[1]
|
新华社. 目前全国已开放智能网联汽车测试道路里程超过15000公里[N]. 人民日报海外版, 2023-06-23(01)The country has opened intelligent connected car test road mileage of more than 15, 000 kilometers. People's Daily Overseas Editionp, 2023-06-23, (01
|
[2]
|
Abdel-Aty M, Ding S. A matched case-control analysis of autonomous vs human-driven vehicle accidents. Nature Communications, 2024, 15: 4931 doi: 10.1038/s41467-024-48526-4
|
[3]
|
Document for Full Self-Driving Capability; https://www.tesla.com/support/full-self-driving-subscriptions
|
[4]
|
2023 Disengagement Reports (California Department of Motor Vehicles, 2024); https://www.dmv.ca.gov/portal/vehicle-industry-services/autonomous-vehicles/disengagement-reports/.
|
[5]
|
FSD Community Tracker; https://www.teslafsdtracker.com/home
|
[6]
|
Overview of motor vehicle traffic crashes in 2022. (National Highway Traffic Safety Administration, 2024).
|
[7]
|
Kusano KD, Scanlon JM, Chen YH, McMurry TL, Chen R, Gode T, et al. Comparison of waymo rider-only crash data to human benchmarks at 7.1 million miles. arXiv preprint arXiv: https://arxiv.org/abs/2312.12675, 2023.
|
[8]
|
Road vehicles – Safety of the intended functionality. 2019-01, https://www.iso.org/standard/70939.html.
|
[9]
|
Feng S, Sun H, Yan X, Zhu H, Zou Z, Shen S, et al. Dense reinforcement learning for safety validation of autonomous vehicles. Nature, 2023, 615(7953): 620−627 doi: 10.1038/s41586-023-05732-2
|
[10]
|
Bozga M, Iosif R, Sifakis J. Verification of component-based systems with recursive architectures. Theoretical Computer Science, 2023, 940: 146−175 doi: 10.1016/j.tcs.2022.10.022
|
[11]
|
Wang W S, Wang L T, Zhang C Y, Liu C L, Sun L J. Social interactions for autonomous driving: A review and perspectives. Foundations and Trends in Robotics, 2022, 10(3-4): 198−376 doi: 10.1561/2300000078
|
[12]
|
Li D, Huang Y L, Qian L X. Potential adoption of robotaxi service: The roles of perceived benefits to multiple stakeholders and environmental awareness. Foundations and Trends in Robotics, 2022, 126: 120−135
|
[13]
|
The Select Committee on Artificial Intelligence of the National Science and Technology Council. The National Artificial Intelligence R&D Strategic Plan 2023 Update, 2023-05
|
[14]
|
Philion J, Fidler S. Lift, splat, shoot: Encoding images from arbitrary camera rigs by implicitly unprojecting to 3D. In: Proceedings of the European Conference on Computer Vision (ECCV). Glasgow, UK: Springer International Publishing, 2020: 194-210.
|
[15]
|
Reading C, Harakeh A, Chae J, Waslander S L. Categorical depth distribution network for monocular 3D object detection. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR). IEEE, 2021: 8555-8564.
|
[16]
|
Huang J J, Huang G, Zhu Z, Ye Y, Du D L. High-performance multi-camera 3D object detection in bird-eye-view. arXiv preprint arXiv: 2112.11790, 2021.
|
[17]
|
Pan B, Sun J, Leung H Y T, Andonian A, Zhou B L. Cross-view semantic segmentation for sensing surroundings. IEEE Robotics and Automation Letters, 2020, 5(3): 4867−4873 doi: 10.1109/LRA.2020.3004325
|
[18]
|
Roddick T, Cipolla R. Predicting semantic map representations from images using pyramid occupancy networks. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR). IEEE, 2020: 11138 -11147.
|
[19]
|
Gong S, Ye X Q, Tan X, Wang D J, Ding E, Zhou Y, et al. GitNet: Geometric prior-based transformation for birds-eye-view segmentation. In: Proceedings of the European Conference on Computer Vision (ECCV). Cham: Springer Nature Switzerland, 2022: 396-411.
|
[20]
|
Wang Y, Guizilini V C, Zhang T, Wang Y, Zhao H, Solomon J. DETR3D: 3D object detection from multi-view images via 3D-to-2D queries. In: Proceedings of Conference on Robot Learning. PMLR, 2022: 180-191.
