选择策略; 然后利用在干净集上训练的集成分类器对选择的噪声实例按照设计的实例纠正策略进行纠正, 并将纠正后的实例加入到干净集, 再重新训练集成分类器; 重复实例选择与纠正过程直到噪声集中所有的实例被纠正; 最后用最后一轮训练得到的集成分类器对所有实例进行纠正. 在仿真标准数据集和真实众包数据集上的实验结果表明STLNC比其他五种最先进的噪声纠正算法在噪声比和模型质量两个度量指标上表现更优.
模糊失真图像无参考质量评价综述
陈健, 李诗云, 林丽, 王猛, 李佐勇
, doi: 10.16383/j.aas.c201030
摘要:
图像的模糊问题影响人们对信息的感知、获取及图像的后续处理. 无参考模糊图像质量评价是该问题的主要研究方向之一. 本文分析了近20年来模糊图像无参考质量评价相关技术的发展. 首先, 本文结合主要数据集对图像模糊失真进行分类说明; 其次, 对主要的模糊图像无参考质量评价方法进行分类介绍与详细分析; 随后, 介绍了用来衡量模糊图像无参考质量评价方法性能优劣的主要评价指标; 接着, 选择典型数据集及评价指标, 并采用常见的模糊图像无参考质量评价方法进行性能比较; 最后, 对无参考模糊图像质量评价的相关技术及发展趋势进行总结与展望.
基于自适应LASSO先验的稀疏贝叶斯学习算法
白宗龙, 师黎明, 孙金玮
, doi: 10.16383/j.aas.c210022
摘要:
为了提高稀疏信号恢复的准确性, 本文开展了基于自适应套索算子(Least absolute shrinkage and selection operator, LASSO)先验的稀疏贝叶斯学习(Sparse bayesian learning, SBL)算法研究. 第一, 在稀疏贝叶斯模型构建阶段, 构造了一种新的多层贝叶斯框架, 赋予信号中元素独立的LASSO先验. 该先验比现有稀疏先验更有效的鼓励稀疏并且该模型中所有参数更新存在闭合解. 然后在该多层贝叶斯框架的基础上提出了一种基于自适应LASSO先验的SBL算法. 第二, 为降低提出的算法的计算复杂度, 在贝叶斯推断阶段利用空间轮换变元方法对提出的算法进行改进, 避免了矩阵求逆运算, 使参数更新快速高效, 从而提出了一种基于自适应LASSO先验的快速SBL算法. 本文提出的算法的稀疏恢复性能通过实验进行了验证, 分别针对不同大小测量矩阵的稀疏信号恢复以及单快拍波达方向(Direction of arrival, DOA)估计开展了实验. 实验结果表明: 本文提出基于自适应LASSO先验的SBL算法比现有算法具有更高的稀疏恢复准确度; 本文提出的快速算法的准确度略低于提出的基于自适应LASSO先验的SBL算法, 但计算复杂度明显降低.
基于黎曼度量的一类反馈控制系统性能监测与诊断
李琳琳, 李莎莎, DINGSteven Xianchun, 彭鑫, 彭开香
, doi: 10.16383/j.aas.c210027
摘要:
针对复杂工业系统对性能衰退的容忍度低等问题, 提出基于系统性能预测的一类反馈控制系统过程监测方法, 通过黎曼度量对控制性能衰退程度进行预测与监测, 并给出发生故障的类型, 以提升过程监测系统的实时性与准确性. 首先, 利用系统的实时数据, 计算系统性能衰退的预测指标; 其次, 利用黎曼度量对系统性能衰退程度进行预测与监测, 并利用随机算法给出对应的阈值来诊断系统性能衰退; 最后, 通过训练各类引发系统性能衰退的故障的性能预测指标集合的中心和阈值, 实现故障的实时定位. 所提出的方法通过三容水箱仿真实验平台进行验证.
基于两阶段自适应Wiener过程的剩余寿命预测方法
董青, 郑建飞, 胡昌华, 李冰, 牟含笑
, doi: 10.16383/j.aas.c210057
摘要:
针对退化过程呈现两阶段特征的一类随机退化设备, 现有剩余寿命预测方法不适用于测量间隔分布不均匀、监测数据的测量频率与历史数据频率不一致的情况, 并且忽略了自适应漂移的可变性. 鉴于此, 提出了一种新的考虑个体差异性的两阶段自适应Wiener过程剩余寿命预测模型与方法. 首先, 基于自适应Wiener过程分阶段构建随机退化模型, 在首达时间意义下推导出寿命和剩余寿命解析式. 然后, 结合Kalman滤波技术和期望最大化算法进行参数自适应更新, 同时利用赤池信息准则实现退化模型变点的辨识. 最后, 通过蒙特卡洛仿真和锂电池实例, 验证了本文所提方法的有效性和实用价值.
