-
摘要: 几何滤波是一种利用观测数据对流形上几何状态进行最优估计的方法, 对刚体位姿估计具有重要作用和意义. 针对非高斯条件下几何滤波性能下降的问题, 提出一种基于广义最大相关熵准则(Generalized maximum correntropy criterion, GMCC)的几何滤波方法. 首先, 根据流形上几何状态演化关系, 采用流形无迹变换进行状态预测. 其次, 为抑制非高斯噪声引起的不利影响, 将广义最大相关熵准则推广到流形上, 实现对预测状态的修正来提高滤波的鲁棒性. 然后, 针对由GMCC引出的流形非线性优化问题, 设计了流形上的统计线性化方法, 以及采用黎曼流形优化和定点迭代法求解优化问题. 特别地, 设计了一种广义高斯核参数自适应调整策略, 以在线调整广义相关熵的超参数. 最后, 仿真结果表明, 相较于现有方法, 所提方法具有更高的精度和鲁棒性.Abstract: Geometric filtering is a method that uses observed data to optimally estimate the geometric state on a manifold, and it plays a significant role in rigid body pose estimation. Aiming at the problem of the performance degradation of geometric filtering under non-Gaussian conditions, a geometric filtering method based on the generalized maximum correntropy criterion (GMCC) is proposed. Firstly, according to the evolution relationship of the geometric state on the manifold, the state prediction is performed using the unscented transformation on the manifold. Secondly, in order to suppress the adverse effects of non-Gaussian noise, the GMCC is extended to the manifold to correct the predicted state, thereby improving the robustness of the filtering. Then, for the manifold nonlinear optimization problem induced by GMCC, a statistical linearization method on the manifold is designed, and the optimization problem is solved by Riemannian manifold optimization and fixed-point iteration method. In particular, an adaptive adjustment strategy for the generalized Gaussian kernel parameters is designed to adjust the hyperparameters of the generalized correntropy online. Finally, simulation results demonstrate that, compared to existing methods, the proposed method has higher accuracy and robustness.
-
Key words:
- Geometric filtering /
- Kalman filtering /
- generalized correntropy /
- matrix Lie group
-
表 1 混合高斯噪声$ {{n}_{k}^{S}} $下位姿估计的ARMSE
Table 1 ARMSE for pose estimation under noise $ {{n}_{k}^{S}} $
方法 核参数 位置ARMSE(m) 方向ARMSE(deg) EKF N/A 0.3238 1.8220 InEKF N/A 0.3176 1.7876 UKF-M N/A 0.1631 0.4526 MCEKF-LG $ \sigma = 1.0 $ 0.1285 0.4756 $ \sigma = 2.0 $ 0.1478 0.6531 $ \sigma = 2.5 $ 0.2337 0.8422 $ \sigma = 4.0 $ 0.3980 1.2834 GMCGF 自适应 0.1053 0.3667 表 2 混合高斯噪声$ n_{k}^{L} $下位姿估计的ARMSE
Table 2 ARMSE for pose estimation under noise $ n_{k}^{L} $
方法 核参数 位置ARMSE(m) 方向ARMSE(deg) EKF N/A 2.0361 3.6154 InEKF N/A 2.0174 3.5294 UKF-M N/A 1.0913 1.7074 MCEKF-LG $ \sigma = 1.0 $ 0.4311 0.9568 $ \sigma = 2.0 $ 0.6099 1.2834 $ \sigma = 2.5 $ 0.8296 1.5069 $ \sigma = 4.0 $ 1.1042 1.7246 GMCGF 自适应 0.2060 0.5214 表 3 滤波方法的单步执行时间
Table 3 Single step execution time of different methods
方法 执行时间 (ms) EKF 0.1917 InEKF 0.2407 UKF-M 0.5043 MCEKF-LG 0.8994 GMCGF 1.0178 -
[1] Lin D Y, Wang S Y, Zhang Q Q, Chen X F, Tse C K. Adaptive Quaternion State Estimation for 3-D and 4-D Signals With Weighted Maximum Correntropy: A Widely Linear Approach. IEEE Transactions on Aerospace and Electronic Systems, DOI: 10.1109/TAES.2024.3447631 [2] 杨旭升, 吴江宇, 胡佛, 张文安. 基于渐进高斯滤波融合的多视角人体姿态估计. 自动化学报, 2024, 50(3): 607−616Yang Xu-Sheng, Wu Jiang-Yu, Hu Fo, Zhang Wen-An. Multi-view human pose estimation based on progressive Gaussian filtering fusion. Acta Automatica Sinica, 2024, 50(3): 607−616 [3] Yang X S, Zhang W A, Yu L, Shi L. Performance Evaluation of Distributed Linear Regression Kalman Filtering Fusion. IEEE Transactions on Automatic Control, 2021, 66(6): 2889−2896 doi: 10.1109/TAC.2020.3012638 [4] van Goor P, Hamel T, Mahony R. Equivariant filter (eqf). IEEE Transactions on Automatic Control, 2022, 68(6): 3501−3512 [5] Jin Y Q, Zhang W A, Sun H, Yu L. Learning-aided inertial odometry with nonlinear state estimator on manifold. IEEE Transactions on Intelligent Transportation Systems, 2023, 24(9): 9792−9803 doi: 10.1109/TITS.2023.3273391 [6] Luo Y R, Lu F, Guo