|
[21]
|
Li Z, Wang W H, Li H Y, Xie E Z, Sima C H, L T, et al. BEVFormer: Learning bird’s-eye-view representation from multi-camera images via spatiotemporal transformers. In: Proceedings of the European Conference on Computer Vision (ECCV). Cham: Springer Nature Switzerland, 2022: 1-18.
|
[22]
|
Yang C Y, Chen Y T, Tian H, Tao C X, Zhu X Z, Zhang Z X, et al. BEVFormer v2: Adapting Modern Image Backbones to Bird's-Eye-View Recognition via Perspective Supervision. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR). Vancouver, Canada: IEEE, 2023: 17830-17839.
|
[23]
|
Liu Y F, Wang T C, Zhang X Y, Sun J. PETR: Position embedding transformation for multi-view 3D object detection. In: Proceedings of the European Conference on Computer Vision (ECCV). Cham: Springer Nature Switzerland, 2022: 531-548.
|
[24]
|
Liu Y F, Yan J J, Jia F, Li S L, Gao A, Wang T C, et al. PETRv2: A unified framework for 3D perception from multi-camera images. In: Proceedings of the IEEE/CVF International Conference on Computer Vision (ICCV). 2023: 3262-3272.
|
[25]
|
Lang A H, Vora S, Caesar H, Zhou L B, Yang J, Beijbom O. BEVFormer v2: Adapting Modern Image Backbones to Bird's-Eye-View Recognition via Perspective Supervision. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR). California, United States: IEEE, 2019: 12697-12705.
|
[26]
|
Chen X Z, Ma H, Wan J, Li B, Xia T. Multi-view 3D object detection network for autonomous driving. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR). Hawaii, United States: IEEE, 2017: 1907-1915.
|
[27]
|
Zhou Y, Tuzel O. VoxelNet: End-to-end learning for point cloud based 3D object detection. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR). Utah, United States: IEEE, 2018: 4490-4499.
|
[28]
|
秦超, 王亚飞, 张宇超, 殷承良. 基于极端稀疏激光点云和RGB图像的3D目标检测. 激光与光电子学进展, 2022, 59(18): 447−458Qing Chao, Wang Ya-Fei, Zhang Yu-Chao, Yin Cheng-Liang. 3D object detection based on extremely sparse laser point cloud and RGB images. Laser & Optoelectronics Progress, 2022, 59(18): 447−458
|
[29]
|
Liu Z J, Tang H T, Amini A, Yang X Y, Mao H Z, Rus D L, et al. BEVFusion: Multi-task multi-sensor fusion with unified bird's-eye view representation. In: Proceedings of IEEE International Conference on Robotics and Automation (ICRA). London, United Kingdom: IEEE, 2023: 2774-2781.
|
[30]
|
Li Y W, Chen Y L, Qi X J, Li Z M, Sun J, Jia J Y. Unifying voxel-based representation with transformer for 3D object detection. Advances in Neural Information Processing Systems, 2022, 35: 18442−18455
|
[31]
|
Pang S, Morris D, Radha H. CLOCs: Camera-LiDAR object candidates fusion for 3D object detection. In: Proceedings of IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS). Las Vegas, NV, USA: IEEE, 2020: 10386-10393.
|
[32]
|
Li Q, Wang Y, Wang Y L, Zhao H. HDMapNet: An online HD map construction and evaluation framework. In: Proceedings of IEEE International Conference on Robotics and Automation (ICRA). Philadelphia, PA, USA: IEEE, 2022: 4628-4634.
|
[33]
|
吴绍斌, 耿家琳, 吴超, 闫泽新, 陈恺宇. 基于多帧信息的多传感器融合三维目标检测. 北京理工大学学报, 2023, 43(12): 1282−1289Wu Shao-Bin, Geng Jia-Lin, Wu Chao, Yan Ze-Xin, Chen Kai-Yu. Multi-sensor fusion 3D object detection based on multi-frame information. Transactions of Beijing Institute of Technology, 2023, 43(12): 1282−1289
|
[34]
|
Huang J J, Huang G. BEVDet4D: Exploit temporal cues in multi-camera 3D object detection. arXiv preprint arXiv: 2203.17054, 2022.
|
[35]
|
Qin Z Q, Chen J Y, Chen C, Chen X Z, Li X. UniFormer: Unified multi-view fusion transformer for spatial-temporal representation in Bird's-Eye-View. In: Proceedings of the IEEE/CVF International Conference on Computer Vision (ICCV). 2023: 8690-8699.
|
[36]
|
Sun W, Lin X, Shi Y, Zhang C, Wu H, Zheng S. SparseDrive: End-to-End autonomous driving via sparse scene representation. arXiv preprint arXiv: 2405.19620, 2024.