融合MRI信息的PET图像去噪: 基于图小波的方法
易利群, 盛玉霞, 柴利
, doi: 10.16383/j.aas.c201036
摘要:
正电子发射断层成像(Positron emission tomography, PET)是一种强大的核医学功能成像模式, 广泛地应用于临床诊断, 但PET图像的空间分辨率低且含有噪声, 有必要对PET图像进行去噪来提升PET图像的质量. 随着PET/MR等一体化成像设备的出现, 磁共振成像(Magnetic resonance imaging, MRI)的先验信息可用于PET图像去噪, 提高PET图像质量. 针对动态PET图像, 提出了一种融合MRI先验信息的PET图像图小波去噪新方法. 首先构建PET合成图像; 再将PET合成图像与MRI信息通过硬阈值方法进行融合; 接着在融合图像上构造图拉普拉斯矩阵; 最后通过图小波变换对动态PET图像去噪. 仿真实验结果表明, 与单独的图滤波、图小波去噪方法, 以及其他结合MRI的PET图像去噪方法相比, 本文方法有更高的信噪比, 更好地保留了病灶信息; 本文方法的去噪性能与VGG深度神经网络等基于学习的方法相当, 但不需要大量数据的训练, 计算复杂度低.
一种基于区块链的DNSSEC公钥验证机制
陈闻宇, 李晓东, 杨学, 徐彦之
, doi: 10.16383/j.aas.c201082
摘要:
针对中心化DNSSEC架构所导致的信任链复杂性和单边控制模式, 提出了一种去中心化的DNSSEC公钥验证机制. 该机制结合区块链结构、密码学累加器和共识算法设计, 创新性地实现使用区块链技术的密钥绑定、轮转和验证操作, 无需中心化权威节点即可使用可信公钥验证域名记录. 进一步的分析和实验表明, 所提出的机制在保证密钥管理安全性的同时, 提高了密钥验证的效率.
基于ANFIS的多AUV协同定位系统量测异常检测方法
徐博, 李盛新, 王连钊, 王权达
, doi: 10.16383/j.aas.c200921
摘要:
针对异常水声测距信息对多自主水下航行器(Autonomous underwater vehicles, AUV)协同定位系统的影响, 以及传统故障检测方法在多水声测距信息交替混淆的情况下检测效率低的问题, 本文提出了一种基于自适应神经模糊推理系统(Adaptive neuro-fuzzy inference system, ANFIS)的量测异常检测方法. 首先, 分别建立与各水声测距系统相对应的ANFIS模型; 然后, 通过自适应容积卡尔曼滤波和马氏距离构造能够反映量测异常的特征信息作为ANFIS的输入, 并基于预定义的量测异常信息建立初始混合数据库, 训练ANFIS模型实现对量测异常的在线实时检测与隔离. 最后, 利用湖水试验数据进行了AUV协同定位仿真验证, 实验结果表明该方法可以准确识别异常水声测距信息, 与传统故障检测方法相比误报率与漏检率均减少70%以上.
卷积神经网络表征可视化研究综述
司念文, 张文林, 屈丹, 罗向阳, 常禾雨, 牛铜
, doi: 10.16383/j.aas.c200554
摘要:
近年来, 深度学习在图像分类、目标检测及场景识别等任务上取得了突破性进展, 这些任务多以卷积神经网络(Convolutional neural network, CNN)为基础搭建识别模型, 训练后的模型拥有优异的自动特征提取和预测性能, 能够为用户提供“输入-输出”形式的解决方案. 然而, 由于分布式的特征编码和越来越复杂的模型结构, 人们始终无法准确理解CNN模型内部知识表示, 以及促使其做出特定决策的潜在原因. 另一方面, CNN模型在一些高风险领域的应用, 也要求对其决策原因进行充分了解, 方能获取用户信任. 因此, CNN的可解释性问题逐渐受到关注. 研究人员针对性的提出了一系列用于理解和解释CNN的方法, 包括事后解释方法和构建自解释的模型等, 这些方法各有侧重和优势, 从多方面对CNN进行特征分析和决策解释. 表征可视化是其中一种重要的CNN可解释性方法, 能够对CNN所学特征及输入-输出之间的相关关系以视觉的方式呈现, 从而快速获取对CNN内部特征和决策的理解, 具有过程简单和效果直观的特点. 本文对近年来CNN表征可视化领域的相关文献进行了综合性回顾, 按照以下几个方面组织内容: 表征可视化研究的提起、相关概念及内容、可视化方法、可视化的效果评估及可视化的应用, 重点关注了表征可视化方法的分类及算法的具体过程. 最后, 对该领域仍存在的难点及未来研究趋势进行了展望, 并总结了全文.
