-
摘要: 控制系统隐私保护是随着数字化、信息化和智能化的发展而诞生的新兴方向, 具有广泛的实际需求与应用价值, 是现代控制理论在新时代的重要发展. 鉴于此, 本综述从研究背景与意义、国内外现状、未来研究方向及总结与展望四个方面, 对该方向进行系统梳理. 控制系统隐私问题无处不在, 隐私保护对控制系统至关重要. 由于该方向具有交叉性、不确定性、实时性和应用性等特点, 其研究具有挑战性. 在国内外研究现状部分, 详细介绍基于系统结构的方法、基于确定性变换的方法和基于随机混淆或扰动的方法, 并着重阐述同态加密、安全多方计算、差分隐私等常见技术的理论基础及在控制系统中的应用. 针对面临的诸多挑战性问题, 总结未来重点研究方向, 尤其是隐私、控制与通信的一体化设计, 以及隐私保护与系统性能之间的权衡. 最后, 对该方向进行总结与展望, 旨在为相关研究人员提供参考, 进一步推动国家安全战略的实施.Abstract: Privacy protection in control systems is an emerging research direction, arising with the development of digitalization, informatization, and intelligence. It has a wide range of practical needs and application value, representing an important development in modern control theory in the new era. In view of this, this review systematically surveys this direction from four aspects: Research background and significance, current research status both domestically and internationally, future research directions, and summary and outlook. Privacy issues in control systems are everywhere, privacy protection is critical to control systems. This direction is challenging due to its interdisciplinary nature, uncertainties, real-time requirements, and practical applications. In the current research status both domestically and internationally part, we provide a detailed introduction of the system structure-based method, the deterministic transformation-based method, and the stochastic obfuscation or perturbation-based method. In addition, we focus on elaborating the theoretical basis of commonly used technologies and applications in control systems, such as homomorphic encryption, secure multi-party computation, and differential privacy. In face of numerous challenging issues, we summarize key future research directions, especially the integrated design of privacy, control, and communication, as well as the trade-off between privacy protection and system performance. Finally, we provide a summary and an outlook for this direction, aiming to offer references for relevant researchers and further promote the implementation of national security strategies.1)
1 1 所列应用包括但不限于上述成果, 实际建模中可根据所需保护的敏感信息和实现的具体控制任务, 选择合适的隐私保护方法和控制模型.2)2 2 此处与控制系统中常见的模型预测控制 (Model predictive control, MPC) 不同. -
表 1 基于确定性变换的方法
Table 1 The deterministic transformation-based method
方法类别 实现技术 应用场景 对应文献 同态加密 Paillier密码体制 机器学习 [74] 离散时间参数估计 [22, 79] 离散时间分布式优化 [26, 80, 86, 89−91, 94] 离散时间分布式趋同 [81−84, 133] 离散时间线性系统协同控制 [62, 85, 87−88, 95] 云控制系统 [96−99] 离散时间线性系统状态估计 [28, 66, 92−93, 102] 联邦学习 [107] 离散时间模型预测控制 [130] RSA密码体制 离散时间非线性系统控制 [103] 离散时间线性系统控制 [104] 离散时间系统状态估计 [134] ElGamal密码体制 离散时间线性系统协同控制 [72, 105] 离散时间分布式优化 [100] Learning With Errors密码体制 离散时间线性系统控制 [41, 101] 离散时间线性系统状态估计 [106] 离散时间系统分布式最优控制 [135] 全同态加密 联邦学习 [73] 离散时间线性系统控制 [132] 安全多方计算 混淆电路 机器学习 [113, 129] 基因分析 [122−123] 秘密分享 机器学习 [110−112, 114−118] 联邦学习 [119−121] 基因分析 [124] 线性方程组求解 [125−126] 连续时间多项式控制 [127] 离散时间模型预测控制 [131] 隐私比较 离散时间系统Kalman滤波 [128] 其他变换 同构变换 离散时间线性二次最优控制 [14] 仿射变换 离散时间分布式趋同 [52] 离散时间系统状态估计 [54, 64−65] 云控制系统 [67] 连续时间分布式优化 [68] 离散时间分布式最优控制 [69] 时变变换 连续时间分布式趋同 [63] 表 2 添加扰动后的两次输出
Table 2 Two outputs after adding perturbation
$ P(150\le M_i<250) $ $ P(250\le M_i<350) $ $ i=1 $ 0.139 0.116 $ i=2 $ 0.116 0.139 表 3 隐私预算$ \epsilon $为0.1、0.3和10时的两次输出
Table 3 Two outputs when $ \epsilon $ is 0.1, 0.3, and 10
$ P(150\le M_i<250) $ $ P(250\le M_i<350) $ $ \epsilon=0.1 $ $ i=1 $ 0.0487 0.0453 $ i=2 $ 0.0453 0.0487 $ \epsilon=0.3 $ $ i=1 $ 0.139 0.116 $ i=2 $ 0.116 0.139 $ \epsilon=10 $ $ i=1 $ 0.993 0.007 $ i=2 $ 0.007 0.993 表 4 差分隐私方法
Table 4 Differential privacy method
应用场景 对应文献 离散时间分布式优化 [18, 47, 50, 148, 157, 165−172, 182] 离散时间分布式趋同 [149, 158, 160, 177−181] 离散时间线性系统控制 [148, 185−186, 189−191] 社交网络参数估计 [151] 离散时间系统Kalman滤波 [16, 150−151] 离散时间系统非线性观测器设计 [154] 离散时间系统区间观测器设计 [155] 离散时间系统线性二次Gauss控制 [156] 连续时间分布式趋同 [159, 161] 离散时间参数估计 [160−161, 171−172, 174] 离散时间分布式聚合博弈 [164, 190] 离散时间线性系统状态估计 [175, 194] 离散时间系统线性二次控制 [183] 机器学习 [182−183] 联邦学习 [186] 非线性不确定系统异常检测 [189] -
[1] 中华人民共和国国民经济和社会发展第十四个五年规划和2035年远景目标纲要. 北京: 人民出版社, 2021. [2] 中华人民共和国网络安全法. 北京: 中国法制出版社, 2016. [3] 中华人民共和国数据安全法. 北京: 中国法制出版社, 2021. [4] 中华人民共和国个人信息保护法. 北京: 中国法制出版社, 2021. [5] California Public Utilities Commission, CA senate bill 1476, 2010, Technical report. [6] General Data Protection Regulation (GDPR). Brussels: Official Journal of the European Union, 2016. [7] Atzori L, Iera A, Morabito G. The internet of things: A survey. Computer networks, 2010, 54(15): 2787−2805 doi: 10.1016/j.comnet.2010.05.010 [8] Chen Y K. Challenges and opportunities of internet of things. In Proceedings of the 17th Asia and South Pacific Design Automation Conference. Sydney, IEEE, 2012. 383-388 [9] Xia Y. Cloud control systems. IEEE/CAA Journal of Automatica Sinica, 2015, 2(2): 134−142 doi: 10.1109/JAS.2015.7081652 [10] Samad T, Annaswamy A M. Controls for smart grids: architectures and applications. Proceedings of the IEEE, 2017, 105(11): 2244−2261 doi: 10.1109/JPROC.2017.2707326 [11] Sufyan A, Khan K B, Khashan O A, Mir T, Mir U. From 5G to beyond 5G: A comprehensive survey of wireless network evolution, challenges, and promising technologies. Electronics, 2023, 12(10): 2200 doi: 10.3390/electronics12102200 [12] Wang Y, Wang J, Fan S, Parameter identification of a PN-guided incoming missile using an improved multiple-model mechanism, IEEE Transaction on Aerospace and Electronic Systems, vol. 59, no. 5, 2023. [13] Gollmann D, Gurikov P, Isakov A, Krotofil M, Larsen J, Winnicki A. Cyber-physical systems security: Experimental analysis of a vinyl acetate monomer plant. In Proceedings of the 1st ACM Workshop on Cyber-Physical System Security. Singapore, ACM, 2015. 1-12 [14] Sultangazin A, Tabuada P. Symmetries and isomorphisms for privacy in control over the cloud. IEEE Transactions on Automatic Control, 2020, 66(2): 538−549 [15] Eckhoff D, Sommer C. Driving for big data? privacy concerns in vehicular networking. IEEE Security & Privacy, 2014, 12(1): 77−79 [16] le Ny J, Pappas G J. Differentially private filtering. IEEE Transactions on Automatic Control, 2014, 59(2): 341−354 doi: 10.1109/TAC.2013.2283096 [17] Brighente A, Conti M, Donadel D, Poovendran R, Turrin F, Zhou J. Electric vehicles security and privacy: challenges, solutions, and future needs, ArXiv abs/2301.04587, 2023 [18] Han S, Topcu U, Pappas G J. Differentially private distributed constrained optimization. IEEE Transactions on Automatic Control, 2016, 62(1): 50−64 [19] Pham V V H, Yu S, Sood K, Cui L. Privacy issues in social networks and analysis: a comprehensive survey. IET Networks, 2018, 7(2): 74−84 doi: 10.1049/iet-net.2017.0137 [20] Wang J M, Ke J M, Zhang J F. Differentially private bipartite consensus over signed networks with time-varying noises. IEEE Transactions on Automatic Control, 2024, 69(9): 5788−5803 doi: 10.1109/TAC.2024.3351869 [21] Butler, D. Data network threatens patient privacy. Nature, 1997, 386: 6 [22] 谭建伟, 王继民, 张纪峰. 