|
[37]
|
Weng X, Ivanovic B, Wang Y, Wang Y, Pavone M. PARA-Drive: Parallelized Architecture for Real-time Autonomous Driving. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR). Seattle, United States: IEEE, 2024: 15449-15458.
|
[38]
|
Li P, Cui D. Does End-to-End autonomous driving really need perception tasks? arXiv preprint arXiv: 2409.18341, 2024.
|
[39]
|
Kuefler A, Morton J, Wheeler T, Kochenderfer M. Imitating driver behavior with generative adversarial networks. In: Proceedings of 2017 IEEE Intelligent Vehicles Symposium (IV). Los Angeles, CA, USA: IEEE, 2017: 204-211.
|
[40]
|
Lu C, Wang H J, Lv C, Gong J W, Xi J Q, Cao D P. Learning driver-specific behavior for overtaking: A combined learning framework. IEEE Transactions on Vehicular Technology, 2018, 67(8): 6788−6802 doi: 10.1109/TVT.2018.2820002
|
[41]
|
Acerbo F S, Swevers J, Tuytelaars T, Son T D. Evaluation of MPC-based imitation learning for human-like autonomous driving. IFAC-PapersOnLine, 2023, 56(2): 4871−4876 doi: 10.1016/j.ifacol.2023.10.1257
|
[42]
|
Ahmedov H B, Yi D W, Sui J. Application of a brain-inspired deep imitation learning algorithm in autonomous driving. Software Impacts, 2021, 10: 100165 doi: 10.1016/j.simpa.2021.100165
|
[43]
|
徐优志. 自动驾驶车辆高速道路环境下超车行为决策研究. 北京理工大学, 中国, 2016Xu You-Zhi. Decision-making modeling of overtaking behavior for autonomous vehicles on freeway environment [Master thesis], Beijing Institute of Technology, China, 2016
|
[44]
|
陈鸿军. 基于模仿学习的智能车辆行为决策与运动控制方法研究. 国防科技大学, 中国, 2019Chen Hong-Jun. Research on behavior decision-making and motion control methods based on imitation learning for intelligent vehicles [Master thesis], National University of Defense Technology, China, 2019
|
[45]
|
Xu H Z, Gao Y, Yu F, Darrell T. End-to-end learning of driving models from large-scale video datasets. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR). Hawaii, United States: IEEE, 2017: 2174-2182.
|
[46]
|
Bhattacharyya R, Wulfe B, Phillips D J, Kuefler A, Morton J, Senanayake R, et al. Modeling human driving behavior through generative adversarial imitation learning. IEEE Transactions on Intelligent Transportation Systems, 2022, 24(3): 2874−2887
|
[47]
|
Li Y Z, Song J M, Ermon S. InfoGAIL: Interpretable imitation learning from visual demonstrations. Advances in Neural Information Processing Systems, 2017, 30
|
[48]
|
Wang H J, Gao H B, Yuan S H, Zhao H F, Wang K L, Wang X L, et al. Interpretable decision-making for autonomous vehicles at highway on-ramps with latent space reinforcement learning. IEEE Transactions on Vehicular Technology, 2021, 70(9): 8707−8719 doi: 10.1109/TVT.2021.3098321
|
[49]
|
Codevilla F, Müller M, López A, Koltun V, Dosovitskiy A. End-to-end driving via conditional imitation learning. In: Proceedings of IEEE International Conference on Robotics and Automation (ICRA). Brisbane, QLD, Australia: IEEE, 2018: 4693-4700.
|
[50]
|
Liang X D, Wang T R, Yang L N, Xing E. CIRL: Controllable imitative reinforcement learning for vision-based self-driving. In: Proceedings of the European Conference on Computer Vision (ECCV). 2018: 584 -599.
|
[51]
|
Chen C Y, Seff A, Kornhauser A, Xiao J X. DeepDriving: Learning affordance for direct perception in autonomous driving. In: Proceedings of the IEEE/CVF International Conference on Computer Vision (ICCV). 2015: 2722-2730.
|
[52]
|
Kong J, Pfeiffer M, Schildbach G, Borrelli F. Kinematic and dynamic vehicle models for autonomous driving control design. In: Proceedings of 2015 IEEE Intelligent Vehicles Symposium (IV). Seoul, Korea (South): IEEE, 2015: 1094-1099.