基于无监督深度模型迁移的滚动轴承寿命预测方法
康守强, 邢颖怡, 王玉静, 王庆岩, 谢金宝, MIKULOVICHV.I.
, doi: 10.16383/j.aas.c200890
摘要:
针对实际中某种工况滚动轴承带标签振动数据获取困难, 健康指标难以构建及寿命预测误差大的问题, 提出一种基于无监督深度模型迁移的滚动轴承剩余使用寿命预测方法. 该方法首先对滚动轴承全寿命周期振动数据提取均方根特征, 并引入新的自下而上时间序列分割算法将特征序列分割为正常期、退化期和衰退期3种状态; 对振动信号经快速傅里叶变换后的幅值序列进行状态信息标记, 并将其输入到新增卷积层的全卷积神经网络中, 提取深层特征, 得到预训练模型; 提出将预训练模型的梯度作为一种“特征”与传统预训练模型特征一起参与目标域网络训练过程, 从而得到状态识别模型; 利用状态概率估计法结合状态识别模型建立滚动轴承寿命预测模型. 实验验证, 所提方法无需构建健康指标, 可实现无监督条件下不同工况滚动轴承剩余寿命预测, 并获得较好的效果.
面向非独立同分布数据的自适应联邦深度学习算法
张泽辉, 李庆丹, 富瑶, 何宁昕, 高铁杠
, doi: 10.16383/j.aas.c201018
摘要:
近些年, 联邦学习由于能够打破数据壁垒, 实现孤岛数据价值变现, 受到了工业界和学术界的广泛关注. 然而, 在实际工程应用中, 联邦学习存在着数据隐私泄露和模型性能损失的问题. 对此, 本文首先对这两个问题进行了数学描述与分析. 然后, 提出了一种自适应模型聚合方案, 该方案能够设定各参与者的mini-batch值和自适应调整全局模型聚合间隔, 旨在保证模型精度的同时, 提高联邦学习训练效率. 并且, 混沌系统被首次引入联邦学习领域中, 用于构建一种基于混沌系统和同态加密的混合隐私保护方案, 从而进一步提升系统的隐私保护水平. 理论分析与实验结果表明, 本文提出的联邦学习算法能够保证参与者的数据隐私安全. 并且, 在非独立同分布数据的场景下, 该算法够在保证模型精度的前提下提高训练效率, 降低系统通信成本, 具备实际工业场景应用的可行性.
融合注意力机制的增强受限玻尔兹曼机驱动的交互式分布估计算法
暴琳, 孙晓燕, 巩敦卫, 张勇
, doi: 10.16383/j.aas.c200604
摘要:
面向用户生成内容的进化搜索在大数据及个性化服务领域已引起广泛关注, 其关键在于基于多源异构用户生成内容构建用户认知偏好模型, 进而设计高效的进化搜索机制. 针对此, 本文提出了融合注意力机制的受 限玻尔兹曼机偏好认知代理模型构建机制, 并应用于交互式分布估计算法, 设计含用户生成内容的个性化进化搜索策略. 基于用户群体提供的文本评论, 以及搜索物品的类别文本, 构建无监督受限玻尔兹曼机模型提取广义特征; 设计注意力机制, 融合广义特征, 获取对用户认知偏好高度相关特征的集成; 利用该特征再次训练受限玻尔兹曼机, 实现对用户偏好认知代理模型的构建; 根据用户偏好认知代理模型, 给出交互式分布估计算法概率更新模型以及物品适应度评价函数, 实现物品个性化进化搜索. 算法在亚马逊个性化搜索实例的应用验证了用户认知偏好模型的可靠性, 以及个性化进化搜索的有效性.
