[1]
|
Zhang J F, Li Z X, Wang S, Dai Y, Zhang R R, Lai J, et al. Adaptive optimal output regulation for wheel-legged robot ollie: A data-driven approach. Frontiers in Neurorobotics, 2023, 16:DOI10.3389/fnbot.2022.1102259 doi: 10.3389/fnbot.2022.1102259
|
[2]
|
Rivera J, Ortega-cisneros S, Chavira F. Sliding mode output regulation for a boost power converter. Energies, 2019, 12(5):DOI10.3390/en12050879 doi: 10.3390/en12050879
|
[3]
|
孟桂芝. 不确定非线性系统的输出调节及其应用. 黑龙江: 哈尔滨工业大学, 2013: 15−25Meng Gui-Zhi. Output regulation of uncertain nonlinear systems and its application. Heilongjiang: Harbin Institute of Technology, 2013: 15−25
|
[4]
|
Franicis B A, Wonham W M. The internal model principle of control theory. Automatica, 1976, 12(5): 457 doi: 10.1016/0005-1098(76)90006-6
|
[5]
|
Huang J, Chen Z Y. A General framework for tackling the output regulation problem. IEEE Transactions on Automatic Control, 2004, 49(12): 2203 doi: 10.1109/TAC.2004.839236
|
[6]
|
闫茂德, 许化龙, 贺昱曜. 基于调节函数的一类三角结构非线性系统的自适应滑模控制. 控制理论与应用, 2004, 21(5): 840−843 doi: 10.3969/j.issn.1000-8152.2004.05.035Yan Mao-De, Xu Hua-Lon, He Yu-Yao. Adaptive sliding mode control based on tuning function for nonlinear systems with triangular structure. Control Theory & Applications, 2004, 21(5): 840−843 doi: 10.3969/j.issn.1000-8152.2004.05.035
|
[7]
|
D. Swaroop, J.K. Hedrick, P.P. Yip, J.C. Gerdes. Dynamic surface control for a class of nonlinear systems. IEEE Transactions on Automatic Control, 2000, 45(10): 1893−1899 doi: 10.1109/TAC.2000.880994
|
[8]
|
辛红伟, 李昊齐, 祝国强, 张秀宇. 基于自调节有限时间预设性能函数的多智能体系统动态面状态约束量化控制. 控制与决策, 2023, 38(05): 1319−1326Xin Hong-wei, Li Hao-qi, Zhu Guo-qiang, Zhang Xiu-Yu. Dynamic surface state constrained quantized control for multi-agent system with an adjustable finite-time prescribed performance function. Control and Decision, 2023, 38(05): 1319−1326
|
[9]
|
Nussbaum R D. Some remarks on a conjecture in parameter adaptive control. Systems & Control Letters, 1983, 3(5): 243−246
|
[10]
|
邓涛, 姚宏, 杜军, 苏磊. 控制增益未知非线性系统的动态面控制. 信息与控制, 2013, 42(6): 686−692Deng Tao, Yao Hon, Du Jun, Su Lei. Dynamic surface control for nonlinear systems with unknown control gain. Information and Control, 2013, 42(6): 686−692
|
[11]
|
Jiang Y, Dai J Y. Adaptive output regulation of a class of nonlinear output feedback systems with unknown high frequency gain. IEEE/CAA Journal of Automatica Sinica, 2020, 7(2): 568 doi: 10.1109/JAS.2020.1003060
|
[12]
|
孙伟杰, 乔雨晨, 彭云建. 基于障碍Lyapunova函数的未知控制方向非线性系统的约束鲁棒输出调节. 控制理论与应用, 2023, 40(9): 1696−1701Sun Wei-Jie, Qiao Yu-Chen, Peng Yun-Jian. Constrained robust output regulation for nonlinear systems with unknown control direction based on obstacle Lyapunov function. Control Theory & Applications, 2023, 40(9): 1696−1701
|
[13]
|
Qi X, Liu W H, Yang Y G, Lu JW. Adaptive finite-time fuzzy control for nonlinear systems with input quantization and unknown times delays. Journal of the Franklin Institute, 2020, 357(12): 7718−7742 doi: 10.1016/j.jfranklin.2020.05.036
|
[14]
|
Cui D, Wu Y F, Xiang Z R. Finite-time adaptive fault-tolerant tracking control for nonlinear switched systems with dynamic uncertainties. International Journal of Robust and Nonlinear Control, 2021, 31(8): 2976−2992 doi: 10.1002/rnc.5429
|
[15]
|
Sui C, Chen C L P, Tong S C. Fuzzy adaptive finite-time control design for nontriangular stochastic nonlinear systems. IEEE Transactions on Fuzzy Systems, 2019, 27(1): 172−184 doi: 10.1109/TFUZZ.2018.2882167
|
[16]
|
刘海涛, 田雪虹, 俞国燕, 王贵, 刘焕牢. 一类不确定非线性系统的有限时间输出调节方法. 电机与控制学报, 2017, 21(10): 108−115Liu Hai-Tao, Tian Xue-Hon, Yu Guo-Yan, Wang Gui, Liu Huan-Lao. Finite time output regulation method for a class of uncertain nonlinear systems. Electric Machines and Control, 2017, 21(10): 108−115
|
[17]
|
Ma J L, Park J H, Xu S Y. Global adaptive finite-time control for uncertain nonlinear systems with actuator faults and unknown control directions. Nonlinear Dynamics, 2019, 97(4): 2533−2545 doi: 10.1007/s11071-019-05146-8
|
[18]
|
孟波, 刘文慧. 控制方向未知的非线性系统有限时间跟踪控制. 南京师范大学学报(工程技术版), 2021, 21(3): 33−41Meng Bo, Liu Wen-Hui. Finite-time tracking control for nonlinear systems with unknown control direction. Journal of Nanjing Normal University (Engineering and Technology Edition), 2021, 21(3): 33−41