|
[53]
|
Casas S, Sadat A, Urtasun R. Mp3: A unified model to map, perceive, predict and plan. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR). 2021: 14403-14412.
|
[54]
|
Chitta K, Prakash A, Jaeger B, Yu Z H, Renz K, Geiger A. TransFuser: Imitation with transformer-based sensor fusion for autonomous driving. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2023, 45(11): 12878−12895 doi: 10.1109/TPAMI.2022.3200245
|
[55]
|
Hu Y H, Yang J Z, Chen L, Li K Y, Sima C H, Zhu X Z, et al. Planning-oriented autonomous driving. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR). Vancouver, Canada: IEEE, 2023: 17853-17862.
|
[56]
|
Toromanoff M, Wirbel E, Moutarde F. End-to-end model-free reinforcement learning for urban driving using implicit affordances. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR). IEEE, 2020: 7153-7162.
|
[57]
|
Wen L, Duan J L, Li S E, Xu S B, Peng H. Safe reinforcement learning for autonomous vehicles through parallel constrained policy optimization. In: Proceedings of 2020 IEEE 23rd International Conference on Intelligent Transportation Systems (ITSC). Rhodes, Greece: IEEE, 2020: 1-7.
|
[58]
|
Chitta K, Prakash A, Geiger A. NEAT: Neural attention fields for end-to-end autonomous driving. In: Proceedings of the IEEE/CVF International Conference on Computer Vision (ICCV). 2021: 15793-15803.
|
[59]
|
Wu P H, Jia X S, Chen L, Yan J C, Li H Y, Qiao Y. Trajectory-guided control prediction for end-to-end autonomous driving: A simple yet strong baseline. Advances in Neural Information Processing Systems, 2022, 35: 6119−6132
|
[60]
|
Prakash A, Chitta K, Geiger A. Multi-modal fusion transformer for end-to-end autonomous driving. In: Proceedings of the IEEE/CVF International Conference on Computer Vision (ICCV). 2021: 7077-7087.
|
[61]
|
Jia X S, Wu P H, Chen L, Xie J W, He C H, Yan J C, et al. Think Twice before driving: Towards scalable decoders for End-to-End autonomous driving. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR). Vancouver, Canada: IEEE, 2023: 21983-21994.
|
[62]
|
Chen L, Wu P H, Chitta K, Jaeger B, Geiger A, Li H Y. End-to-end autonomous driving: Challenges and frontiers. arXiv. preprint arXiv: 2306.16927, 2023.
|
[63]
|
Ngiam J, Caine B, Vasudevan V, Zhang Z D, Chiang H T-L, Ling J, et al. Scene transformer: A unified architecture for predicting multiple agent trajectories. arXiv preprint arXiv: 2106.08417, 2021.
|
[64]
|
Renz K, Chitta K, Mercea O B, Koepke A, Akata Z, Geiger A. PlanT: Explainable planning transformers via object-level representations. In: Proceedings of Conference on Robot Learning (CoRL). PMLR, 2023: 459-470.
|
[65]
|
Zhang K P, Feng X L, Wu L, He Z B. Trajectory prediction for autonomous driving using spatial-temporal graph attention transformer. IEEE Transactions on Intelligent Transportation Systems, 2022, 23(11): 22343−22353 doi: 10.1109/TITS.2022.3164450
|
[66]
|
Ye T J, Jing W, Hu C Y, Huang S K, Gao L P, Li F Z, et al. FusionAD: Multi-modality fusion for prediction and planning tasks of autonomous driving. arXiv preprint arXiv: 2308.01006, 2023.
|
[67]
|
Jin B, Liu X Y, Zheng Y P, Li P F, Zhao H, Zhang T, et al. ADAPT: Action-aware driving caption transformer. In: Proceedings of IEEE International Conference on Robotics and Automation (ICRA). London, United Kingdom: IEEE, 2023: 7554-7561.
|
[68]
|
Liu H X, Feng S. Curse of rarity for autonomous vehicles. Nature Communications, 2024, 15: 4808 doi: 10.1038/s41467-024-49194-0
|
[69]
|
Yan X, Zhang H, Cai Y, Guo J, Qiu W, Gao B, et al. Forging vision foundation models for autonomous driving: Challenges, methodologies, and opportunities. arXiv preprint arXiv: 2401.08045, 2024.
|
[70]
|
Gao H, Wang Z, Li Y, Long K, Yang M, Shen Y. A survey for foundation models in autonomous driving. arXiv preprint arXiv: 2402.01105, 2024.