C, Liu J N. Matrix Lie Group based Extended Kalman Filtering for Inertial-Integrated Navigation in the Navigation Frame. IEEE Transactions on Instrumentation and Measurement, DOI: 10.1109/TIM.2023.3329103 [7] Jin Y Q, Zhang W A, Lu X Y, Chen B, Yu L. Computationally Efficient Lie Algebraic Particle Filters for State Estimation. IEEE Transactions on Automatic Control, DOI: 10.1109/TAC.2024.3508465 [8] Ge Q B, Bai X F, Zeng P L. Gaussian-Cauchy Mixture Kernel Function Based Maximum Correntropy Kalman Filter for Linear Non-Gaussian Systems. IEEE Transactions on Signal Processing, DOI: 10.1109/TSP.2024.3479723 [9] Bijker J, Steyn W. Kalman filter configurations for a low-cost loosely integrated inertial navigation system on an airship. Control Engineering Practice, 2008, 16(12): 1509−1518 doi: 10.1016/j.conengprac.2008.04.011 [10] Martin P, Salaün E. Generalized multiplicative extended kalman filter for aided attitude and heading reference system. In: Proceedings of the AIAA Guidance, Navigation, and Control Conference. Toronto, Canada: AIAA Journal, 2010. 8300-8312 [11] Bonnable S, Martin P, Salaün E. Invariant extended Kalman filter: theory and application to a velocity-aided attitude estimation problem. In: Proceedings of the 48h IEEE Conference on Decision and Control (CDC) held jointly with 2009 28th Chinese Control Conference. Shanghai, China: IEEE, 2009. 1297-1304 [12] Barrau A, Bonnabel S. The invariant extended Kalman filter as a stable observer. IEEE Transactions on Automatic Control, 2016, 62(4): 1797−1812 [13] Fu M L, Lu X Y, Jin Y Q, Zhang W A, Prakapovich R, Sychou U. Semantic Map-based Visual Localization with Consistency Guarantee. IEEE Sensors Journal, DOI: 10.1109/JSEN.2023.3335964 [14] 郑婷婷, 杨旭升, 张文安, 俞立. 一种高斯渐进滤波框架下的目标跟踪方法. 自动化学报, 2018, 44(12): 2250−2258Zhang Ting-Ting, Yang Xu-Sheng, Zhang Wen-An, Yu Li. A Target Tracking Method in Gaussian Progressive Filtering Framework. Acta Automatica Sinica, 2018, 44(12): 2250−2258 [15] Liu W F, Pokharel P P, Principe J C. Correntropy: Properties and applications in non-Gaussian signal processing. IEEE Transactions on Signal Processing, 2007, 55(11): 5286−5298 doi: 10.1109/TSP.2007.896065 [16] Xu B, Wang X Y, Zhang J, Razzaqi A A. Maximum correntropy delay Kalman filter for SINS/USBL integrated navigation. ISA Transactions, DOI: 10.1016/j.isatra.2021.01.055 [17] Wang G, Zhao H. Robust adaptive least mean M-estimate algorithm for censored regression. IEEE Transactions on Systems, Man, and Cybernetics: Systems, 2021, 52(8): 5165−5174 [18] 葛泉波, 王贺彬, 杨秦敏, 张兴国, 刘华平. 基于改进高斯混合模型的机器人运动状态估计. 自动化学报, 2022, 48(8): 1972−1983Ge Quan-Bo, Wang He-Bin, Yang Qin-Min, Zhang Xing-Guo, Liu Hua-Ping. Estimation of robot motion state based on improved Gaussian mixture model. Acta Automatica Sinica, 2022, 48(8): 1972−1983 [19] Korkin R, Oseledets I, Katrutsa A. Multiparticle Kalman filter for object localization in symmetric environments. Expert Systems with Applications, 2024, 237: 121408 doi: 10.1016/j.eswa.2023.121408 [20] Zhang W A, Zhang J, Shi L, Yang X S. Gaussian Particle Filtering for Nonlinear Systems With Heavy-Tailed Noises: A Progressive Transform-Based Approach. IEEE Transactions on Cybernetics, 2024, 54(11): 6934−6942 doi: 10.1109/TCYB.2024.3424858 [21] Cinar G T, Príncipe J C. Adaptive background estimation using an information theoretic cost for hidden state estimation. In: Proceedings of the 2011 International Joint Conference on Neural Networks. San Jose, USA: IEEE, 2011. 