基于通用逆扰动的对抗攻击防御方法
陈晋音, 吴长安, 郑海斌, 王巍, 温浩
, doi: 10.16383/j.aas.c201077
摘要:
现有研究表明深度学习模型容易受到精心设计的对抗样本攻击, 从而导致模型给出错误的推理结果, 引发潜在的安全威胁. 已有较多有效的防御方法, 其中大多数针对特定攻击方法具有较好防御效果, 但由于实际应用中无法预知攻击者可能采用的攻击策略, 因此提出不依赖攻击方法的通用防御方法是一个挑战. 本文提出了一种基于通用逆扰动的对抗样本防御方法, 通过学习原始数据集中的类相关主要特征, 生成通用逆扰动(Universal Inverse Perturbation, UIP), 且UIP对数据样本和攻击方法都具有通用性, 即一个UIP可以实现对不同攻击方法作用于整个数据集得到的所有对样本进行防御. 此外, UIP通过强化良性样本的类相关重要特征实现对良性样本精度的无影响, 且生成UIP无需对抗样本的先验知识. 通过大量实验验证, 表明UIP在不同数据集、不同模型中对各类攻击方法都具备显著的防御效果, 且提升了模型对正常样本的分类性能.
微电网的电流均衡/电压恢复自适应动态规划策略研究
王睿, 孙秋野, 张化光
, doi: 10.16383/j.aas.c210015
摘要:
含多类型分布式电源的微电网已经成为了未来电力系统的重要发展方向, 其中风能和光能在降低化石能源消耗和二氧化碳排放等方面有着极大优势, 考虑二者之间强互补性的协同调度已被广泛研究. 但风/光协同调度的微电网多关注分钟级的调度或优化问题而非风/光波动下秒级的实时电流按容量比例精准分担, 简称电流均衡, 而精准电流均衡有助于可再生能源的高比例消纳. 因此, 本文提出了基于自适应动态规划的微电网电流均衡和电压恢复控制策略. 首先, 构建包含风电整流型电能变换器和光电升压型电能变换器的广义风光拓扑同胚升压变换器模型, 其提供了后续控制器设计的模型基础. 其次, 本文将电流均衡和电压恢复问题转化为最优控制问题, 基于此, 每个能源主体的目标函数转化为获取最优控制变量和最小电压/电流控制偏差, 进而转化为求解哈密顿-雅克比-贝尔曼(Hamilton-Jacobi-Bellman, HJB)方程问题. 基于此, 提出了基于贝尔曼准则的分布式自适应动态规划控制策略以求取HJB方程的数值解, 最终实现电流均衡和电压恢复. 最后仿真结果验证了所提分布式自适应动态规划控制策略的有效性.
基于混合变分自编码器回归模型的软测量建模方法
崔琳琳, 沈冰冰, 葛志强
, doi: 10.16383/j.aas.c200256
摘要:
近年来, 变分自编码器(Variational auto-encoder, VAE)模型由于在概率数据描述和特征提取能力等方面的优越性, 受到了学术界和工业界的广泛关注, 并被引入到工业过程监测、诊断和软测量建模等应用中. 然而, 传统基于VAE的软测量方法使用高斯分布作为潜在变量的分布, 限制了其对复杂工业过程数据, 尤其是多模态数据的建模能力. 为了解决这一问题, 本论文提出了一种混合变分自编码器回归模型(Mixture variational autoencoder regression, MVAER), 并将其应用于复杂多模态工业过程的软测量建模. 具体来说, 该方法采用高斯混合模型来描述VAE的潜在变量分布, 通过非线性映射将复杂多模态数据映射到潜在空间, 学习各模态下的潜在变量, 获取原始数据的有效特征表示. 同时, 建立潜在特征表示与关键质量变量之间的回归模型, 实现软测量应用. 通过一个数值例子和一个实际工业案例, 对所提模型的性能进行了评估, 验证了该模型的有效性和优越性.
