2.845

2023影响因子

(CJCR)

  • 中文核心
  • EI
  • 中国科技核心
  • Scopus
  • CSCD
  • 英国科学文摘

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

城市污水处理过程非均匀采样预测控制

付世佳 孙浩源 刘峥 韩红桂

付世佳, 孙浩源, 刘峥, 韩红桂. 城市污水处理过程非均匀采样预测控制. 自动化学报, xxxx, xx(x): x−xx doi: 10.16383/j.aas.c250007
引用本文: 付世佳, 孙浩源, 刘峥, 韩红桂. 城市污水处理过程非均匀采样预测控制. 自动化学报, xxxx, xx(x): x−xx doi: 10.16383/j.aas.c250007
Fu Shi-Jia, Sun Hao-Yuan, Liu Zheng, Han Hong-Gui. Non-uniform sampling predictive control for municipal wastewater treatment process. Acta Automatica Sinica, xxxx, xx(x): x−xx doi: 10.16383/j.aas.c250007
Citation: Fu Shi-Jia, Sun Hao-Yuan, Liu Zheng, Han Hong-Gui. Non-uniform sampling predictive control for municipal wastewater treatment process. Acta Automatica Sinica, xxxx, xx(x): x−xx doi: 10.16383/j.aas.c250007

城市污水处理过程非均匀采样预测控制

doi: 10.16383/j.aas.c250007 cstr: 32138.14.j.aas.c250007
基金项目: 国家自然科学基金(92467205, 62473011, 62125301, 62021003, 62103012, U24A20275), 北京市科技新星计划(K7058000202402), 青年北京学者项目(No.037)资助, 中国博士后科学基金(2022M720319)资助
详细信息
    作者简介:

    付世佳:北京工业大学信息科学技术学院博士研究生. 主要研究方向为城市污水处理过程采样模型预测控制、非均匀采样预测控制、随机采样预测控制. E-mail: fushijia_fusj@163.com

    孙浩源:北京工业大学信息科学技术学院教授. 主要研究方向为城市污水处理过程智能鲁棒控制, 网络化智能控制. E-mail: sunhaoyuan@bjut.edu.cn

    刘峥:北京工业大学信息科学技术学院讲师. 主要研究方向为神经网络, 智能系统, 过程系统的建模和控制. E-mail: liuzheng@bjut.edu.cn

    韩红桂:北京工业大学信息科学技术学院教授.主要研究方向为城市污水处理过程智能优化控制, 神经网络结构设计与优化. 本文通信作者. E-mail: rechardhan@bjut.edu.cn

Non-uniform Sampling Predictive Control for Municipal Wastewater Treatment Process

Funds: Supported by National Science Foundation of China (92467205, 62473011, 62125301, 62021003, 62103012, U24A20275), Beijing New-star Plan of Science and Technology (K7058000202402), The Youth Beijing Scholars Program (No. 037), China Postdoctoral Science Foundation (2022M720319)
More Information
    Author Bio:

    FU Shi-Jia Ph.D. candidate at the School of Information Science and Technology, Beijing University of Technology. Her research interest covers sampled-data model predictive control of municipal wastewater treatment process, non-uniform sampled-data predictive control, stochastic sampled-data predictive control

    SUN Hao-Yuan Professor at the School of Information Science and Technology, Beijing University of Technology. His research interest covers intelligent and robust control of municipal wastewater treatment process, networked intelligent control

    Liu Zheng Lecturer at the School of Information Science and Technology, Beijing University of Technology. His research interest covers neural networks, intelligent systems, and modeling and control in process systems

    HAN Hong-Gui Professor at the School of Information Science and Technology, Beijing University of Technology. His research interest covers intelligent optimal control of municipal wastewater treatment process, structure design and optimization of neural networks. Corresponding author of this paper

  • 摘要: 城市污水处理过程非均匀采样使数据呈现不连续性及稀疏性, 难以实现稳定控制. 为了解决该问题, 文中提出了一种非均匀采样预测控制方法. 首先, 建立了一种城市污水处理过程增广式动态线性化模型, 实现了非均匀采样城市污水处理关键过程变量的准确预测. 其次, 设计了基于控制增益优化策略的预测控制器, 实现了非均匀采样城市污水处理关键过程变量的稳定控制. 最后, 分析了非均匀采样预测控制方法的稳定性. 将所提控制方法应用于城市污水处理过程基准仿真平台, 实验结果显示该方法能够实现城市污水处理过程的稳定控制.
  • 图  1  城市污水处理过程非均匀采样预测控制器结构

