2.845

2023影响因子

(CJCR)

  • 中文核心
  • EI
  • 中国科技核心
  • Scopus
  • CSCD
  • 英国科学文摘

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

基于广义最大相关熵准则的几何滤波方法

杨旭升 夏晓翠 金宇强 顾欣星 张文安

杨旭升, 夏晓翠, 金宇强, 顾欣星, 张文安. 基于广义最大相关熵准则的几何滤波方法. 自动化学报, xxxx, xx(x): x−xx doi: 10.16383/j.aas.c240497
引用本文: 杨旭升, 夏晓翠, 金宇强, 顾欣星, 张文安. 基于广义最大相关熵准则的几何滤波方法. 自动化学报, xxxx, xx(x): x−xx doi: 10.16383/j.aas.c240497
Yang Xu-Sheng, Xia Xiao-Cui, Jin Yu-Qiang, Gu Xin-Xing, Zhang Wen-An. Geometric filtering method based on generalized maximum correntropy criterion. Acta Automatica Sinica, xxxx, xx(x): x−xx doi: 10.16383/j.aas.c240497
Citation: Yang Xu-Sheng, Xia Xiao-Cui, Jin Yu-Qiang, Gu Xin-Xing, Zhang Wen-An. Geometric filtering method based on generalized maximum correntropy criterion. Acta Automatica Sinica, xxxx, xx(x): x−xx doi: 10.16383/j.aas.c240497

基于广义最大相关熵准则的几何滤波方法

doi: 10.16383/j.aas.c240497 cstr: 32138.14.j.aas.c240497
基金项目: 国家自然科学基金 (62473335, 62173305), 浙江省引进培育领军型创新创业团队 (2023R01006), 中国博士后科学基金 (2024M752864), 宁波市公益性研究计划重点项目 (2023S018)资助
详细信息
    作者简介:

    杨旭升:浙江工业大学信息工程学院副教授. 主要研究方向为多源信息融合估计和目标定位. E-mail: xsyang@zjut.edu.cn

    夏晓翠:浙江工业大学信息工程学院硕士研究生. 主要研究方向为几何滤波和多源信息融合估计. E-mail: xiaxiaocuicn@163.com

    金宇强:浙江工业大学信息工程学院博士研究生. 主要研究方向为多源信息融合估计和几何滤波. E-mail: yqjin@zjut.edu.cn

    顾欣星:浙江工业大学信息工程学院博士研究生. 主要研究方向为信息融合估计. E-mail: guxinxing1990@163.com

    张文安:浙江工业大学信息工程学院教授. 主要研究方向为多源信息融合估计和网络化系统. 本文通信作者. E-mail: wazhang@zjut.edu.cn

Geometric Filtering Method Based on Generalized Maximum Correntropy Criterion

Funds: Supported by National Natural Science Foundation of China (62473335, 62173305), Leading Innovative and Entrepreneur Team Introduction Program of Zhejiang (2023R01006), China Postdoctoral Science Foundation (2024M752864), and the Ningbo Social Public Welfare Research Key Project (2023S018)
More Information
    Author Bio:

    YANG Xu-Sheng Associate professor at the College of Information Engineering, Zhejiang University of Technology. His research interest covers multi-source information fusion estimation and target positioning

    XIA Xiao-Cui Master student at the College of Information Engineering, Zhejiang University of Technology. Her research interest covers geometric filter and multi-source information fusion estimation

    JIN Yu-Qiang Ph.D. candidate at the College of Information Engineering, Zhejiang University of Technology. His research interest covers multi-source information fusion estimation and geometric filter

    GU Xin-Xing Ph.D. student at the College of Information Engineering, Zhejiang University of Technology. His research interest covers information fusion estimation

    ZHANG Wen-An Professor at the College of Information Engineering, Zhejiang University of Technology. His research interest covers multi-source information fusion estimation and networked systems. Corresponding author of this paper