多方ARX系统的协作安全辨识——一种基于门限Paillier密码体制的最小二乘辨识方法. 中国科学: 信息科学, 2023, 53(12): 2472−2492 doi: 10.1360/SSI-2023-0140Tan J W, Wang J M, Zhang J F. Cooperative secure parameter identification of multi-participant ARX systems—a threshold Paillier cryptosystem-based least-squares identification algorithm. SCIENTIA SINICA Informationis, 2023, 53(12): 2472−2492 doi: 10.1360/SSI-2023-0140 [23] Nekouei E, Sandberg H, Skoglund M, Johansson K H. A model randomization approach to statistical parameter privacy. IEEE Transactions on Automatic Control, 2023, 68(2): 839−850 doi: 10.1109/TAC.2022.3145664 [24] Wang J M, Zhang J F. Differentially private distributed stochastic optimization with time-varying sample sizes. IEEE Transactions on Automatic Control, 2024, 69(9): 6341−6348 doi: 10.1109/TAC.2024.3379387 [25] Mo Y, Kim T H J, Brancik K, Dickinson D, Lee H, Perrig A, et al. Cyber-physical security of a smart grid infrastructure. Proceedings of the IEEE, 2011, 100(1): 195−209 [26] Yan Y, Chen Z Y, Varadharajan V, Hossain M J, Town G E. Distributed consensus-based economic dispatch in power grids using the Paillier cryptosystem. IEEE Transactions on Smart Grid, 2021, 12(4): 3493−3502 doi: 10.1109/TSG.2021.3063712 [27] Huang X. The small-drone revolution is coming—scientists need to ensure it will be safe. Nature, 2025, 637: 29−30 doi: 10.1038/d41586-024-04167-7 [28] Yan X, Zhou G, Huang Y, Meng W, Nguyen A T, Huang H. Secure estimation using partially homomorphic encryption for unmanned aerial systems in the presence of eavesdroppers. IEEE Transactions on Intelligent Vehicles, 2024, DOI: 10.1109/TIV.2024.3378288 [29] Ma C, Li J, Wei K, Liu B, Ding M, Yuan L, et al. Trusted AI in multiagent systems: An overview of privacy and security for distributed learning. Proceedings of the IEEE, 2023, 111(9): 1097−1132 doi: 10.1109/JPROC.2023.3306773 [30] Rao F Y, Bertino E. Privacy techniques for edge computing systems. Proceedings of the IEEE, 2019, 107(8): 1632−1654 doi: 10.1109/JPROC.2019.2918749 [31] Serpanos D N, Papalambrou A. Security and privacy in distributed smart cameras. Proceedings of the IEEE, 2008, 96(10): 1678−1687 doi: 10.1109/JPROC.2008.928763 [32] Xie A, Wang X F, Yang W, Cao M, Ren X Q. The least information set needed by privacy attackers. IEEE Transactions on Automatic Control, 2025, 70(3): 1652−1666 doi: 10.1109/TAC.2024.3470848 [33] Zhang J F, Tan J W, Wang J M. Privacy security in control systems. Science China Information Sciences, 2021, 64: 176201 doi: 10.1007/s11432-020-3240-8 [34] Duan X, Xu Z, Yan R, Topcu U. Privacy-utility tradeoffs against limited adversaries. IEEE Transactions on Automatic Control, 2024, 69(1): 519−526 doi: 10.1109/TAC.2023.3269360 [35] Farokhi F, Sandberg H. Ensuring privacy with constrained additive noise by minimizing Fisher information. Automatica, 2019, 99: 275−288 doi: 10.1016/j.automatica.2018.10.012 [36] Nekouei E, Sandberg H, Skoglund M, Johansson K H. Optimal privacy-aware estimation. IEEE Transactions on Automatic Control, 2022, 67(5): 2253−2266 doi: 10.1109/TAC.2021.3077868 [37] Murguia C, Shames I, Farokhi F, Nešić D, Poor H V. On privacy of dynamical systems: An optimal probabilistic mapping approach. IEEE Transactions on Information Forensics and Security, 2021, 16: 2608−2620 doi: 10.1109/TIFS.2021.3055022 [38] Guo L P, Wang J M, Zhao Y L, Zhang J F. Privacy-preserving optimal state estimation with low complexity via Cramér-Rao lower bound approach. arXiv: 2410.0875, 2025 [39] Nekouei E, Tanaka T, Skoglund M, Johansson K H. Information-theoretic approaches to privacy in estimation and control. Annual Reviews in Control, 2019, 47: 412−422 doi: 10.1016/j.arcontrol.2019.04.006 [40] Lu Y, Zhu M. A control-theoretic perspective on cyber-physical privacy: Where data privacy meets dynamic systems. Annual Reviews in Control, 2019, 47: 423−440 doi: 10.1016/j.arcontrol.2019.04.010 [41] Kim J, Kim D, Song Y, Shim H, Sandberg H, Johansson K H. Comparison of encrypted control approaches and tutorial on dynamic systems using learning with errors-based homomorphic encryption. Annual Reviews in Control, 2022, 54: 200−218 doi: 10.1016/j.arcontrol.2022.10.002 [42] Schlüter N, Binfet P, Darup M S. A brief survey on encrypted control: From the first to the second generation and beyond. Annual Reviews in Control, 2023, 56: 100913 doi: 10.1016/j.arcontrol.2023.100913 [43] Wang Y Q. Privacy in multi-agent systems. Encyclopedia of Systems and Control Engineering, 2024 [44] Chen Z, Wang Y Q. Privacy-preserving distributed optimization and learning. Encyclopedia of Systems and Control Engineering, 2024 [45] Sankar L, Rajagopalan S R, Mohajer S, Poor H V. Smart meter privacy: A theoretical framework. IEEE Transactions on Smart Grid, 2012, 4(2): 837−846 [46] Sankar L, Rajagopalan S R, Poor H V. Utility-privacy tradeoffs in databases: An information-theoretic approach. IEEE Transactions on Information Forensics and Security, 2013, 8(6): 838−852 doi: 10.1109/TIFS.2013.2253320 [47] Cao X, Zhang J, Poor H V, Tian Z. Differentially private ADMM for regularized consensus optimization. IEEE Transactions on Automatic Control, 2020, 66(8): 3718−3725 [48] Manshaei M H, Zhu Q, Alpcan T, Başar T, Hubaux J. Game theory meets network security and privacy. ACM Computing Surveys (CSUR), 2013, 45(3): 1−39 [49] Zhu Q, Başar T. Game-theoretic methods for robustness, security, and resilience of cyberphysical control systems: games-in-games principle for optimal cross-layer resilient control systems. IEEE Control Systems Magazine, 2015, 35(1): 46−65 doi: 10.1109/MCS.2014.2364710 [50] Wang Y Q, Başar T. Quantization enabled privacy protection in decentralized stochastic optimization. IEEE Transactions on Automatic Control, 2023, 68(7): 4038−4052 [51] 管晓宏, 沈超, 刘烃. 数据安全是网络空间安全的基础. 