    (图中$ \hat{\phi}(t) $为$ \phi(t) $的估计值, $ \eta\in(0,\; 1] $为一阶因子, $ \mu $是惩罚因子, $ \boldsymbol{\Psi}_{N_u}(t) $为控制增益矩阵, $ {\bf{e}}(t) $为系统控制误差向量, $ \tilde{\boldsymbol{\Psi}}_{N_u}(t) $为增广式控制增益矩阵, $ {\bf{r}} $为系统的跟踪设定向量, $ \lambda_t>0 $为惩罚因子)

    Fig.  1  Schematic diagram of non-uniform sampling predictive controller for WWTP

    (In the figure, $ \hat{\phi}(t) $ is the estimated value of $ \phi(t) $, $ \eta\in(0,\; 1] $ is the first-order factor, $ \mu $ is the penalty factor, $ \boldsymbol{\Psi}_{N_u}(t) $ is the control gain matrix, $ {\bf{e}}(t) $ is the system control error vector, $ \tilde{\boldsymbol{\Psi}}_{N_u}(t) $ is an augmented control gain matrix, $ {\bf{r}} $ is the tracking set vector of the system, $ \lambda_t>0 $ is the penalty factor)

    图  2  采样序列处理

    Fig.  2  Processing of Sampling Sequence

    图  3  溶解氧浓度控制效果(晴天天气)

    Fig.  3  Control results of ${{S_{O5}}} $ (Dry weather)

    图  4  硝态氮浓度控制效果(晴天天气)

    Fig.  4  Control results of $ {{S_{NO2}}}$ (Dry weather)

    图  5  氧传递系数和内回流量变化曲线(晴天天气)

    Fig.  5  Results of ${{K_L}{a_5}}$ and ${Q_a}$ (Dry weather)

    图  6  溶解氧浓度控制效果(雨天天气)

    Fig.  6  Control results of $ {{S_{O5}}}$ (Rain weather)

    图  7  硝态氮浓度控制效果(雨天天气)

    Fig.  7  Control results of $ {{S_{NO2}}}$ (Rain weather)

    图  8  氧传递系数和内回流量变化曲线(雨天天气)

    Fig.  8  Results of ${{K_L}{a_5}} $ and $ {Q_a}$ (Rain weather)

    图  9  溶解氧浓度控制效果(暴雨天气)

    Fig.  9  Control results of ${{S_{O5}}} $ (Rainstorm weather)

    图  10  硝态氮浓度控制效果(暴雨天气)

    Fig.  10  Control results of $ {{S_{NO2}}}$ (Rainstorm weather)

    图  11  氧传递系数和内回流量变化曲线(暴雨天气)

    Fig.  11  Results of $ {{K_L}{a_5}}$ and ${Q_a} $ (Rainstorm weather)

    表  1  控制器性能指标

    Table  1  Control performance of controllers

    天气 性能指标 溶解氧 硝态氮
    NUSPC MPC NUSPC MPC
    晴天 IAE 1.20$\times10^{-2}$ 0.17 2.30$\times10^{-2}$ 0.16
    ISE 3.38$\times10^{-4}$ 8.47$\times10^{-2}$ 1.01$\times10^{-3}$ 0.11
    ${\rm{Dev^{max}}}$ 7.30$\times10^{-2}$ 1.30 9.01$\times10^{-2}$ 2.92
    雨天 IAE 1.20$\times10^{-2}$ 0.19 2.42$\times10^{-2}$ 0.16
    ISE 3.47$\times10^{-4}$ 0.11 1.08$\times10^{-3}$ 7.64$\times10^{-2}$
    ${\rm{Dev^{max}}}$ 7.20$\times10^{-2}$ 2.00 9.03$\times10^{-2}$ 1.46
    暴雨天 IAE 1.25$\times10^{-2}$ 0.20 2.60$\times10^{-2}$ 0.20
    ISE 3.26$\times10^{-4}$ 0.17 1.22$\times10^{-3}$ 0.23
    ${\rm{Dev^{max}}}$ 7.27$\times10^{-2}$ 2.67 8.59$\times10^{-2}$ 3.47
    下载: 导出CSV
  • [1] 韩红桂, 秦晨辉, 孙浩源, 乔俊飞. 城市污水处理过程自适应滑模控制. 自动化学报, 2023, 49(05): 1010−1018