  • 摘要: 几何滤波是一种利用观测数据对流形上几何状态进行最优估计的方法, 对刚体位姿估计具有重要作用和意义. 针对非高斯条件下几何滤波性能下降的问题, 提出一种基于广义最大相关熵准则(Generalized maximum correntropy criterion, GMCC)的几何滤波方法. 首先, 根据流形上几何状态演化关系, 采用流形无迹变换进行状态预测. 其次, 为抑制非高斯噪声引起的不利影响, 将广义最大相关熵准则推广到流形上, 实现对预测状态的修正来提高滤波的鲁棒性. 然后, 针对由GMCC引出的流形非线性优化问题, 设计了流形上的统计线性化方法, 以及采用黎曼流形优化和定点迭代法求解优化问题. 特别地, 设计了一种广义高斯核参数自适应调整策略, 以在线调整广义相关熵的超参数. 最后, 仿真结果表明, 相较于现有方法, 所提方法具有更高的精度和鲁棒性.
  • 图  1  迭代更新过程示意图

    Fig.  1  Illustration of the iterative updating process

    图  2  方法框图

    Fig.  2  Method block diagram

    图  3  混合高斯噪声${{n}_{k}^{S}}$下的运动轨迹

    Fig.  3  Motion trajectory under noise ${{n}_{k}^{S}}$

    图  4  混合高斯噪声${{n}_{k}^{S}}$下位姿估计的RMSE

    Fig.  4  RMSE of pose estimation under noise ${{n}_{k}^{S}}$

    图  5  混合高斯噪声$n_{k}^{L}$下的运动轨迹

    Fig.  5  Motion trajectory under noise $n_{k}^{L}$

    图  6  混合高斯噪声$n_{k}^{L}$下位姿估计的RMSE

    Fig.  6  RMSE of pose estimation under noise $n_{k}^{L}$

    图  7  拉普拉斯分布非高斯噪声下位姿估计的RMSE

    Fig.  7  RMSE of pose estimation under Laplace distributed non-Gaussian noise

    图  8  伯努利分布非高斯噪声下位姿估计的RMSE

    Fig.  8  RMSE of pose estimation under Bernoulli distribution non-Gaussian noise

    图  9  高斯噪声下位姿估计的RMSE

    Fig.  9  RMSE of pose estimation under Gaussian noise

    表  1  混合高斯噪声$ {{n}_{k}^{S}} $下位姿估计的ARMSE

    Table  1  ARMSE for pose estimation under noise $ {{n}_{k}^{S}} $

    方法 核参数 位置ARMSE(m) 方向ARMSE(deg)
    EKF N/A 0.3238 1.8220
    InEKF N/A 0.3176 1.7876
    UKF-M N/A 0.1631 0.4526
    MCEKF-LG $ \sigma = 1.0 $ 0.1285 0.4756
    $ \sigma = 2.0 $ 0.1478 0.6531
    $ \sigma = 2.5 $ 0.2337 0.8422
    $ \sigma = 4.0 $ 0.3980 1.2834
    GMCGF 自适应 0.1053 0.3667
    下载: 导出CSV

    表  2  混合高斯噪声$ n_{k}^{L} $下位姿估计的ARMSE

    Table  2  ARMSE for pose estimation under noise $ n_{k}^{L} $

    方法 核参数 位置ARMSE(m) 方向ARMSE(deg)
    EKF N/A 2.0361 3.6154
    InEKF N/A 2.0174 3.5294
    UKF-M N/A 1.0913 1.7074
    MCEKF-LG $ \sigma = 1.0 $ 0.4311 0.9568
    $ \sigma = 2.0 $ 0.6099 1.2834
    $ \sigma = 2.5 $ 0.8296 1.5069
    $ \sigma = 4.0 $ 1.1042 1.7246
    GMCGF 自适应 0.2060 0.5214
    下载: 导出CSV