基于EEG的癫痫自动检测: 综述与展望
彭睿旻, 江军, 匡光涛, 杜浩, 伍冬睿, 邵剑波
, doi: 10.16383/j.aas.c200745
摘要:
癫痫是一种由脑部神经元阵发性异常超同步电活动导致的慢性非传染性疾病, 也是全球最常见的神经系统疾病之一. 基于EEG的癫痫自动检测是指通过机器学习、分布检验、相关性分析和时频分析等数据分析方法, 对癫痫发作阶段的EEG信号进行自动识别的研究问题, 能够为癫痫诊疗与评估提供客观参考依据, 从而减轻医生工作负担并提高治疗效率, 因此具有十分重要的理论意义与实际应用价值. 本文详细介绍基于EEG的癫痫自动识别整体框架, 以及对应于各个步骤所涉及的典型方法. 针对核心模块, 即特征提取与分类器选择, 进行方法总结与理论解释. 最后, 对癫痫自动检测研究领域的未来研究方向进行展望.
基于可见光与红外热图像的行车环境复杂场景分割
陈武阳, 赵于前, 阳春华, 张帆, 余伶俐, 陈白帆
, doi: 10.16383/j.aas.c210029
摘要:
复杂场景分割是自动驾驶领域智能感知的重要任务, 对稳定性和高效性都有较高的要求. 由于一般的场景分割方法主要针对可见光图像, 分割效果非常依赖于图像获取时的光线与气候条件, 且大多数方法只关注分割性能, 忽略了计算资源. 本文提出一种基于可见光与红外热图像的轻量级双模分割网络(DMSNet), 通过提取并融合两种模态图像的特征得到最终分割结果. 考虑到不同模态特征空间存在较大差异, 直接融合将降低对特征的利用率, 本文提出了双路特征空间自适应(DPFSA)模块, 该模块能够自动学习特征间的差异从而转换特征至同一空间. 实验结果表明, 本文方法提高了对不同模态图像的利用率, 对光照变化有更强的鲁棒性, 且以少量参数取得了较好的分割性能.
基于模糊核估计的图像盲超分辨率神经网络
李公平, 陆耀, 王子建, 吴紫薇, 汪顺舟
, doi: 10.16383/j.aas.c200987
摘要:
模糊图像的超分辨率重建具有挑战性并且有重要的实用价值. 本文提出了一种基于模糊核估计的图像盲超分辨率神经网络, 主要包括两部分: 模糊核估计子网络和模糊核自适应的图像重建子网络. 给定任意低分辨率图像, 该网络首先利用模糊核估计子网络从输入图像估计出实际的模糊核, 然后根据估计到的模糊核, 该网络利用模糊核自适应的图像重建子网络完成输入图像的超分辨率重建. 与其他图像盲超分辨率方法不同, 本文提出的模糊核估计子网络能够显式地从输入低分辨率图像中估计出完整的模糊核, 然后模糊核自适应的图像重建子网络根据估计到的模糊核, 动态地调整网络各层的图像特征, 从而适应不同输入图像的模糊. 本文在多个基准数据集上进行了有效性实验, 定性和定量的结果都表明该网络优于同类的图像盲超分辨率神经网络.
一种脑肢融合的神经康复训练在线评价与调整方法
舒智林, 李思宜, 于宁波, 朱志中, 巫嘉陵, 韩建达
, doi: 10.16383/j.aas.c200452
摘要:
在脑卒中康复训练中, 保持患者积极主动参与、提供适配其运动能力的训练难度对于取得良好的康复效果至关重要. 针对患者在长期康复训练过程中容易懈怠甚至出现惰性效应、运动能力有波动等挑战, 本文系统提出了一种脑肢融合的神经康复训练在线评价与调整方法. 首先, 从脑、肢体、以及训练任务三个层面, 基于脑电信号(Electroenc ephalo graphy, EEG)、肢体运动数据和任务评分, 建立了对患者神经参与程度、运动控制能力和任务完成情况的量化评价方法. 进而, 在任务操作难度、辅助和干扰力场、以及视觉辅助等方面, 设计了康复训练任务内和任务间的在线调整方法. 通过一个针对手功能康复的灵巧操作任务, 实现了基于所提出的脑肢融合在线评价与调整方法的闭环神经康复训练. 开展试验, 招募16名受试者参加, 对比分析开环训练和闭环训练两种情况下的实验结果, 验证了所提出方法的可行性和有效性. 本文工作可推广应用到脑功能障碍患者的运动康复训练, 进一步提高康复效果.