中国网信, 2022, 1: 233Guan X H, Shen C, Liu H. Data security is the foundation of cyberspace security. China Cyberspace, 2022, 1: 233 [52] Pan L, Shao H, Lu Y, Mesbahi M, Li D, Xi Y. Privacy-preserving average consensus via matrix-weighted inter-agent coupling. Automatica, 2025, 174: 112094 doi: 10.1016/j.automatica.2024.112094 [53] Wang Y Q. Privacy-preserving average consensus via state decomposition. IEEE Transactions on Automatic Control, 2019, 64(11): 4711−4716 doi: 10.1109/TAC.2019.2902731 [54] An L, Yang G H. Enhancement of opacity for distributed state estimation in cyber-physical systems. Automatica, 2022, 136: 110087 doi: 10.1016/j.automatica.2021.110087 [55] Chen X, Huang L, Ding K, Dey S, Shi L. Privacy-preserving push-sum average consensus via state decomposition. IEEE Transactions on Automatic Control, 2023, 68(12): 7974−7981 doi: 10.1109/TAC.2023.3256479 [56] 胡沁伶, 郑宁, 徐明, 伍益明, 何熊熊. DoS攻击下具备隐私保护的多智能体系统均值趋同控制. 自动化学报, 2022, 48(8): 1961−1971Hu Q, Zheng N, Xu M, Wu Y, He X X. Privacy-preserving average consensus control for multi-agent systems under DoS attacks. Acta Automatica Sinica, 2022, 48(8): 1961−1971 [57] 应晨铎, 伍益明, 徐明, 郑宁, 何熊熊. 欺骗攻击下具备隐私保护的多智能体系统均值趋同控制. 自动化学报, 2023, 49(2): 425−436Ying C, Wu Y, Xu M, Zheng N, He X X. Privacy-preserving average consensus control for multi-agent systems under deception attacks. Acta Automatica Sinica, 2023, 49(2): 425−436 [58] Wang Y Q, Poor H V. Decentralized stochastic optimization with inherent privacy protection. IEEE Transactions on Automatic Control, 2022, 68(4): 2293−2308 [59] Gao H, Wang Y, Nedić A. Dynamics based privacy preservation in decentralized optimization. Automatica, 2023, 151: 110878 doi: 10.1016/j.automatica.2023.110878 [60] Ramos G, Aguiar A P, Kar S, Pequito S. Privacy-preserving average consensus through network augmentation. IEEE Transactions on Automatic Control, 2024, 69(10): 6907−6919 doi: 10.1109/TAC.2024.3383795 [61] Rikos A I, Charalambous T, Johansson K H, Hadjicostis C N. Distributed event-triggered algorithms for finite-time privacy-preserving quantized average consensus. IEEE Transactions on Control of Network Systems, 2022, 10(1): 38−50 [62] Farokhi F, Shames I, Johansson K H. Private routing and ride-sharing using homomorphic encryption. IET Cyber-Physical Systems: Theory & Applications, 2020, 5(4): 311−320 [63] Altafini C. A system-theoretic framework for privacy preservation in continuous-time multiagent dynamics. Automatica, 2020, 122: 109253 doi: 10.1016/j.automatica.2020.109253 [64] Huang L, Leong A S, Quevedo D E, Shi L. Finite time encryption schedule in the presence of an eavesdropper with operation cost. In Proceedings of the 2019 American Control Conference (ACC). Philadelphia, IEEE, 2019. 4063-4068 [65] Huang L, Ding K, Leong A S, Quevedo D E, Shi L. Encryption scheduling for remote state estimation under an operation constraint. Automatica, 2021, 127: 109537 doi: 10.1016/j.automatica.2021.109537 [66] Ni Y, Wu J, Li L, Shi L. Multi-party dynamic state estimation that preserves data and model privacy. IEEE Transactions on Information Forensics and Security, 2021, 16: 2288−2299 doi: 10.1109/TIFS.2021.3050621 [67] Zhang K, Li Z, Wang Y, Li N. Privacy-preserving nonlinear cloud-based model predictive control via affine masking. Automatica, 2025, 171: 111939 doi: 10.1016/j.automatica.2024.111939 [68] Yun H, Shim H, Ahn H S. Initialization-free privacy-guaranteed distributed algorithm for economic dispatch problem. Automatica, 2019, 102: 86−93 doi: 10.1016/j.automatica.2018.12.033 [69] Zhao Y, Gong D, Wen S, Ding L, Guo G. A privacy-preserving-based distributed collaborative scheme for connected autonomous vehicles at multi-lane signal-free intersections. IEEE Transactions on Intelligent Transportation Systems, 2024, 25(7): 6824−6835 doi: 10.1109/TITS.2023.3346395 [70] Katz J, Lindell Y. Introduction to Modern Cryptography. 3rd ed. Boca Raton: CRC Press, 2020 [71] Rivest R L, Adleman L, Dertouzos M L. On data banks and privacy homomorphisms. Foundations of secure computation, 1978, 4(11): 169−180 [72] Darup M S, Alexandru A B, Quevedo D E, Pappas G J. Encrypted control for networked systems: An illustrative introduction and current challenges. IEEE Control Systems Magazine, 2021, 41(3): 58−78 doi: 10.1109/MCS.2021.3062956 [73] Hijazi N M, Aloqaily M, Guizani M, Ouni B, Karray F. Secure federated learning with fully homomorphic encryption for iot communications. IEEE Internet of Things Journal, 2023, 11(3): 4289−4300 [74] Sultan A, Tahir S, Tahir H, Anwer T, Khan F, Rajarajan M, et al. A novel image-based homomorphic approach for preserving the privacy of autonomous vehicles connected to the cloud. IEEE Transactions on Intelligent Transportation Systems, 2022, 24(2): 1936−1948 [75] Gentry C. Fully homomorphic encryption using ideal lattices. In Proceedings of the forty-first annual ACM symposium on Theory of computing. Bethesda, 2009. 169-178 [76] Paillier P. Public-key cryptosystems based on composite degree residuosity classes. In Proceedings of International Conference on the Theory and Applications of Cryptographic Techniques. Berlin, Springer, 1999. 223-238 [77] Rivest R L, Shamir A, Adleman L. A method for obtaining digital signatures and public-key cryptosystems. Communications of the ACM, 1978, 21(2): 120−126 doi: 10.1145/359340.359342 [78] ElGamal T. A public key cryptosystem and a signature scheme based on discrete logarithms. IEEE Transactions on Information Theory, 1985, 31(4): 469−472 doi: 10.1109/TIT.1985.1057074 [79] Xu C B, Zhao Y L, Zhang J F, Qi H S. System identification under information security. IFAC-PapersOnLine, 2017, 50(1): 3756−3761 doi: 10.1016/j.ifacol.2017.08.477 [80] Lu Y, Zhu M H. Privacy preserving distributed optimization using homomorphic encryption. Automatica, 2018, 96: 314−325 doi: 10.1016/j.automatica.2018.07.005 [81] Ruan M, Gao H, Wang Y Q. Secure and privacy-preserving consensus. IEEE Transactions on Automatic Control, 2019, 64(10): 4035−4049 doi: 10.1109/TAC.2019.2890887 [82] Hadjicostis C N. Privary preserving distributed average consensus via homomorphic encryption. In Proceedings of the 2018 IEEE Conference on Decision and Control (CDC). Miami, IEEE, 2018. 