    表  3  滤波方法的单步执行时间

    Table  3  Single step execution time of different methods

    方法 执行时间 (ms)
    EKF 0.1917
    InEKF 0.2407
    UKF-M 0.5043
    MCEKF-LG 0.8994
    GMCGF 1.0178
    下载: 导出CSV
  • [1] Lin D Y, Wang S Y, Zhang Q Q, Chen X F, Tse C K. Adaptive Quaternion State Estimation for 3-D and 4-D Signals With Weighted Maximum Correntropy: A Widely Linear Approach. IEEE Transactions on Aerospace and Electronic Systems, DOI: 10.1109/TAES.2024.3447631
    [2] 杨旭升, 吴江宇, 胡佛, 张文安. 基于渐进高斯滤波融合的多视角人体姿态估计. 自动化学报, 2024, 50(3): 607−616

    Yang Xu-Sheng, Wu Jiang-Yu, Hu Fo, Zhang Wen-An. Multi-view human pose estimation based on progressive Gaussian filtering fusion. Acta Automatica Sinica, 2024, 50(3): 607−616
    [3] Yang X S, Zhang W A, Yu L, Shi L. Performance Evaluation of Distributed Linear Regression Kalman Filtering Fusion. IEEE Transactions on Automatic Control, 2021, 66(6): 2889−2896 doi: 10.1109/TAC.2020.3012638
    [4] van Goor P, Hamel T, Mahony R. Equivariant filter (eqf). IEEE Transactions on Automatic Control, 2022, 68(6): 3501−3512
    [5] Jin Y Q, Zhang W A, Sun H, Yu L. Learning-aided inertial odometry with nonlinear state estimator on manifold. IEEE Transactions on Intelligent Transportation Systems, 2023, 24(9): 9792−9803 doi: 10.1109/TITS.2023.3273391
    [6] Luo Y R, Lu F, Guo C, Liu J N. Matrix Lie Group based Extended Kalman Filtering for Inertial-Integrated Navigation in the Navigation Frame. IEEE Transactions on Instrumentation and Measurement, DOI: 10.1109/TIM.2023.3329103
    [7] Jin Y Q, Zhang W A, Lu X Y, Chen B, Yu L. Computationally Efficient Lie Algebraic Particle Filters for State Estimation. IEEE Transactions on Automatic Control, DOI: 10.1109/TAC.2024.3508465
    [8] Ge Q B, Bai X F, Zeng P L. Gaussian-Cauchy Mixture Kernel Function Based Maximum Correntropy Kalman Filter for Linear Non-Gaussian Systems. IEEE Transactions on Signal Processing, DOI: 10.1109/TSP.2024.3479723
    [9] Bijker J, Steyn W. Kalman filter configurations for a low-cost loosely integrated inertial navigation system on an airship. Control Engineering Practice, 2008, 16(12): 1509−1518 doi: 10.1016/j.conengprac.2008.04.011
    [10] Martin P, Salaün E. Generalized multiplicative extended kalman filter for aided attitude and heading reference system. In: Proceedings of the AIAA Guidance, Navigation, and Control Conference. Toronto, Canada: AIAA Journal, 2010. 8300-8312
    [11] Bonnable S, Martin P, Salaün E. Invariant extended Kalman filter: theory and application to a velocity-aided attitude estimation problem. In: Proceedings of the 48h IEEE Conference on Decision and Control (CDC) held jointly with 2009 28th Chinese Control Conference. Shanghai, China: IEEE, 2009. 1297-1304
    [12] Barrau A, Bonnabel S. The invariant extended Kalman filter as a stable observer. IEEE Transactions on Automatic Control, 2016, 62(4): 1797−1812
    [13] Fu M L, Lu X Y, Jin Y Q, Zhang W A, Prakapovich R, Sychou U. Semantic Map-based Visual Localization with Consistency Guarantee. IEEE Sensors Journal, DOI: 10.1109/JSEN.2023.3335964
    [14] 郑婷婷, 杨旭升, 张文安, 俞立. 一种高斯渐进滤波框架下的目标跟踪方法. 自动化学报, 2018, 44(12): 2250−2258