489-494 [22] Chen B D, Liu X, Zhao H Q, Principe J C. Maximum correntropy Kalman filter. Automatica, DOI: 10.1016/j.automatica.2016.10.004 [23] Guo H J, Liu H Y, Zhou Y, Hu X X. Robust State Estimation via Maximum Correntropy EKF on Matrix Lie Groups With Application to Low-Cost INS/GPS-Integrated Navigation System. IEEE Sensors Journal, 2023, 23(9): 9467−9479 doi: 10.1109/JSEN.2023.3251389 [24] Wang G Q, Li N, Zhang Y G. Maximum correntropy unscented Kalman and information filters for non-Gaussian measurement noise. Journal of the Franklin Institute, 2017, 354(18): 8659−8677 doi: 10.1016/j.jfranklin.2017.10.023 [25] Chen B D, Xing L, Zhao H Q, Zheng N N, Príncipe J C. Generalized correntropy for robust adaptive filtering. IEEE Transactions on Signal Processing, 2016, 64(13): 3376−3387 doi: 10.1109/TSP.2016.2539127 [26] Mo Y, Wang Y N, Yang H, Chen B D, Li H, Jiang Z H. Generalized maximum correntropy Kalman filter for target tracking in TianGong-2 Space Laboratory. Space: Science & Technology, DOI: 10.34133/2022/9796015 [27] Ge Q B, Hu X M, Li Y Y, He H L, Song Z H. A novel adaptive Kalman filter based on credibility measure. IEEE/CAA Journal of Automatica Sinica, 2023, 10(1): 103−120 doi: 10.1109/JAS.2023.123012 [28] Li S L, Shi D W, Lou Y J, Zou W L, Shi L. Generalized Multikernel Maximum Correntropy Kalman Filter for Disturbance Estimation. IEEE Transactions on Automatic Control, 2024, 69(6): 3732−3747 doi: 10.1109/TAC.2023.3321368 [29] Kasai H, Jawanpuria P, Mishra B. Riemannian adaptive stochastic gradient algorithms on matrix manifolds. In: International Conference on Machine Learning. Long Beach, USA: PMLR, 2019. 3262-3271 [30] Fei Y H, Liu Y J, Jia C T, Li Z Y, Wei X, Chen M S. A survey of geometric optimization for deep learning: from Euclidean space to Riemannian manifold. ACM Computing Surveys, DOI: 10.1145/3708498 [31] Lin K, Ge Q B, Li H, Chen S. Adaptive Non-Gaussian Cubature Filter Based on GS-MCC With Correlated Multiplicative Noises. IEEE Transactions on Automation Science and Engineering, DOI: 10.1109/TASE.2024.3378391 [32] Bourmaud G, Mégret R, Giremus A, Berthoumieu Y. From intrinsic optimization to iterated extended Kalman filtering on Lie groups. Journal of Mathematical Imaging and Vision, DOI: 10.1007/s10851-015-0622-8 [33] Huang Y L, Zhang Y G, Xu B, Wu Z M, Chambers J. A new outlier-robust student's t based Gaussian approximate filter for cooperative localization. IEEE/ASME Transactions on Mechatronics, 2017, 22(5): 2380−2386 doi: 10.1109/TMECH.2017.2744651 [34] Chen B D, Xing L, Xu B, Zhao H Q, Zheng N N, Príncipe J C. Kernel risk-sensitive loss: definition, properties and application to robust adaptive filtering. IEEE Transactions on Signal Processing, 2017, 65(11): 2888−2901 doi: 10.1109/TSP.2017.2669903 [35] Guo Y, Ma B, Li Y S. A kernel-width adaption diffusion maximum correntropy algorithm. IEEE Access, DOI: 10.1109/ACCESS.2020.2972905 [36] Brossard M, Barrau A, Bonnabel S. A code for unscented Kalman filtering on manifolds (UKF-M). In: Proceedings of the 2020 IEEE International Conference on Robotics and Automation (ICRA). Paris, France: IEEE, 2020. 5701-5708 [37] Forbes J R, Zlotnik D E. Sigma point Kalman filtering on matrix Lie groups applied to the SLAM problem. In: Proceedings of the Geometric Science of Information. Paris, France: Springer International Publishing, 2017. 318-328 [38] Cantelobre T, Chahbazian C, Croux A, Bonnabel S. A real-time unscented Kalman filter on manifolds for challenging AUV navigation. In: Proceedings of the 2020 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS). Las Vegas, USA: IEEE, 2020. 2309-2316 [39] Liu X, Chen B D, Xu B, Wu Z Z, Honeine P. Maximum correntropy unscented filter. International Journal of Systems Science, 2017, 48(8): 1607−1615 doi: 10.1080/00207721.2016.1277407 [40] Brossard M, Barrau A, Bonnabel S. RINS-W: Robust inertial navigation system on wheels. In: IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS). Macau, China: IEEE, 2019. 2068-2075 -
计量
- 文章访问数: 77
- HTML全文浏览量: 45
- 被引次数: 0