2.845

2023影响因子

(CJCR)

  • 中文核心
  • EI
  • 中国科技核心
  • Scopus
  • CSCD
  • 英国科学文摘

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

多层Snapback网络化数据采样系统能控性

王立夫 成昊昱 孔芝 郭戈

王立夫, 成昊昱, 孔芝, 郭戈. 多层Snapback网络化数据采样系统能控性. 自动化学报, xxxx, xx(x): x−xx doi: 10.16383/j.aas.c250090
引用本文: 王立夫, 成昊昱, 孔芝, 郭戈. 多层Snapback网络化数据采样系统能控性. 自动化学报, xxxx, xx(x): x−xx doi: 10.16383/j.aas.c250090
Wang Li-Fu, Cheng Hao-Yu, Kong Zhi, Guo Ge. Controllability of multilayer snapback networked sampled-data systems. Acta Automatica Sinica, xxxx, xx(x): x−xx doi: 10.16383/j.aas.c250090
Citation: Wang Li-Fu, Cheng Hao-Yu, Kong Zhi, Guo Ge. Controllability of multilayer snapback networked sampled-data systems. Acta Automatica Sinica, xxxx, xx(x): x−xx doi: 10.16383/j.aas.c250090

多层Snapback网络化数据采样系统能控性

doi: 10.16383/j.aas.c250090 cstr: 32138.14.j.aas.c250090
基金项目: 国家自然科学基金(62173079, U1808205), 国家留学基金(202308130119), 河北省自然科学基金(F2022501005)资助
详细信息
    作者简介:

    王立夫:东北大学秦皇岛分校副教授. 主要研究方向为复杂网络,同步控制,能控性,交通网络. E-mail: wlfkz@neuq.edu.cn

    成昊昱:东北大学秦皇岛分校硕士研究生. 主要研究方向为复杂网络的能控性. E-mail: 2272237@stu.neu.edu.cn

    孔芝:东北大学秦皇岛分校副教授. 主要研究方向为知识发现, 决策分析, 智能优化算法, 复杂网络. E-mail: kongz@neuq.edu.cn

    郭戈:东北大学教授. 主要研究方向为智能交通系统,交通大数据分析,人工智能应用,信息物理系统. 本文通信作者. E-mail: geguo@yeah.net

Controllability of Multilayer Snapback Networked Sampled-data Systems

More Information
    Author Bio:

    WANG Li-Fu Associate professor of Northeastern University at Qinhuangdao. His research interests include complex networks, synchron-ous control, controllability, and traffic networks

    CHENG Hao-Yu Master student of Northeastern University at Qinhuangdao. His research interest is controllability of complex networks

    KONG Zhi Associate professor of Northeastern University at Qinhuang-dao. Her research interests include knowledge discovery, decision analy-sis, intelligent optimization algorithms, and complex networks

    GUO Ge Professor of Northeastern University. His research interests include intelligent transportation systems, traffic big data analysis, artificial intelligence applications, and information physical systems. Corresponding author of this paper

  • 摘要: 针对具有Snapback层间耦合框架的多层网络化数据采样系统的状态能控性展开研究. 首先构建出多层Snapback网络化数据采样系统的数学模型, 并推导出通用三层Snapback网络化数据采样系统能控性的充要条件, 揭示了层内网络拓扑结构, 节点动力学, 外部控制输入, 数据采样及层间耦合框架等因素对能控性的影响. 然后, 针对层内耦合矩阵为可对角化矩阵的基本Snapback网络化数据采样系统, 进一步简化了其能控性条件, 并将其结论进行了推广. 最后, 考虑由简单Snapback结构叠加而成的复合Snapback多层网络, 给出网络化数据采样系统能控性的充分条件. 通过例子验证了本文给出的结论.
  • 图  1  基本三层Snapback网络化采样数据系统

    Fig.  1  Basic three-layer Snapback networked sampled-data system

    图  2  三层Snapback网络化采样数据系统实例(黄色和蓝色的三角形, 分别表示外界输入的控制采样和系统内部的传输采样) ((a) 整个网络化数据采样系统; (b) 层间耦合拓扑结构; (c) 层内耦合拓扑结构; (d) 单个节点系统)

    Fig.  2  Example of a three-layer Snapback networked sampled-data system(The yellow and blue triangles represent the control sampling from external inputs and the transmission sampling within the system, respectively) ((a) Entire networked; sampled-data system; (b) Inter-layer coupling topology; (c) Intra-layer coupling topology; (d) Single-node system)

    图  3  叠加三层Snapback网络化采样数据系统

    Fig.  3  Superimposed three-layer Snapback networked Sampled-data system.