|
[71]
|
Tian X, Gu J, Li B, Liu Y, Wang Y, Zhao Z, et al. DriveVLM: The convergence of autonomous driving and large vision-language models. arXiv preprint arXiv: 2402.12289, 2024.
|
[72]
|
Bai Z, Wang P, Xiao T, He T, Han Z, Zhang Z, et al. Hallucination of multimodal large language models: A survey. arXiv preprint arXiv: 2404.18930, 2024.
|
[73]
|
Chen T, Kornblith S, Norouzi M, Hinton G. A simple framework for contrastive learning of visual representations. In: Proceedings of International Conference on Machine Learning. Glasgow, UK: PMLR, 2020: 1597-1607.
|
[74]
|
Misra I, Maaten L. Self-supervised learning of pretext-invariant representations. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR). IEEE, 2020: 6707-6717.
|
[75]
|
Luo C X, Yang X D, Yuille A. Self-supervised pillar motion learning for autonomous driving. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR). IEEE, 2021: 3183-3192.Pp
|
[76]
|
Karlsson R, Carballo A, Fujii K, Ohtani K, Takeda K. Predictive world models from real-world partial observations. In: Proceedings of 2023 IEEE International Conference on Mobility, Operations, Services and Technologies (MOST). Detroit, MI, USA: IEEE, 2023: 152-166.
|
[77]
|
Kingma D P, Welling M. Auto-encoding variational bayes. arXiv preprint arXiv: 1312.6114, 2013.
|
[78]
|
Liao Y Y, Xie J, Geiger A. KITTI-360: A novel dataset and benchmarks for urban scene understanding in 2D and 3D. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2022, 45(3): 3292−3310
|
[79]
|
Hu A, Russell L, Yeo H, Murez Z, Fedoseev G, Kendall A, et al. GAIA-1: A generative world model for autonomous driving. arXiv preprint arXiv: 2309.17080, 2023.
|
[80]
|
Wang X F, Zhu Z, Huang G, Chen X Z, Zhu J G, Lu J W. DriveDreamer: Towards real-world-driven world models for autonomous driving. arXiv preprint arXiv: 2309.09777, 2023.
|
[81]
|
Zhang L J, Xiong Y W, Yang Z, Casas S, Hu R, Urtasun R. Learning unsupervised world models for autonomous driving via discrete diffusion. arXiv preprint arXiv: 2311.01017, 2023.
|
[82]
|
Chang H W, Zhang H, Jiang L, Liu C, Freeman W T. MaskGIT: Masked generative image transformer. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR). New Orleans, United States: IEEE, 2022: 11315-11325.
|
[83]
|
Van Den Oord A, Vinyals O, Kavukcuoglu K. Neural discrete representation learning. Advances in Neural Information Processing Systems, 2017, 30
|
[84]
|
Gu T P, Chen G Y, Li J L, Lin C Z, Rao Y M, Zhou J, et al. Stochastic trajectory prediction via motion indeterminacy diffusion. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR). New Orleans, United States: IEEE, 2022: 17113-17122.
|
[85]
|
Dabral R, Mughal M H, Golyanik V, Theobalt C. Mofusion: A framework for denoising-diffusion-based motion synthesis. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR). Vancouver, Canada: IEEE, 2023: 9760-9770.
|
[86]
|
Li Z Y, Liang H W, Wang H Q, Zheng X K, Wang J, Zhou P F. A multi-modal vehicle trajectory prediction framework via conditional diffusion model: A coarse-to-fine approach. Knowledge-Based Systems, 2023, 280: 110990 doi: 10.1016/j.knosys.2023.110990
|
[87]
|
Rombach R, Blattmann A, Lorenz D, Esser P, Ommer B. High-resolution image synthesis with latent diffusion models. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR). New Orleans, United States: IEEE, 2022: 10684-10695.
|
[88]
|
Chen K, Xie E, Chen Z, Wang Y, Hong L, Li Z, et al. GeoDiffusion: Text-prompted geometric control for object detection data generation. arXiv preprint arXiv: 2306.04607, 2023.
|
[89]
|
Zheng W, Song R, Guo X, Zhang C, Chen L. GenAD: Generative end-to-end autonomous driving. arXiv preprint arXiv: 2402.11502, 2024.
|
[90]
|
Belta C, Yordanov B, Gol E A. Formal methods for discrete-time dynamical systems. Cham: Springer International Publishing, 2017.