    Han Hong-Gui, Qin Chen-Hui, Sun Hao-Yuan, Qiao Jun-Fei. Adaptive sliding mode control for municipal wastewater treatment process. Acta Automatica Sinica, 2023, 49(05): 1010−1018
    [2] 权利敏, 杨翠丽, 乔俊飞. 数据驱动的溶解氧浓度在线自组织控制方法. 自动化学报, 2023, 49(12): 2582−2593

    Quan Li-Min, Yang Cui-Li, Qiao Jun-Fei. Data-driven online self-organizing control for dissolved oxygen concentration. Acta Automatica Sinica, 2023, 49(12): 2582−2593
    [3] Liu H, Yoo C. Performance assessment of cascade controllers for nitrate control in a wastewater treatment process. Korean Journal of Chemical Engineering, 2011, 28(3): 667−673 doi: 10.1007/s11814-010-0442-x
    [4] Tejaswini E S S, Panjwani S, Gara U B B, Ambati S R. Multi-objective optimization based controller design for improved wastewater treatment plant operation. Environmental Technology & Innovation, 2021, 23: 101591
    [5] Razali M C, Wahab N A, Balaguer P, Rahmat M F, Samsudin S I. Singularly perturbation method applied to multivariable PID controller design. Mathematical Problems in Engineering, 2015, 2015: 2629−2650
    [6] Du S, Yan Q, Qiao J. Event-triggered PID control for wastewater treatment plants. Journal of Water Process Engineering, 2020, 38(1): 1−8
    [7] 黄超, 薄翠梅, 郭伟, 滕刚. 工业污水处理溶解氧的双模糊控制系统研究. 控制工程, 2019, 26(02): 185−190

    Huang Chao, Bo Cui-Mei, Guo Wei, Teng Gang. Design of the double fuzzy controller system for AAO sewage treatment. Control Engineering of China, 2019, 26(02): 185−190
    [8] 周红标, 李杨, 张庆宇, 苏衍, 刘帅祥. 污水处理过程多变量自适应变论域模糊控制. 仪表技术与传感器, 2023, 1(1): 107−116 doi: 10.3969/j.issn.1002-1841.2023.01.021

    Zhou Hong-Biao, Li Yang, Zhang Qing-Yu, Su Yan, Liu Shuai-Xiang. Multivariable adaptive variable universe fuzzy control for wastewater treatment process. Instrument Technique and Sensor, 2023, 1(1): 107−116 doi: 10.3969/j.issn.1002-1841.2023.01.021
    [9] 杜胜利, 张庆达, 曹博琦, 乔俊飞. 城市污水处理过程模型预测控制研究综述. 信息与控制, 2022, 51(1): 41−53

    Du Sheng-Li, Zhang Qing-Da, Cao Bo-Qi, Qiao Jun-Fei. A review of model predictive control for urban wastewater treatment process. Information and Control, 2022, 51(1): 41−53
    [10] Li M, Hu S, Xia J, Wang J, Song X, Shen H. Dissolved oxygen model predictive control for activated sludge process model based on the fuzzy C-means cluster algorithm. International Journal of Control, Automation and Systems, 2020, 18(9): 2435−2444 doi: 10.1007/s12555-019-0438-1
    [11] Stebel K, Pospiech J, Nocon W, Czeczot J, Skupin P. Boundary-based predictive controller and its application to control of dissolved oxygen concentration in activated sludge bioreactor. IEEE Transactions on Industrial Electronics, 2022, 69(10): 10541−10551 doi: 10.1109/TIE.2021.3123629
    [12] 裴力锋, 陈伟杰, 徐敬生, 吕路. 基于自注意力机制的污水处理厂精确加药模型预测控制. 环境工程, 2023, 41(11): 84−92