    Zhang Ting-Ting, Yang Xu-Sheng, Zhang Wen-An, Yu Li. A Target Tracking Method in Gaussian Progressive Filtering Framework. Acta Automatica Sinica, 2018, 44(12): 2250−2258
    [15] Liu W F, Pokharel P P, Principe J C. Correntropy: Properties and applications in non-Gaussian signal processing. IEEE Transactions on Signal Processing, 2007, 55(11): 5286−5298 doi: 10.1109/TSP.2007.896065
    [16] Xu B, Wang X Y, Zhang J, Razzaqi A A. Maximum correntropy delay Kalman filter for SINS/USBL integrated navigation. ISA Transactions, DOI: 10.1016/j.isatra.2021.01.055
    [17] Wang G, Zhao H. Robust adaptive least mean M-estimate algorithm for censored regression. IEEE Transactions on Systems, Man, and Cybernetics: Systems, 2021, 52(8): 5165−5174
    [18] 葛泉波, 王贺彬, 杨秦敏, 张兴国, 刘华平. 基于改进高斯混合模型的机器人运动状态估计. 自动化学报, 2022, 48(8): 1972−1983

    Ge Quan-Bo, Wang He-Bin, Yang Qin-Min, Zhang Xing-Guo, Liu Hua-Ping. Estimation of robot motion state based on improved Gaussian mixture model. Acta Automatica Sinica, 2022, 48(8): 1972−1983
    [19] Korkin R, Oseledets I, Katrutsa A. Multiparticle Kalman filter for object localization in symmetric environments. Expert Systems with Applications, 2024, 237: 121408 doi: 10.1016/j.eswa.2023.121408
    [20] Zhang W A, Zhang J, Shi L, Yang X S. Gaussian Particle Filtering for Nonlinear Systems With Heavy-Tailed Noises: A Progressive Transform-Based Approach. IEEE Transactions on Cybernetics, 2024, 54(11): 6934−6942 doi: 10.1109/TCYB.2024.3424858
    [21] Cinar G T, Príncipe J C. Adaptive background estimation using an information theoretic cost for hidden state estimation. In: Proceedings of the 2011 International Joint Conference on Neural Networks. San Jose, USA: IEEE, 2011. 489-494
    [22] Chen B D, Liu X, Zhao H Q, Principe J C. Maximum correntropy Kalman filter. Automatica, DOI: 10.1016/j.automatica.2016.10.004
    [23] Guo H J, Liu H Y, Zhou Y, Hu X X. Robust State Estimation via Maximum Correntropy EKF on Matrix Lie Groups With Application to Low-Cost INS/GPS-Integrated Navigation System. IEEE Sensors Journal, 2023, 23(9): 9467−9479 doi: 10.1109/JSEN.2023.3251389
    [24] Wang G Q, Li N, Zhang Y G. Maximum correntropy unscented Kalman and information filters for non-Gaussian measurement noise. Journal of the Franklin Institute, 2017, 354(18): 8659−8677 doi: 10.1016/j.jfranklin.2017.10.023
    [25] Chen B D, Xing L, Zhao H Q, Zheng N N, Príncipe J C. Generalized correntropy for robust adaptive filtering. IEEE Transactions on Signal Processing, 2016, 64(13): 3376−3387 doi: 10.1109/TSP.2016.2539127
    [26] Mo Y, Wang Y N, Yang H, Chen B D, Li H, Jiang Z H. Generalized maximum correntropy Kalman filter for target tracking in TianGong-2 Space Laboratory. Space: Science & Technology, DOI: 10.34133/2022/9796015
    [27] Ge Q B, Hu X M, Li Y Y, He H L, Song Z H. A novel adaptive Kalman filter based on credibility measure. IEEE/CAA Journal of Automatica Sinica, 2023, 10(1): 103−120 doi: 10.1109/JAS.2023.123012