|
[91]
|
Pek C, Manzinger S, Koschi M, Althoff M. Using online verification to prevent autonomous vehicles from causing accidents. Nature Machine Intelligence, 2020, 2(9): 518−528 doi: 10.1038/s42256-020-0225-y
|
[92]
|
Yin X, Gao B, Yu X. Formal synthesis of controllers for safety-critical autonomous systems: developments and challenges. Annual Reviews in Control, 2024, accepted.
|
[93]
|
Donze A, Ferrere T, Maler O. Efficient robust monitoring for STL. Lecture Notes in Computer Science, 2013, 8044: 264−279
|
[94]
|
Donze A, Maler O. Robust satisfaction of temporal logic over real-valued signals. Lecture Notes in Computer Science, 2010, 6246(1): 92−106
|
[95]
|
Fainekos G E, Pappas G J. Robustness of temporal logic specifications for continuous-time signals. Theoretical Computer Science, 2009, 410(42): 4262−4291 doi: 10.1016/j.tcs.2009.06.021
|
[96]
|
Deshmukh J V, Donze A, Ghosh S, Jin X Q, Juniwal G, Seshia S A. Robust online monitoring of signal temporal logic. Formal Methods in System Design, 2017, 51(1): 5−30 doi: 10.1007/s10703-017-0286-7
|
[97]
|
Zhang Z Y, Arcaini P, Xie X. Online reset for signal temporal logic monitoring. IEEE Transactions on Computer-Aided Design of Integrated Circuits & Systems, 2022, 41(11): 4421−4432
|
[98]
|
Yu W, Zhao C, Wang H, Liu J, Ma X, Yang Y, et al. Online legal driving behavior monitoring for self-driving vehicles. Nature Communications, 2024, 15: 408 doi: 10.1038/s41467-024-44694-5
|
[99]
|
Sahin Y E, Quirynen R, Cairano S D. Autonomous vehicle decision-making and monitoring based on signal temporal logic and Mixed-Integer Programming. In: Proceedings of American Control Conference (ACC). Denver, USA: IEEE, 2020: 454-459.
|
[100]
|
Arechiga N. Specifying safety of autonomous vehicles in signal temporal logic. In: Proceedings of 2019 IEEE Intelligent Vehicles Symposium (IV). Paris, France: IEEE, 2019: 58-63.
|
[101]
|
Hekmatnejad M, Yaghoubi S, Dokhanchi A, Amor H B, Shrivastava A, Karam L, et al. Encoding and monitoring responsibility sensitive safety rules for automated vehicles in signal temporal logic. In: Proceedings of the 17th ACM-IEEE International Conference on Formal Methods and Models for System Design. California, United States: ACM, 2019: 1-11.
|
[102]
|
Qin X, Deshmukh J V. Clairvoyant monitoring for signal temporal logic. Lecture Notes in Computer Science, 2020, 12288: 178−195
|
[103]
|
Yu X Y, Dong W J, Li S Y, Yin X. Model predictive monitoring of dynamical systems for signal temporal logic specifications. Automatica, 2024, 160: 111445 doi: 10.1016/j.automatica.2023.111445
|
[104]
|
Bassem G, Vinayak S P. Quantitative robustness for signal temporal logic with time-freeze quantifiers. IEEE Transactions on Computer-Aided Design of Integrated Circuits and Systems, 2023, 42(12): 4436−4449 doi: 10.1109/TCAD.2023.3283296
|
[105]
|
Zhong B Z, Jordan C, Provost J. Extending signal temporal logic with quantitative semantics by intervals for robust monitoring of Cyber-Physical Systems. ACM Transactions on Cyber-Physical Systems, 2022, 5(2): 1−25
|
[106]
|
Finkbeiner B, Fr?nzle M, Kohn F. A truly robust signal temporal logic: Monitoring safety properties of interacting Cyber-Physical Systems under uncertain observation. Algorithms, 2022, 15(4): 126 doi: 10.3390/a15040126
|
[107]
|
Salamati A, Soudjani S, Zamani M. Data-driven verification of stochastic linear systems with signal temporal logic constraints. Automatica, 2021, 131: 109781 doi: 10.1016/j.automatica.2021.109781
|
[108]
|
Yu X Y, Dong W J, Yin X, Li S Y. Online monitoring of dynamic systems for signal temporal logic specifications with model information. In: Proceedings of 2022 IEEE 61st Conference on Decision and Control (CDC). Cancun, Mexico: IEEE, 2022: 1553-1559.