|
[19]
|
Jia F J, Lu J W, Li Y M. Adaptive finite-time control for output regulation of nonlinear systems with completely unknown control directions. International Journal of Adaptive Control and Signal Processing, 2021, 35(7): 1354−1369 doi: 10.1002/acs.3244
|
[20]
|
Semenov SS, Tsurkov VI. Reinforcement learning for model problems of optimal control. Journal of Computer and Systems Sciences International, 2023, 62(3): 508−521 doi: 10.1134/S1064230723030127
|
[21]
|
Asl HJ, Uchibe E. Reinforcement learning-based optimal control of unknown constrained-input nonlinear systems using simulated experience. Nonlinear Dynamics, 2023, 111(17): 16093−16110 doi: 10.1007/s11071-023-08688-0
|
[22]
|
Yuan L E, Li T S, Tong S C, Xiao Y, Gao X Y. NN adaptive optimal tracking control for a class of uncertain nonstrict feedback nonlinear systems. Neurocomputing, 2022, 491: 382−394 doi: 10.1016/j.neucom.2022.03.049
|
[23]
|
Zhao B, Liu D R, Luo C M. Reinforcement learning-based optimal stabilization for unknown nonlinear systems subject to inputs with uncertain constraints. IEEE Transactions on Neural Networks and Learning Systems, 2020, 31(10): 4330−4340 doi: 10.1109/TNNLS.2019.2954983
|
[24]
|
Mu C X, Wang K, Zhu S, Cai G B. Decentralized triggering and event-based integral reinforcement learning for multiplayer differential game systems. IEEE Transactions on Emerging Topics in Computational Intelligence, 2024, 8(6): 3727−3741 doi: 10.1109/TETCI.2024.3372389
|
[25]
|
罗玉涛, 薛志成. 面向自动驾驶的多任务辅助驾驶策略学习方法. 华南理工大学学报(自然科学版), 2024, 52(10): 31−40Luo Yu-Tao, Xue Zhi-Cheng. Multi-task assisted driving policy learning method for autonomous driving. Journal of South China University of Technology(Natural Science Edition), 2024, 52(10): 31−40
|
[26]
|
徐宁, 何之煜, 李辉, 刘磊. 基于强化学习的货物列车长大下坡区段 运行控制优化算法. 铁道运输与经济, 2023, 45(08):DOI: 10.16668/j.cnki.issn.1003-1421.2023.08.06Xu Ning, He Zhi-Yu, Li Hui, Liu Lei. Optimization method based on reinforcement learning for operation and control of freight train in long steep downhill scenarios. Railway T-ransport and Economy, 2023, 45(08):DOI: 10.16668/j.cnki.issn.1003-1421.2023.08.06
|
[27]
|
Wang K, Mu C X, Ni Z, Liu D R. Safe reinforcement learning and adaptive optimal control with applications to obstacle avoidance problem. IEEE Transactions on Automation Science and Engineering, 2024, 21(3): 4599−4612 doi: 10.1109/TASE.2023.3299275
|
[28]
|
Wen G X, Ge S S, Tu F W. Optimized backstepping for tracking control of strict-feedback systems. IEEE Transactions on Neural Networks and Learning Systems, 2018, 29(8): 3850 doi: 10.1109/TNNLS.2018.2803726
|
[29]
|
罗傲, 肖文彬, 周琪, 鲁仁全. 基于强化学习的一类具有输入约束非线性系统最优控制. 控制理论与应用, 2021, 39(01): 154Luo Ao, Xiao Wen-Bin, Zhou Qi, Lu Ren-Quan. Optimal control for a class of nonlinear systems with input constraints based on reinforcement learning. Control Theory and Applications, 2021, 39(01): 154
|
[30]
|
Jin P, Ma Q, Zhou G P, Miao G Y. Reinforcement learning-based robust optimal output regulation for constrained nonlinear systems with static and dynamic uncertainties. International Journal of Robust and Nonlinear Control, 2023, 33(3): 2022 doi: 10.1002/rnc.6475
|
[31]
|
Xiao W B, Cao L, Lih Y, Lu R Q. Observer-based adaptive consensus control for nonlinear multi-agent systems with time-delay. Science China Information Sciences, 2020, 63(132202): 1−17
|
[32]
|
Wang F, Chen B, Liu X P, Lin C. Finite-time adaptive fuzzy tracking control design for nonlinear systems. IEEE Transactions on Fuzzy Systems, 2017, 26(3): 1207−1216
|
[33]
|
杜军, 邓涛. 自适应动态面输出调节方法. 信息与控制, 2013, 42(3): 327−332Du Jun, Deng Tao. Adaptive dynamic surfaceoutput regulation method. Information and Control, 2013, 42(3): 327−332
|
[34]
|
金鹏, 马倩, 周国鹏. 负荷扰动互联电力系统模糊自适应输出跟踪与干扰抗御. 控制理论与应用, 2021, 38(5): 571−577 doi: 10.7641/CTA.2020.00448Jin Peng, Ma Qian, Zhou Guo-Peng. Fuzzy adaptive output tracking and disturbance rejection for interconnected power systems with load disturbance. Control Theory & Applications, 2021, 38(5): 571−577 doi: 10.7641/CTA.2020.00448
|