1258-1263 [83] Hadjicostis C N, Domínguez-García A D. Privacy-preserving distributed averaging via homomorphically encrypted ratio consensus. IEEE Transactions on Automatic Control, 2020, 65(9): 3887−3894 doi: 10.1109/TAC.2020.2968876 [84] Kishida M. Encrypted average consensus with quantized control law. In Proceedings of the 2018 IEEE Conference on Decision and Control (CDC). Miami, IEEE, 2018. 5850-5856 [85] Kishida M. Encrypted control system with quantiser. IET Control Theory & Applications, 2019, 13(1): 146−151 [86] Chen W, Liu L, Liu G P. Privacy-preserving distributed economic dispatch of microgrids: A dynamic quantization-based consensus scheme with homomorphic encryption. IEEE Transactions on Smart Grid, 2023, 14(1): 701−713 doi: 10.1109/TSG.2022.3189665 [87] Lin Y, Farokhi F, Shames I, Nešić D. Secure control of nonlinear systems using semi-homomorphic encryption. In Proceedings of the 2018 IEEE Conference on Decision and Control (CDC). Miami, IEEE, 2018. 5002-5007 [88] Murguia C, Farokhi F, Shames I. Secure and private implementation of dynamic controllers using semihomomorphic encryption. IEEE Transactions on Automatic Control, 2020, 65(9): 3950−3957 doi: 10.1109/TAC.2020.2992445 [89] Zhang C, Ahmad M, Wang Y Q. ADMM based privacy-preserving decentralized optimization. IEEE Transactions on Information Forensics and Security, 2018, 14(3): 565−580 [90] Alexandru A B, Gatsis K, Shoukry Y, Seshia S A, Tabuada P, Pappas G J. Cloud-based quadratic optimization with partially homomorphic encryption. IEEE Transactions on Automatic Control, 2021, 66(5): 2357−2364 doi: 10.1109/TAC.2020.3005920 [91] Alexandru A B, Gatsis K, Pappas G J. Privacy preserving cloud-based quadratic optimization. In Proceedings of the 2017 55th Annual Allerton Conference on Communication, Control, and Computing (Allerton). Monticello, IEEE, 2017. 1168-1175 [92] Ristic M, Noack B, Hanebeck U D. Distributed range-only localization that preserves sensor and navigator privacies. IEEE Transactions on Automatic Control, 2023, 68(12): 7151−7163 doi: 10.1109/TAC.2023.3263740 [93] Zhu K, Wang Z, Ding D, Dong H, Xu C Z. Secure state estimation for artificial neural networks with unknown-but-bounded noises: A homomorphic encryption scheme. IEEE Transactions on Neural Networks and Learning Systems, 2024 [94] Chen W, Wang Z, Ge Q, Dong H, Liu G P. Quantized distributed economic dispatch for microgrids: Paillier encryption-decryption scheme. IEEE Transactions on Industrial Informatics, 2024, 20(4): 6552−6562 doi: 10.1109/TII.2023.3348816 [95] Shi Y, Nekouei E. Secure adaptive control of linear networked systems using Paillier encryption. IEEE Transactions on Circuits and Systems I: Regular Papers, 2024, 71(11): 5271−5284 doi: 10.1109/TCSI.2024.3401223 [96] Darup M S, Redder A, Shames I, Farokhi F, Quevedo D. Towards encrypted MPC for linear constrained systems. IEEE Control Systems Letters, 2017, 2(2): 195−200 [97] Naseri A M, Lucia W, Youssef A. Encrypted cloud-based set-theoretic model predictive control. IEEE Control Systems Letters, 2022, 6: 3032−3037 doi: 10.1109/LCSYS.2022.3182295 [98] Stabile F, Lucia W, Youssef A, Franzè G. A verifiable computing scheme for encrypted control systems. IEEE Control Systems Letters, 2024, 8: 1096−1101 doi: 10.1109/LCSYS.2024.3407636 [99] Xu K, Niu Y, Zhang Z. Cloud-based frequency control for multiarea power systems: Privacy preserving via homomorphic encryption. IEEE Transactions on Systems, Man, and Cybernetics: Systems, 2024, 54(8): 5172−5184 doi: 10.1109/TSMC.2024.3393865 [100] 赵中原, 高旺, 蒋璐瑶, 葛泉波. 基于椭圆曲线ELGamal的隐私保护分布式优化算法. 自动化学报, 2025, 51(1): 210−220Zhao Z, Gao W, Jiang L, Ge Q B. Privacy-preserving distributed optimization algorithm based on elliptic curve ELGamal. Acta Automatica Sinica, 2025, 51(1): 210−220 [101] Kim J, Shim H, Han K. Dynamic controller that operates over homomorphically encrypted data for infinite time horizon. IEEE Transactions on Automatic Control, 2022, 68(2): 660−672 [102] Zhang Z, Cheng P, Wu J, Chen J M. Secure state estimation using hybrid homomorphic encryption scheme. IEEE Transactions on Control Systems Technology, 2020, 29(4): 1704−1720 [103] Strässer R, Schlor S, Allgöwer F. Decrypting nonlinearity: Koopman interpretation and analysis of cryptosystems. Automatica, 2025, 173: 112022 doi: 10.1016/j.automatica.2024.112022 [104] Fauser M, Zhang P. A secure resilient homomorphic encryption scheme for control systems. IEEE Transactions on Automatic Control, 2025, 70(6): 3711−3726 doi: 10.1109/TAC.2024.3518356 [105] Teranishi K, Sadamoto T, Chakrabortty A, Kogiso K. Designing optimal key lengths and control laws for encrypted control systems based on sample identifying complexity and deciphering time. IEEE Transactions on Automatic Control, 2022, 68(4): 2183−2198 [106] Tran H Y, Hu J, Pota H R. A privacy-preserving state estimation scheme for smart grids. IEEE Transactions on Dependable and Secure Computing, 2022, 20(5): 3940−3956 [107] Shi Z, Yang Z, Hassan A, Li F, Ding X. A privacy preserving federated learning scheme using homomorphic encryption and secret sharing. Telecommunication Systems, 2023, 82(3): 419−433 doi: 10.1007/s11235-022-00982-3 [108] Fouque P, Pointcheval D. Threshold cryptosystems secure against chosen-ciphertext attacks. In Proceedings of International Conference on the Theory and Application of Cryptology and Information Security. Berlin, Springer, 2001. 351-368 [109] Yao A C C. How to generate and exchange secrets. In Proceedings of 27th Annual Symposium on Foundations of Computer Science. Toronto, IEEE, 1986. 162-167 [110] Mohassel P, Zhang Y P. SecureML: a system for scalable privacy-preserving machine learning. In Proceedings of IEEE Symposium on Security and Privacy. San Jose, IEEE, 2017. 19-38 [111] Mohassel P, Rindal P. ABY3: a mixed protocol framework for machine learning. In Proceedings of the ACM SIGSAC Conference on Computer and Communications Security. 2018. 35-52 [112] Schoppmann P, Gascón A, Raykova M, Pinkas B. Make some ROOM for the zeros: data sparsity in secure distributed machine learning. In Proceedings of the ACM SIGSAC Conference on Computer and Communications Security. 2019. 1335-1350 [113] Chandran N, Gupta D, Rastogi A, Sharma R, Tripathi S. EzPC: programmable and efficient secure two-party computation for machine learning. In Proceedings of IEEE European Symposium on Security and Privacy. Stockholm, IEEE, 2019. 496-511 [114] Chaudhari H, Rachuri R, Suresh A. Trident: efficient 4PC framework for privacy preserving machine learning. In Proceedings of the 26th Annual Network and Distributed System Security Symposium. 