基于耦合反步法的轧机垂扭耦合振动控制策略研究
张柳柳, 钱承, 华长春, 白振华, 雷彤
, doi: 10.16383/j.aas.c200936
摘要:
本文针对轧机机电液垂扭耦合系统存在耦合振动问题, 提出了一种基于耦合反步法的轧机垂扭耦合振动抑制控制策略. 首先考虑了轧机传动系统、液压系统与辊系机械间的相互影响, 根据动力学定理, 建立了轧机机电液垂扭耦合振动数学模型. 其次考虑到轧机耦合垂振系统和耦合扭振系统间存在状态耦合关系, 利用耦合反步法, 解决了振动控制器设计中存在的相互嵌套问题. 针对耦合系统输出性能受限问题, 借助于障碍李雅普诺夫函数方法, 同时利用神经网络来逼近未知非线性函数, 设计了自适应神经网络振动抑制控制策略. 基于李雅普诺夫稳定理论严格证明了本文设计的控制方法能够保证系统输出满足所要求的暂稳态性能指标. 最后, 根据650 mm轧机的实际数据进行仿真, 验证了本文设计控制策略的有效性与优越性.
非线性预测控制终端约束集的优化
于树友, 冯阳阳, KimJung-Su, 陈虹
, doi: 10.16383/j.aas.c200911
摘要:
为了保证预测控制的稳定性, 经典的策略是在预测控制的优化问题中加入终端约束集和终端惩罚函数并保证终端约束集是一个在终端控制律作用下的正不变集, 终端惩罚函数是受控系统的局部控制Lyapunov函数. 本文提供了一种求解非线性系统终端约束集、终端控制律和终端惩罚函数的新策略. 通过在优化问题中引入新的变量来降低求解终端约束条件的保守性, 并且可以从理论上保证求解得到的终端约束集更大. 通常情况下, 较大的终端约束集将允许选取的预测时域较小, 因而可以降低预测控制的在线计算负担. 从形式上看, 新的变量的引入使得终端约束集和终端惩罚项实现了某种程度的解耦, 也即终端约束集不再是终端惩罚函数的水平截集. 最后通过仿真算例验证了所提策略的有效性.
基于MHSA和句法关系增强的机器阅读理解方法研究
张虎, 王宇杰, 谭红叶, 李茹
, doi: 10.16383/j.aas.c200951
摘要:
机器阅读理解是自然语言处理领域中一项重要研究任务, 目标是通过机器理解给定的阅读材料和问题, 最终实现自动答题. 目前联合观点类问题解答和答案依据挖掘的多任务联合学习研究在机器阅读理解应用中受到广泛关注, 它可以同时给出问题答案和支撑答案的相关证据, 然而现有观点类问题的答题方法在答案线索识别上表现还不是太好, 已有答案依据挖掘方法仍不能较好捕获段落中词语之间的依存关系. 基于此, 本文引入多头自注意力(Multi-Head Self-Attention, MHSA)进一步挖掘阅读材料中观点类问题的文字线索, 改进了观点类问题的自动解答方法; 将句法关系融入到图构建过程中, 提出了基于关联要素关系图的多跳推理方法, 实现了答案支撑句挖掘; 通过联合优化两个子任务, 构建了基于多任务联合学习的阅读理解模型. 在2020中国“法研杯”司法人工智能挑战赛(China AI Law Challenge 2020, CAIL2020)和HotpotQA数据集上的实验结果表明, 本文提出的方法相比已有基线模型取得了更好的效果.
PLVO: 基于平面和直线融合的RGB-D视觉里程计
孙沁璇, 苑晶, 张雪波, 高远兮
, doi: 10.16383/j.aas.c200878
摘要:
针对利用平面特征计算RGB-D相机位姿时的求解退化问题, 提出平面和直线融合的RGB-D视觉里程计(Plane-line-based RGB-D visual odometry, PLVO). 首先, 提出基于平面-直线混合关联图(Plane-line hybrid association graph, PLHAG)的多特征关联方法, 充分考虑平面和平面、平面和直线之间的几何关系, 对平面和直线两类几何特征进行一体化关联. 然后, 提出基于平面和直线主辅相济、自适应融合的RGB-D相机位姿估计方法. 具体来说, 鉴于平面特征通常比直线特征具有更好的准确性和稳定性, 本文通过自适应加权的方法, 确保平面特征在位姿计算中的主导作用, 而对平面无法约束的位姿自由度, 利用直线特征进行补充, 从而实现两类特征的融合, 解决了单纯使用平面特征求解位姿时的退化问题. 最后, 通过公开数据集上的定量实验以及真实室内环境下的机器人实验, 验证了所提出方法的有效性.