|
[109]
|
Yang S, Pappas G J, Mangharam R, Lindemann L. Safe perception-based control under stochastic sensor uncertainty using conformal prediction. In: Proceedings of 2023 IEEE 62nd Conference on Decision and Control (CDC). Singapore, Singapore: IEEE, 2023: 6072-6078
|
[110]
|
Lindemann L, Cleaveland M, Shim G, Pappas G J. Safe planning in dynamic environments using conformal prediction. IEEE Robotics and Automation Letters, 2023, 8(8): 5116−5123 doi: 10.1109/LRA.2023.3292071
|
[111]
|
Lekeufack J, Angelopoulos A A, Bajcsy A, Jordan M I, Malik J. Conformal decision theory: Safe autonomous decisions from imperfect predictions. arXiv preprint arXiv: 2310.05921, 2023.
|
[112]
|
Cleaveland M, Lee I, Pappas G J, Lindemann L. Conformal prediction regions for time series using linear complementarity programming. arXiv preprint arXiv: 2304.01075, 2023.
|
[113]
|
Dixit A, Lindemann L, Wei S X, Cleaveland M, Pappas G J, Burdick J W. Adaptive conformal prediction for motion planning among dynamic agents. In: Proceedings of The 5th Annual Learning for Dynamics and Control Conference. PMLR, 2023: 300-314.
|
[114]
|
Yu X Y, Zhao Y Q, Yin X, Lindemann L. Signal temporal logic control synthesis among uncontrollable dynamic agents with conformal prediction. arXiv preprint arXiv: 2312.04242, 2023.
|
[115]
|
Lindemann L, Qin X, Deshmukh J V, Pappas G J. Conformal prediction for STL runtime verification. In: Proceedings of the ACM/IEEE 14th International Conference on Cyber-Physical Systems (with CPS-IoT Week 2023). New York, USA: ACM, 2023: 142-153.
|
[116]
|
Sinha R, Schmerling E, Pavone M. Closing the loop on runtime monitors with fallback-safe MPC. In: Proceedings of 2023 IEEE 62nd Conference on Decision and Control (CDC). Singapore, Singapore: IEEE, 2023: ? 6533-6540.
|
[117]
|
Yoo C, Belta C. Control with probabilistic signal temporal logic. arXiv preprint arXiv: 1510.08474, 2015.
|
[118]
|
陈杰, 吕梓亮, 黄鑫源, 洪奕光. 非线性系统的安全分析与控制: 障碍函数方法. 自动化学报, 2023, 49(3): 1−13Chen Jie, Lv Xin-Liang, Huang Xin-Yuan, Hong Yi-Guang. Safety analysis and safety-critical control of nonlinear systems: Barrier function approach. Acta Automatica Sinica, 2023, 49(3): 1−13
|
[119]
|
Ames A D, Xu X R, Grizzle J W, Tabuada P. Control barrier function based quadratic programs for safety critical systems. IEEE Transactions on Automatic Control, 2016, 62(8): 3861−3876
|
[120]
|
Xu X R, Grizzle J W, Tabuada P, Ames A D. Correctness guarantees for the composition of lane keeping and adaptive cruise control. IEEE Transactions on Automation Science and Engineering, 2017, 15(3): 1216−1229
|
[121]
|
Xiao W, Belta C. High-order control barrier functions. IEEE Transactions on Automatic Control, 2021, 67(7): 3655−3662
|
[122]
|
Lyu Y W, Luo W H, Dolan J M. Probabilistic safety-assured adaptive merging control for autonomous vehicles. In: Proceedings of 2021 IEEE International Conference on Robotics and Automation (ICRA). Xi'an, China: IEEE, 2021: 10764-10770.
|
[123]
|
Lyu Y W, Luo W H, Dolan J M. Adaptive safe merging control for heterogeneous autonomous vehicles using parametric control barrier functions. In: Proceedings of 2022 IEEE Intelligent Vehicles Symposium (IV). Aachen, Germany: IEEE, 2022: 542-547.
|
[124]
|
He S Y, Zeng J, Sreenath K. Autonomous racing with multiple vehicles using a parallelized optimization with safety guarantee using control barrier functions. In: Proceedings of 2022 IEEE International Conference on Robotics and Automation (ICRA). Philadelphia, USA: IEEE, 2022: 3444-3451.
|
[125]
|
Rosolia U, Borrelli F. Learning how to autonomously race a car: a predictive control approach. IEEE Transactions on Control Systems Technology, 2019, 28(6): 2713−2719
|
[126]
|
Alshiekh M, Bloem R, Ehlers R, K?nighofer B, Niekum S, Topcu U. Safe reinforcement learning via shielding. In: Proceedings of the AAAI Conference on Artificial Intelligence. 2018, 32(1).