2020 [115] Byali M, Chaudhari H, Patra A, Suresh A. FLASH: fast and robust framework for privacy-preserving machine learning. Proc Priv Enhancing Technol, 2020459−480 [116] Tan S J, Knott B, Tian Y, Wu D J. CryptGPU: fast privacy-preserving machine learning on the GPU. In Proceedings of IEEE Symposium on Security and Privacy. San Francisco, IEEE, 2021. 1021-1038 [117] Koti N, Pancholi M, Patra A, Suresh A. SWIFT: super-fast and robust privacy-preserving machine learning. In Proceedings of the 30th USENIX Security Symposium. 2021 [118] Wagh S, Tople S, Benhamouda F, Kushilevitz E, Mittal P, Rabin T. FALCON: honest-majority maliciously secure framework for private deep learning. Proc Priv Enhancing Technol, 2021188−208 [119] Fereidooni H, Marchal S, Miettinen M, Mirhoseini A, Möllering H, Nguyen T D, et al. SAFELearn: secure aggregation for private federated learning. In Proceedings of IEEE Security and Privacy Workshops (SPW). San Francisco, IEEE, 2021. 56-62 [120] Brunetta C, Tsaloli G, Liang B, Banegas G, Mitrokotsa A. Non-interactive, secure verifiable aggregation for decentralized, privacy-preserving learning. In Proceedings of the 26th Australasian Conference. 2021 [121] Zheng W T, Deng R, Chen W K, Popa R A, Panda A, Stoica I. Cerebro: a platform for multi-party cryptographic collaborative learning. In 30th USENIX Security Symposium (USENIX Security 21). 2021. 2723-2740 [122] Jha S, Kruger L, Shmatikov V. Towards practical privacy for genomic computation. In Proceedings of IEEE Symposium on Security and Privacy. Oakland, IEEE, 2008. 216-230 [123] Jagadeesh K A, Wu D J, Birgmeier J A, Boneh D, Bejerano G. Deriving genomic diagnoses without revealing patient genomes. Science, 2017, 357(6352): 692−695 doi: 10.1126/science.aam9710 [124] Cho H, Wu D J, Berger B. Secure genome-wide association analysis using multiparty computation. Nat Biotechnol, 2018, 36(6): 547−551 doi: 10.1038/nbt.4108 [125] Liu M, Xiao L, Zhang Z. Multiplicative linear secret sharing schemes based on connectivity of graphs. IEEE Trans. Inf. Theory, 2007, 53(11): 3973−3978 doi: 10.1109/TIT.2007.907505 [126] Zhang Z F, Secret sharing and multi-party computation. Dissertation for Ph.D. Degree. Beijing: Chinese Academy of Sciences, 2007 [127] Schulze Darup M. Encrypted polynomial control based on tailored two-party computation. International Journal of Robust and Nonlinear Control, 2020, 30: 4168−4187 doi: 10.1002/rnc.5003 [128] Gonzalez-Serrano F J, Amor-Martln A, Casamayon-Anton J. State estimation using an extended Kalman filter with privacy-protected observed inputs. In 2014 IEEE International Workshop on Information Forensics and Security (WIFS), 2014, 54-59 [129] Tjell K, Schlüter N, Binfet P, Schulze Darup M. Secure learning-based MPC via garbled circuit. In Proceedings of the 60th Conference on Decision and Control, 2021, 4907-4914. [130] Alexandru A B, Morari M, Pappas G J. Cloud-based MPC with encrypted data. In 2018 IEEE Conference on Decision and Control (CDC) 2018, 5014-5019 [131] Alexandru A B, Pappas G J. Secure multi-party computation for cloud-based control. In Privacy in dynamical systems, 2020, 179-207 [132] Kim J. Further methods for encrypted linear dynamic controllers utilizing re-encryption. IEEE Transactions on Automatic Control, 2024, 69(10): 6974−6979 doi: 10.1109/TAC.2024.3386988 [133] Alexandru A B, Pappas G J. Private weighted sum aggregation. IEEE Transactions on Control of Network Systems, 2022, 9(1): 219−230 doi: 10.1109/TCNS.2021.3094788 [134] Zou L, Wang Z D, Shen B, Dong H L, Secure recursive state estimation of networked systems against eavesdropping: A partial-encryption-decryption method, IEEE Transactions on Automatic Control, DOI10.1109/TAC.2024.3512413. [135] He Y, Chen Y, Pan C, Ali I. Privacy-preserving distributed optimal control for vehicular platoon with quantization. IEEE Transactions on Intelligent Transportation Systems, 2024, 25(10): 14572−14585 doi: 10.1109/TITS.2024.3402962 [136] Goldreich O, Micali S, Wigderson A. How to play any mental game or a completeness theorem for protocols with honest majority. In Proceedings of the 19th Annual ACM Symposium on Theory of Computing. 1987. 218-229 [137] Ben-Or M, Goldwasser S, Wigderson A. Completeness theorems for non-cryptographic fault-tolerant distributed computation. In Proceedings of the 20th Annual ACM Symposium on Theory of Computing. 1988. 1-10 [138] Chaum D, Crépeau C, Damgård I. Multiparty unconditionally secure protocols. In Proceedings of the 20th Annual ACM Symposium on Theory of Computing. 1988. 11-19 [139] Rabin T, Ben-Or M. Verifiable secret sharing and multiparty protocols with honest majority. In Proceedings of the 21st Annual ACM Symposium on Theory of Computing. 1989. 73-85 [140] Beaver D, Micali S, Rogaway P. The round complexity of secure protocols. In Proceedings of the 22nd Annual ACM Symposium on Theory of Computing. 1990. 503-513 [141] Lindell Y. Secure multiparty computation. Commun ACM, 2021, 64: 86−96 [142] 霍炜, 郁昱, 杨糠, 等. 隐私保护计算密码技术研究进展与应用. 中国科学: 信息科学, 2023, 53: 1688−1733 doi: 10.1360/SSI-2022-0434Huo W, Yu Y, Yang K, et al. Privacy-preserving cryptographic algorithms and protocols: a survey on designs and applications. Sci Sin Inform, 2023, 53: 1688−1733 doi: 10.1360/SSI-2022-0434 [143] Mo Y, Murray R M. Privacy preserving average consensus. IEEE Transactions on Automatic Control, 2016, 62(2): 753−765 [144] Huang M, Manton J H. Coordination and consensus of networked agents with noisy measurements: Stochastic algorithms and asymptotic behavior. SIAM Journal on Control and Optimization, 2009, 48(1): 134−161 doi: 10.1137/06067359X [145] Zhang W, Zuo Z, Wang Y, Hu G. How much noise suffices for privacy of multiagent systems?. IEEE Transactions on Automatic Control, 2023, 68(10): 6051−6066 doi: 10.1109/TAC.2022.3232050 [146] Dwork C, McSherry F, Nissim K, Smith A. Calibrating noise to sensitivity in private data analysis. In Proceedings of Theory of Cryptography: Third Theory of Cryptography Conference. New York, Springer, 2006. 265-284 [147] Dwork C, Roth A. The algorithmic foundations of differential privacy. Foundations and TrendsⓇ in Theoretical Computer Science, 2014, 9(3-4): 211−407 [148] Huang Z, Mitra S, Vaidya N. Differentially private distributed optimization. In Proceedings of the 16th International Conference on distributed Computing and Networking. Urbana, 2015. 