  • [1] Kalman R E. Canonical structure of linear dynamical systems. Proceedings of the National Academy of Sciences of the United States of America, 1962, 48(4): 596−597
    [2] Liu Y Y, Slotine J J, Barabási, et al. Controllability of complex networks. Nature, 2011, 473(7346): 167 doi: 10.1038/nature10011
    [3] Ding J, Wen C, Li G, et al. Target controllability in multilayer networks via minimum-cost maximum-flow method. IEEE Transactions on Neural Networks and Learning Systems, 2021, 32(5): 1949−1962 doi: 10.1109/TNNLS.2020.2995596
    [4] Klickstein I, Sorrentino F. The controllability gramian of lattice graphs. Automatica, 2020, 114(3): Article No. 108833
    [5] Zhang Y, Ding J, Li X. Network controllability robustness learning via spatial graph neural networks. IEEE Transactions on Network Science and Engineering, 2024, 11(2): 4045−4058
    [6] Wang L F, Li Z F, Zhao G T, et al. Input structure design for structural controllability of complex networks. IEEE/CAA Journal of Automatica Sinica, 2023, 10(7): 1571−1581 doi: 10.1109/JAS.2023.123504
    [7] Chen C, Surana A, Bloch A M, et al. Controllability of hypergraphs. IEEE Transactions on Network Science and Engineering, 2021, 8(2): 1646−1657 doi: 10.1109/TNSE.2021.3068203
    [8] Song K, Li G, Chen X, et al. Target controllability of two-layer multiplex networks based on network flow theory. IEEE Transactions on Cybernetics, 2021, 51(5): 2699−2711 doi: 10.1109/TCYB.2019.2906700
    [9] Wu J, Li X, Chen G. Controllability of deep-coupling dynamical networks. IEEE Transactions on Circuits and Systems I: Regular Papers, 2020, 67(12): 5211−5222 doi: 10.1109/TCSI.2020.2999451
    [10] Jiang L X, Tang L K, Lü J H. Controllability of multilayer networks. Asian Journal of Control, 2021, 10(1): 1−11
    [11] Wang L, Li Z, Guo G. Target controllability of multi-layer networks with high-dimensional nodes. IEEE/CAA Journal of Automatica Sinica, 2024, 11(9): 1999−2010 doi: 10.1109/JAS.2023.124152
    [12] Lou Y, Wang L, Chen G. Enhancing controllability robustness of q-snapback networks through redirecting edges. Research, 2020Article No. 7857534
    [13] Chen G, Lou Y, Wang L. A comparative study on controllability robustness of complex networks. IEEE Trans. Circuits Syst. Ⅱ: Exp. Briefs, 2020, 66(5): 828−832
    [14] Lou Y, Wang L, Chen G. Local diversity-stability of the q-snapback network model. Physica, A. Statistical mechanics and its applications, 2020, 536: Article No. 121020
    [15] Cohen J E, Newman C M. A stochastic theory of community food webs I. models and aggregated data. Proceedings of the Royal society of London, 1985, 224(1237): 421−448
    [16] Cohen R, Erez K, Ben-Avraham D. Resilience of the internet to random breakdowns. Physical review letters, 2000, 85(21): 462−470
    [17] Sun J, Chen G, Chen J. Stability analysis of aperiodic sampled-data systems: A switched polytopic system method. IEEE Transactions on Circuits and Systems Ⅱ: Express Briefs, 2023, 67(6): 1054−1058
    [18] Zhu H, Lu J, Liu Y, et al. Sampled-data consensus for multiagent systems with open topology and packet loss. IEEE Transactions on Systems, Man, and Cybernetics: Systems, 2025, 62(6): 1568−1578
    [19] Zhuang X, Tian Y, Abdl Ghani H, et al. Sampled-data neural network observer for motion state estimation of full driving automation vehicle. IEEE Transactions on Vehicular Technology, 2025, 74(2): 2726−2738 doi: 10.1109/TVT.2024.3479416
    [20] Yu L, Wang Z, Liu Y. Sampled-data nonfragile bipartite tracking consensus for nonlinear multiagent systems: Dealing with denial-of-service attacks. IEEE Transactions on Systems, Man, and Cybernetics: Systems, 2025, 5(2): 1202−1214
    [21] Lu Z H, Ji Z J, Zhang Z Q. Sampled-data based structural controllability of multi-agent systems with switching topology. Journal of the Franklin Institute, 2020, 375(15): 10886−10899
    [22] Yang Z, Wang X, Wang L. Controllability of networked sampled-data systems. IEEE Transactions on Automatic Control, 2024, 69(8): 5081−2093 doi: 10.1109/TAC.2023.3344692
    [23] Yang Z, Wang X, Wang L. Controllability of multilayer networked sampled-data systems. IEEE Transactions on Cybernetics, 2023, 5(3): 1287−1299
    [24] Roman S, Axler S, Gehring F. Advanced Linear Algebra. Springer, 2005
    [25] Hao Y, Duan Z, Chen G. New controllability conditions for networked identical LTI systems. IEEE Transactions on Automatic Control, 2019, 64(10): 1525−1532
    [26] Hao Y, Wang Q, Duan Z. Some necessary and sufficient conditions on the controllability of star networks. IEEE Transactions on Circuits and Systems Ⅱ: Express Briefs, 2020, 67(11): 2582−2586 doi: 10.1109/TCSII.2019.2953667
    [27] Lou Y, Wang L, Chen G. Toward stronger robustness of network controllability: a snapback network model. IEEE Transactions on Circuits and Systems I: Regular Papers, 2018, 65(9): 2983−2991 doi: 10.1109/TCSI.2018.2821124
    [28] Wu J N, Li X, Chen G. Controllability of multilayer snapback networks. IEEE Transactions on Control of Network Systems, 2023, 10(1): 15−25 doi: 10.1109/TCNS.2022.3185153
  • 加载中
计量
  • 文章访问数:  3
  • HTML全文浏览量:  1
  • 被引次数: 0
出版历程
  • 收稿日期:  2025-03-08
  • 录用日期:  2025-06-09
  • 网络出版日期:  2025-07-18

目录

    /

    返回文章
    返回