|
[127]
|
Jansen N, K?nighofer B, Junges S, Serban A C, Bloem R. Safe reinforcement learning via probabilistic shields. arXiv preprint arXiv: 1807.06096, 2018.
|
[128]
|
Hunt N, Fulton N, Magliacane S, Hoang T N, Das S, Armando S-L. Verifiably safe exploration for end-to-end reinforcement learning. In: Proceedings of the 24th International Conference on Hybrid Systems: Computation and Control (HSCC). ACM, 2021: 1-11.
|
[129]
|
Yin J, Dawson C, Fan C C, Tsiotras P. Shield model predictive path integral: A computationally efficient robust MPC method using Control Barrier Functions. IEEE Robotics and Automation Letters, 2023, 8(11): 7106−7113 doi: 10.1109/LRA.2023.3315211
|
[130]
|
Kochdumper N, Krasowski H, Wang X, Bak S, Althoff M. Provably safe reinforcement learning via action projection using reachability analysis and polynomial zonotopes. IEEE Open Journal of Control Systems, 2023, 2: 79−92 doi: 10.1109/OJCSYS.2023.3256305
|
[131]
|
Hsu K C, Ren A Z, Nguyen D P, Majumdar A, Fisac J F. Sim-to-Lab-to-Real: Safe reinforcement learning with shielding and generalization guarantees. Artificial Intelligence, 2023, 314: 103811 doi: 10.1016/j.artint.2022.103811
|
[132]
|
Wolff E M, Murray R M. Optimal control of nonlinear systems with temporal logic specifications. In: Proceedings of Robotics Research: The 16th International Symposium ISRR. Cham: Springer International Publishing, 2016: 21-37.
|
[133]
|
Aasi E, Vasile C I, Belta C. A control architecture for provably-correct autonomous driving. In: Proceedings of American Control Conference (ACC). New Orleans, LA, USA: IEEE, 2021: 2913-2918.
|
[134]
|
Charitidou M, Dimarogonas D V. Receding horizon control with online barrier function design under signal temporal logic specifications. IEEE Transactions on Automatic Control, 2022, 68(6): 3545−3556
|
[135]
|
Meng Y, Fan C. Signal temporal logic neural predictive control. IEEE Robotics and Automation Letters, 2023, 8(11): 7719−7726 doi: 10.1109/LRA.2023.3315536
|
[136]
|
Shi W T, Luo X, Hong J L, Zhao C L, Gao B Z, Chen H. Accelerating Model Predictive Control with neural network optimizer. In: Proceedings of 2023 7th CAA International Conference on Vehicular Control and Intelligence (CVCI). Changsha, China: IEEE, 2023: 1-7.
|
[137]
|
陈仲瑶, 方浩. 基于线性时序逻辑的智能体不确定行为规划. 中国科学: 技术科学, 2020, 50(05): 516−525 doi: 10.1360/SST-2019-0292Chen Zhong-Yao, Fang Hao. Probabilistic action planning based on linear temporal logic. SCIENTIA SINICA Technologica, 2020, 50(05): 516−525 doi: 10.1360/SST-2019-0292
|
[138]
|
Song Y, Romero A, Müller M, Koltun V, Scaramuzza D. Reaching the limit in autonomous racing: Optimal control versus reinforcement learning. Science Robotics, 2023, 8(82): eadg1462 doi: 10.1126/scirobotics.adg1462
|
[139]
|
田戴荧, 方浩, 杨庆凯. 信号时序逻辑约束下基于终点回溯的高效规划. 无人系统技术, 2021, 4(01): 44−50Tian Dai-Ying, Fang Hao, Yang Qing-Kai. Efficient planning based on destination backtracking under Signal Temporal Logic constraints. Unmanned Systems Technology, 2021, 4(01): 44−50
|
[140]
|
殷翔, 任晓华, 李少远. 基于强化学习的机器人复杂时序逻辑任务路径规划方法. 中国专利, CN114355947A, 2022-04-15Yin Xiang, Ren Xiao-Hua, Li Shao-Yuan. Path planning method of complex temporal logic tasks for robots based on reinforcement learning. China Patent, CN114355947A, 2022-04-15
|
[141]
|
Lee K M B, Yoo C, Fitch R. Signal temporal logic synthesis as probabilistic inference. In: Proceedings of 2021 IEEE International Conference on Robotics and Automation (ICRA). Xi'an, China: IEEE, 2021: 5483-5489.
|