1-10 [149] Huang Z, Mitra S, Dullerud G. Differentially private iterative synchronous consensus. In Proceedings of the 2012 ACM workshop on Privacy in the Electronic Society. Urbana, 2012. 81-90 [150] Wang Y, Huang Z, Mitra S, Dullerud G E. Differential privacy in linear distributed control systems: Entropy minimizing mechanisms and performance tradeoffs. IEEE Transactions on Control of Network Systems, 2017, 4(1): 118−130 doi: 10.1109/TCNS.2017.2658190 [151] Koufogiannis F, Pappas G J. Diffusing private data over networks. IEEE Transactions on Control of Network Systems, 2017, 5(3): 1027−1037 [152] le Ny J, Mohammady M. Differentially private MIMO filtering for event streams. IEEE Transactions on Automatic Control, 2018, 63(1): 145−157 doi: 10.1109/TAC.2017.2713643 [153] Degue K H, le Ny J. Differentially private Kalman filtering with signal aggregation. IEEE Transactions on Automatic Control, 2023, 68: 6240−6246 doi: 10.1109/TAC.2022.3230735 [154] le Ny J. Differentially private nonlinear observer design using contraction analysis. International Journal of Robust and Nonlinear Control, 2020, 30(11): 4225−4243 doi: 10.1002/rnc.4392 [155] Degue K H, le Ny J. Differentially private interval observer design with bounded input perturbation. In Proceedings of the 2020 American Control Conference (ACC). Denver, IEEE, 2020. 1465-1470 [156] Degue K H, le Ny J. Cooperative differentially private LQG control with measurement aggregation. IEEE Control Systems Letters, 2022, 7: 1093−1098 [157] Nozari E, Tallapragada P, Cortés J. Differentially private distributed convex optimization via functional perturbation. IEEE Transactions on Control of Network Systems, 2016, 5(1): 395−408 [158] Nozari E, Tallapragada P, Cortés J. Differentially private average consensus: Obstructions, trade-offs, and optimal algorithm design. Automatica, 2017, 81: 221−231 doi: 10.1016/j.automatica.2017.03.016 [159] Liang L, Ding R, Liu S, Su R. Event-triggered privacy-preserving consensus control with edge-based additive noise. IEEE Transactions on Automatic Control, 2024, 69(10): 7059−7066 doi: 10.1109/TAC.2024.3390574 [160] Wang L, Liu W, Guo F, Qiao Z, Wu Z. Differentially private average consensus with improved accuracy-privacy trade-off. Automatica, 2024, 167: 111769 doi: 10.1016/j.automatica.2024.111769 [161] Liu X K, Zhang J F, Wang J M. Differentially private consensus algorithm for continuous-time heterogeneous multi-agent systems. Automatica, 2020, 122: 109283 doi: 10.1016/j.automatica.2020.109283 [162] Wang J M, Tan J, Zhang J F. Differentially private distributed parameter estimation. Journal of Systems Science and Complexity, 2023, 36(1): 187−204 doi: 10.1007/s11424-022-2012-9 [163] Wang J M, Zhang J F, Liu X K. Differentially private resilient distributed cooperative online estimation over digraphs. International Journal of Robust and Nonlinear Control, 2022, 32(15): 8670−8688 doi: 10.1002/rnc.6303 [164] Wang J M, Zhang J F, He X. Differentially private distributed algorithms for stochastic aggregative games. Automatica, 2022, 142: 110440 doi: 10.1016/j.automatica.2022.110440 [165] Chen J L, Wang J M, Zhang J F. Differentially private distributed nonconvex stochastic optimization with quantized communications. arXiv: 2403.18254, 2024 [166] Chen J L, Wang J M, Zhang J F. Differentially private gradient-tracking-based distributed stochastic optimization over directed graphs. arXiv: 2501.06793, 2025 [167] Xuan Y, Wang Y Q. Gradient-tracking based differentially private distributed optimization with enhanced optimization accuracy. Automatica, 2023, 155: 111150 doi: 10.1016/j.automatica.2023.111150 [168] Wang Y Q, Başar T. Decentralized nonconvex optimization with guaranteed privacy and accuracy. Automatica, 2023, 150: 110858 doi: 10.1016/j.automatica.2023.110858 [169] Wang Y Q, Nedić A. Tailoring gradient methods for differentially private distributed optimization. IEEE Transactions on Automatic Control, 2023, 69(2): 872−887 [170] Liu C, Johansson K H, Shi Y. Private stochastic dual averaging for decentralized empirical risk minimization. IFAC-PapersOnLine, 2022, 55(13): 43−48 doi: 10.1016/j.ifacol.2022.07.233 [171] Ding T, Zhu S, He J, Chen C, Guan X. Differentially private distributed optimization via state and direction perturbation in multiagent systems. IEEE Transactions on Automatic Control, 2021, 67(2): 722−737 [172] Chen F, Chen X, Xiang L, Ren W. Distributed economic dispatch via a predictive scheme: Heterogeneous delays and privacy preservation. Automatica, 2021, 123: 109356 doi: 10.1016/j.automatica.2020.109356 [173] Han Y, Martínez S. A numerical verification framework for differential privacy in estimation. IEEE Control Systems Letters, 2021, 6: 1712−1717 [174] Katewa V, Chakrabortty A, Gupta V. Differential privacy for network identification. IEEE Transactions on Control of Network Systems, 2019, 7(1): 266−277 [175] Sandberg H, Dán G, Thobaben R. Differentially private state estimation in distribution networks with smart meters. In Proceedings of the 2015 54th IEEE Conference on Decision and Control (CDC). Osaka, IEEE, 2015. 4492-4498 [176] Yan X, Chen B, Zhang Y, Yu L. Guaranteeing differential privacy in distributed fusion estimation. IEEE Transactions on Aerospace and Electronic Systems, 2022, 59(3): 3416−3423 [177] Gao L, Deng S, Ren W. Differentially private consensus with an event-triggered mechanism. IEEE Transactions on Control of Network Systems, 2018, 6(1): 60−71 [178] Gao L, Deng S, Ren W, Hu C. Differentially private consensus with quantized communication. IEEE Transactions on Cybernetics, 2021, 51(8): 4075−4088 doi: 10.1109/TCYB.2018.2890645 [179] Chen W, Wang Z, Hu J, Liu G P. Differentially private average consensus with logarithmic dynamic encoding-decoding scheme. IEEE Transactions on Cybernetics, 2023, 53(10): 6725−6736 doi: 10.1109/TCYB.2022.3233296 [180] He J, Cai L, Guan X. Differential private noise adding mechanism and its application on consensus algorithm. IEEE Transactions on Signal Processing, 2020, 68: 4069−4082 doi: 10.1109/TSP.2020.3006760 [181] Fiore D, Russo G. Resilient consensus for multi-agent systems subject to differential privacy requirements. Automatica, 2019, 106: 18−26 doi: 10.1016/j.automatica.2019.04.029 [182] Hale M T, Egerstedt M. Cloud-enabled differentially private multiagent optimization with constraints. IEEE Transactions on Control of Network Systems, 2017, 5(4): 1693−1706 [183] Yazdani K, Jones A, Leahy K, Hale M. Differentially private LQ control. IEEE Transactions on Automatic Control, 2022, 68(2): 1061−1068 [184] Rizk E, Sayed A H. A graph federated architecture with privacy preserving learning. In Proceedings of the 2021 IEEE 22nd International Workshop on Signal Processing Advances in Wireless Communications (SPAWC). Lucca, IEEE, 2021. 