    [28] Li S L, Shi D W, Lou Y J, Zou W L, Shi L. Generalized Multikernel Maximum Correntropy Kalman Filter for Disturbance Estimation. IEEE Transactions on Automatic Control, 2024, 69(6): 3732−3747 doi: 10.1109/TAC.2023.3321368
    [29] Kasai H, Jawanpuria P, Mishra B. Riemannian adaptive stochastic gradient algorithms on matrix manifolds. In: International Conference on Machine Learning. Long Beach, USA: PMLR, 2019. 3262-3271
    [30] Fei Y H, Liu Y J, Jia C T, Li Z Y, Wei X, Chen M S. A survey of geometric optimization for deep learning: from Euclidean space to Riemannian manifold. ACM Computing Surveys, DOI: 10.1145/3708498
    [31] Lin K, Ge Q B, Li H, Chen S. Adaptive Non-Gaussian Cubature Filter Based on GS-MCC With Correlated Multiplicative Noises. IEEE Transactions on Automation Science and Engineering, DOI: 10.1109/TASE.2024.3378391
    [32] Bourmaud G, Mégret R, Giremus A, Berthoumieu Y. From intrinsic optimization to iterated extended Kalman filtering on Lie groups. Journal of Mathematical Imaging and Vision, DOI: 10.1007/s10851-015-0622-8
    [33] Huang Y L, Zhang Y G, Xu B, Wu Z M, Chambers J. A new outlier-robust student's t based Gaussian approximate filter for cooperative localization. IEEE/ASME Transactions on Mechatronics, 2017, 22(5): 2380−2386 doi: 10.1109/TMECH.2017.2744651
    [34] Chen B D, Xing L, Xu B, Zhao H Q, Zheng N N, Príncipe J C. Kernel risk-sensitive loss: definition, properties and application to robust adaptive filtering. IEEE Transactions on Signal Processing, 2017, 65(11): 2888−2901 doi: 10.1109/TSP.2017.2669903
    [35] Guo Y, Ma B, Li Y S. A kernel-width adaption diffusion maximum correntropy algorithm. IEEE Access, DOI: 10.1109/ACCESS.2020.2972905
    [36] Brossard M, Barrau A, Bonnabel S. A code for unscented Kalman filtering on manifolds (UKF-M). In: Proceedings of the 2020 IEEE International Conference on Robotics and Automation (ICRA). Paris, France: IEEE, 2020. 5701-5708
    [37] Forbes J R, Zlotnik D E. Sigma point Kalman filtering on matrix Lie groups applied to the SLAM problem. In: Proceedings of the Geometric Science of Information. Paris, France: Springer International Publishing, 2017. 318-328
    [38] Cantelobre T, Chahbazian C, Croux A, Bonnabel S. A real-time unscented Kalman filter on manifolds for challenging AUV navigation. In: Proceedings of the 2020 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS). Las Vegas, USA: IEEE, 2020. 2309-2316
    [39] Liu X, Chen B D, Xu B, Wu Z Z, Honeine P. Maximum correntropy unscented filter. International Journal of Systems Science, 2017, 48(8): 1607−1615 doi: 10.1080/00207721.2016.1277407
    [40] Brossard M, Barrau A, Bonnabel S. RINS-W: Robust inertial navigation system on wheels. In: IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS). Macau, China: IEEE, 2019. 2068-2075
  • 加载中
计量
  • 文章访问数:  77
  • HTML全文浏览量:  45
  • 被引次数: 0
出版历程
  • 收稿日期:  2024-07-11
  • 录用日期:  2025-03-23
  • 网络出版日期:  2025-06-19

目录

    /

    返回文章
    返回