    Per Li-Feng, Chen Wei-Jie, Xu Jing-Sheng, Lv Lu. Model predictive control for accurate dosing in wastewater treatment plants based on self-attention mechanism. Environmental Engineering, 2023, 41(11): 84−92
    [13] Han H, Fu S, Sun H, Wang C. Robust model free adaptive predictive control for wastewater treatment process with packet dropouts. IEEE Transactions on Cybernetics, 2024, 54(10): 6069−6080 doi: 10.1109/TCYB.2024.3408883
    [14] Wang G, Yuan G, Hu Z, Chi Y, Jia Q-S, Qiao J. Complexity-based structural optimization of deep belief network and application in wastewater treatment process. IEEE Transactions on Industrial Informatics, 2024, 20(4): 6974−6982 doi: 10.1109/TII.2024.3354334
    [15] Han H, Xu Y, Liu Z, Sun H, Qiao J. Knowledge-data-driven robust fault-tolerant control for sludge bulking in wastewater treatment process. IEEE Transactions on Industrial Informatics, 2024, early access.
    [16] Han H, Wang Y, Liu Z, Sun H, Qiao J. Knowledge-data driven optimal control for nonlinear systems and its application to wastewater treatment process. IEEE Transactions on Cybernetics, 2024, early access.
    [17] Fu S, Sun H, Han H. Data-driven model predictive control for aperiodic sampled-data nonlinear systems. IEEE Transactions on Systems, Man, and Cybernetics: Systems, 2024, 54(3): 1960−1971 doi: 10.1109/TSMC.2023.3331231
    [18] Han H, Fu S, Sun H, Liu Z. Stochastic sampled-data model predictive control for T-S fuzzy systems with unknown stochastic sampling probability. IEEE Transactions on Fuzzy Systems, 2024, 32(10): 5613−5624 doi: 10.1109/TFUZZ.2024.3423009
    [19] Han H, Fu S, Sun H, Qiao J. Data-driven model-predictive control for nonlinear systems with stochastic sampling interval. IEEE Transactions on Systems, Man, and Cybernetics: Systems, 2023, 53(5): 3019−3030 doi: 10.1109/TSMC.2022.3220550
    [20] Hou Z, Jin S. Data-driven model-free adaptive control for a class of MIMO nonlinear discrete-time systems. IEEE Transactions on Neural Networks, 2011, 22(12): 2173−2188 doi: 10.1109/TNN.2011.2176141
    [21] Xu D Z, Jiang B, Shi P. A novel model-free adaptive control design for multivariable industrial processes. IEEE Transactions on Industrial Electronics, 2014, 61(11): 6391−6398 doi: 10.1109/TIE.2014.2308161
    [22] Hou Z S, Wang Z. From model-based control to data-driven control: Survey, classification and perspective. Information Sciences, 2013, 235: 3−35 doi: 10.1016/j.ins.2012.07.014
    [23] Hou Z S, Zhu Y M. Controller-dynamic-linearization based model free adaptive control for discrete-time nonlinear systems. IEEE Transactions on Industrial Informatics, 2013, 9(4): 2301−2309 doi: 10.1109/TII.2013.2257806
    [24] Zhu Y M, Hou Z S. Data driven MFAC for a class of discrete time nonlinear systems with RBFNN. IEEE Transactions on Neural Networks & Learning Systems, 2014, 25(5): 1013−1020
    [25] Alex J, Benedetti L, Copp J, Gernaey K V, Jeppsson U, Nopens I, Pons M N, Steyer J P, Vanrolleghem P. Benchmark Simulation Model no. 1 (BSM1) [M]. Lund University Sweden, 2018.
    [26] Fu X, Lu S, Fairbank M, Wunsch D C, Alonso E. Training recurrent neural networks with the levenberg-marquardt algorithm for optimal control of a grid-connected converter. IEEE Transactions on Neural Networks & Learning Systems, 2015, 26(9): 1900−1912
    [27] Bashir M B, Bin Abd Latiff M S, Coulibaly Y, Yousif A. A survey of grid-based searching techniques for large scale distributed data. Journal of Network And Computer Applications, 2016, 60: 170−179 doi: 10.1016/j.jnca.2015.10.010
  • 加载中
计量
  • 文章访问数:  22
  • HTML全文浏览量:  14
  • 被引次数: 0
出版历程
  • 收稿日期:  2025-01-08
  • 录用日期:  2025-03-23
  • 网络出版日期:  2025-06-23

目录

    /

    返回文章
    返回