131-135 [185] Rizk E, Vlaski S, Sayed A H. Enforcing privacy in distributed learning with performance guarantees. IEEE Transactions on Signal Processing, 2023, 71: 3385−3398 doi: 10.1109/TSP.2023.3316590 [186] Lang N, Sofer E, Shaked T, Shlezinger N. Joint privacy enhancement and quantization in federated learning. IEEE Transactions on Signal Processing, 2023, 71: 295−310 doi: 10.1109/TSP.2023.3244092 [187] Kawano Y, Cao M. Design of privacy-preserving dynamic controllers. IEEE Transactions on Automatic Control, 2020, 65(9): 3863−3878 doi: 10.1109/TAC.2020.2994030 [188] Kawano Y, Kashima K, Cao M. Modular control under privacy protection: Fundamental trade-offs. Automatica, 2021, 127: 109518 doi: 10.1016/j.automatica.2021.109518 [189] Rostampour V, Ferrari R M G, Teixeira A M H, Keviczky T. Privatized distributed anomaly detection for large-scale nonlinear uncertain systems. IEEE Transactions on Automatic Control, 2020, 66(11): 5299−5313 [190] Ye M, Hu G, Xie L, Xu S. Differentially private distributed Nash equilibrium seeking for aggregative games. IEEE Transactions on Automatic Control, 2021, 67(5): 2451−2458 [191] Sugiura G, Ito K, Kashima K. Bayesian differential privacy for linear dynamical systems. IEEE Control Systems Letters, 2021, 6: 896−901 [192] Ito K, Kawano Y, Kashima K. Privacy protection with heavy-tailed noise for linear dynamical systems. Automatica, 2021, 131: 109732 doi: 10.1016/j.automatica.2021.109732 [193] Liu L, Kawano Y, Cao M. Privacy analysis for quantized networked control systems. In 2023 62nd IEEE Conference on Decision and Control (CDC). Singapore, IEEE, 2023. 5073-5078 [194] Yan X, Chen B, Zhang Y, Yu L. Distributed encryption fusion estimation against full eavesdropping. Automatica, 2023, 153: 111025 doi: 10.1016/j.automatica.2023.111025 [195] Qin S, He J, Fang C, Lam J. Differential private discrete noise-adding mechanism: conditions, properties and optimization. IEEE Transactions on Signal Processing, 2023, 71: 3534−3547 doi: 10.1109/TSP.2023.3317644 [196] Li T, Fu M Y, Xie L H, Zhang J F. Distributed consensus with limited communication data rate. IEEE Transactions on Automatic Control, 2010, 56(2): 279−292 [197] Dimarogonas D V, Johansson K H. Event-triggered control for multi-agent systems. In Proceedings of the 48h IEEE Conference on Decision and Control (CDC) held jointly with 2009 28th Chinese Control Conference. Shanghai, IEEE, 2009. 7131-7136 [198] Lyu X, Hou X, Ren C, Ge X, Yang P, Cui Q, et al. Secure and efficient federated learning with provable performance guarantees via stochastic quantization. IEEE Transactions on Information Forensics and Security, 2024, 19: 4070−4085 doi: 10.1109/TIFS.2024.3374590 [199] 《控制理论若干瓶颈问题》项目组, 控制理论若干瓶颈问题, 科学出版社, 北京, 2022.The project team of 《Some Bottleneck problems in Control Theory》, Some Bottleneck problems in Control Theory, Science press, Beijing, 2022. [200] Söderström T. Errors-in-variables methods in system identification. Automatica, 2007, 43(6): 939−958 doi: 10.1016/j.automatica.2006.11.025 [201] Khalil I S, Doyle J C, Glover K. Robust and Optimal Control. Upper Saddle River: Prentice Hall, 1996 [202] Khalil H K. Nonlinear Systems, Third Edition. Prentice Hall, 2002 [203] Krstic M, Kanellakopoulos l, Kokotovic P V, Nonlinear and adaptive control design, New York: Wiley and Sons, 1995. [204] Gorbunov S, Vaikuntanathan V, Wichs D. Leveled fully homomorphic signatures from standard lattices. In Proceedings of the Forty-seventh annual ACM Symposium on Theory of Computing. 2015. 469-477 [205] Gennaro R, Wichs D. Fully homomorphic message authenticators. In Proceedings of the Conference on Theory and Application of Cryptology and Information Security. 2013. 301-320 [206] Sun X, Yu F R, Zhang P, Sun Z, Xie W, Peng X. A survey on zero-knowledge proof in blockchain. IEEE Network, 2021, 35(4): 198−205 doi: 10.1109/MNET.011.2000473 [207] Parno B, Howell J, Gentry C, Raykova M. Pinocchio: Nearly practical verifiable computation. Communications of the ACM, 2016, 59(2): 103−112 doi: 10.1145/2856449 [208] Chida K, Hamada K, Ikarashi D, Kikuchi R, Genkin D, Lindell Y, et al. Fast large-scale honest-majority MPC for malicious adversaries. Journal of Cryptology, 2023, 36(3): 15 doi: 10.1007/s00145-023-09453-7 [209] Keller M, Orsini E, Scholl P. MASCOT: Faster malicious arithmetic secure computation with oblivious transfer. In Proceedings of the 2016 ACM SIGSAC Conference on Computer and Communications Security. 2016. 830-842 [210] Regev O. On lattices, learning with errors, random linear codes, and cryptography. Journal of the ACM, 2009, 56(6): 1−40 [211] Abdalla M, Bourse F, De Caro A, David P. Simple functional encryption schemes for inner products, In Proceedings of the IACR International Workshop Public-Key Cryptography, 2015, 733-751 [212] Agrawal S, Libert B, Stehlé D, Fully secure functional encryption for inner products, from standard assumptions, In Proceedings of the Annual International Cryptology Conference, 2016, 333-362. [213] Weng C, Nekouei E, Johansson K H. Optimal privacy-aware dynamic estimation. arXiv preprint arXiv: 2311.05896 [214] Wang L, Cao X, Zhang H, Sun C, Zheng W X. Transmission scheduling for privacy-optimal encryption against eavesdropping attacks on remote state estimation. Automatica, 2022, 137: 110145 doi: 10.1016/j.automatica.2021.110145 [215] Shu H, Zhou J, Yang W, Zhang H. Distortion-based state security codes for distributed sensor networks. Automatica, 2023, 151: 110904 doi: 10.1016/j.automatica.2023.110904 [216] Umsonst D, Sandberg H. On the confidentiality of controller states under sensor attacks. Automatica, 2021, 123: 09329 [217] Katewa V, Anguluri R, Pasqualetti F. On a security vs privacy trade-off in interconnected dynamical systems. Automatica, 2021, 125: 109426 doi: 10.1016/j.automatica.2020.109426 [218] Wang H, Liu K, Li B, Fridman E, Xia Y Q. Privacy and security trade-off in interconnected systems with known or unknown privacy noise covariance. Automatica, 2025, 173: 112071 doi: 10.1016/j.automatica.2024.112071 [219] Wonham W M, Linear Multivariable Control: A Geometric Approach, 3rd ed. New York, NY, USA: Springer, 1985. [220] Huang Y, Huang L, Zhu Q. Reinforcement learning for feedback-enabled cyber resilience. Annual reviews in control, 2022, 53: 273−295 doi: 10.1016/j.arcontrol.2022.01.001 [221] Zhang K K, Keliris C, Polycarpou M M, Parisini T. Detecting stealthy integrity attacks in a class of nonlinear cyber-physical systems: A backward-in-time approach. Automatica, 2022, 141: 110262 doi: 10.1016/j.automatica.2022.110262 [222] Jiang P, Wang Q, Huang M, Wang C, Li Q, Shen C, et al. Building in-the-cloud network functions: Security and privacy challenges. Proceedings of the IEEE, 2021, 109(12): 1888−1919 doi: 10.1109/JPROC.2021.3127277 [223] Bharathi B, Manivasagam G, Kumar M A. Metrics for performance evaluation of encryption algorithms. International Journal of Advance Research in Science and Engineering, 2017, 6(3): 62−72 [224] Wang C, Ren K, Wang J. Secure optimization computation outsourcing in cloud computing: A case study of linear programming. IEEE Transactions on Computers, 2016, 65(1): 216−229 doi: 10.1109/TC.2015.2417542 [225] Khan M A, Puri D. Challenges and opportunities in implementing quantum-safe key distribution in IoT devices. In Proceedings of the 3rd International Conference for Innovation in Technology (INOCON). Bangalore, IEEE, 2024. 1-7 [226] Jacoba R, Lesagea J J, Faure J M. Overview of discrete event systems opacity: Models, validation, and quantification. Annual Reviews in Control, 2016, 41: 135−146 doi: 10.1016/j.arcontrol.2016.04.015 [227] John V M, Katewa V. Opacity vs. security in linear dynamical systems. IEEE Transactions on Automatic Control, 2024, 70(1): 323−338 [228] Liu R, Lu J. Enforcement for infinite-step opacity and K-step opacity via insertion mechanism. Automatica, 2022, 140: 110212 doi: 10.1016/j.automatica.2022.110212 [229] Yin X, Li Z, Wang W, Li S. Infinite-step opacity and K-step opacity of stochastic discrete-event systems. Automatica, 2019, 99: 266−274 doi: 10.1016/j.automatica.2018.10.049 [230] Hou J, Yin X, Li S. A framework for current-state opacity under dynamic information release mechanism. Automatica, 2022, 140: 110238 doi: 10.1016/j.automatica.2022.110238 [231] Tong Y, Lan H, Seatzu C. Verification of K-step and infinite-step opacity of bounded labeled Petri nets. Automatica, 2022, 140: 110221 doi: 10.1016/j.automatica.2022.110221 [232] An L, Yang G H. Opacity enforcement for confidential robust control in linear cyber-physical systems. IEEE Transactions on Automatic Control, 2019, 65(3): 1234−1241 [233] Xie Y, Li S, Yin X. Optimal synthesis of opacity-enforcing supervisors for qualitative and quantitative specifications. IEEE Transactions on Automatic Control, 2023, 69(8): 4958−4973 [234] Ramasubramanian B, Cleaveland R, Marcus S I. Notions of centralized and decentralized opacity in linear systems. IEEE Transactions on Automatic Control, 2019, 65(4): 1442−1455 [235] Lu Y, Zhu M H. On privacy preserving data release of linear dynamic networks. Automatica, 2020, 115: 108839 doi: 10.1016/j.automatica.2020.108839 [236] Ji Y, Yin X, Lafortune S. Opacity enforcement using nondeterministic publicly known edit functions. IEEE Transactions on Automatic Control, 2019, 64(10): 4369−4376 doi: 10.1109/TAC.2019.2897553 [237] Liu R, Lu J, Hadjicostis C N. Opacity enforcement via attribute-based edit functions in the presence of an intended receiver. IEEE Transactions on Automatic Control, 2022, 68(9): 5646−5652 [238] Li X, Hadjicostis C N, Li Z. Extended insertion functions for opacity enforcement in discrete-event systems. IEEE Transactions on Automatic Control, 2021, 67(10): 5289−5303 [239] Keroglou C, Lafortune S. Embedded insertion functions for opacity enforcement. IEEE Transactions on Automatic Control, 2020, 66(9): 4184−4191 [240] Ji Y, Wu Y C, Lafortune S. Enforcement of opacity by public and private insertion functions. Automatica, 2018, 93: 369−378 doi: 10.1016/j.automatica.2018.03.041 [241] Xie Y, Yin X, Li S. Opacity enforcing supervisory control using nondeterministic supervisors. IEEE Transactions on Automatic Control, 2021, 67(12): 6567−6582 [242] Chen W, Wang Z D, Liu Q, Yue D, Liu G P. A new privacy-preserving average consensus algorithm with two-phase structure: Applications to load sharing of microgrids. Automatica, 2024, 167: 111715 doi: 10.1016/j.automatica.2024.111715 [243] Zhang K X, Li Z J, Wang Y Q, Louati A, Chen J. Privacy-preserving dynamic average consensus via state decomposition: Case study on multi-robot formation control. Automatica, 2022, 139: 110182 doi: 10.1016/j.automatica.2022.110182 [244] Spiekermann S, Korunovska J, Langheinrich M. Inside the organization: Why privacy and security engineering is a challenge for engineers. Proceedings of the IEEE, 2018, 107(3): 600−615 [245] Hu C, Zhuang H, Chen J, Hu P, Xiang T, Yu J. Achieving privacy-preserving online multi-layer perceptron model in smart grid. IEEE Transactions on Cloud Computing, 2024, 12(2): 777−788 doi: 10.1109/TCC.2024.3399771 [246] Donnelly W, Keifer P, Minor R, Muthukumaran U, Parolek B, Tuck B, et al. A review of privacy-preserving and efficient data collection and aggregation in smart grids. In 2023 11th International Conference on Information and Communication Technology (ICoICT). Melaka, IEEE, 2023. 326-332 [247] Gao H, Li Z, Wang Y. Privacy-preserving collaborative estimation for networked vehicles with application to collaborative road profile estimation. IEEE Transactions on Intelligent Transportation Systems, 2022, 23(10): 17301−17311 doi: 10.1109/TITS.2022.3154650 [248] Das D, Banerjee S, Chatterjee P, Ghosh U, Biswas U. Blockchain for intelligent transportation systems: Applications, challenges, and opportunities. IEEE Internet of Things Journal, 2023, 10(21): 18961−18970 doi: 10.1109/JIOT.2023.3277923 [249] Bost R, Fouque P A. Security-efficiency tradeoffs in searchable encryption. In Proceedings on Privacy Enhancing Technologies. Stockholm, De Gruyter Open, 2019. 132-151 -
计量
- 文章访问数: 56
- HTML全文浏览量: 22
- 被引次数: 0