-
摘要: 在小样本目标检测领域, “训练和微调”两阶段表征学习范式因学习策略简单, 应用广泛. 然而, 通过探索性实验发现, 基于该范式的模型容易将新类别实例错误地分类为背景类, 从而降低对新类的识别能力. 为解决这一问题, 提出构造一个正则化分类器, 并使用“最小化背景判别性知识的调节器(BDKMR)”来引导分类器训练. BDKMR通过“最小化背景判别性知识的交叉$l_p $正则项”显式地减少背景判别性知识对构建新类分类器的干扰, 并利用“权重范数管理器”调节分类器中各类别的权重范数, 以提高模型对新类别的关注度, 同时降低其对背景类别的偏好. 此外, 考虑到 BDKMR 可能改变特征空间分布, 提出“分类器解耦模块”, 以调控模型微调过程中正则化分类器对特征提取器学习的影响. 多个数据集上的实验结果表明, 所提出的方法能够有效减少模型对新类实例的错误分类, 进而显著提升对新类的检测性能.Abstract: In the field of few-shot object detection, the “training and fine-tuning” two-stage representation learning framework is widely used due to the simplicity of its learning strategy. However, through exploratory experiments, we demonstrate that this learning paradigm is prone to misclassify novel instances as background instances, which hinders the ability of the model to recognize novel object instances. To address this issue, we propose that construct a regularized classifier and use the background discriminative knowledge minimizing regulator (BDKMR) to guide the classifier training. BDKMR explicitly reduces the effect of background discriminative knowledge on the classifier for novel categories by employing the background discriminative knowledge minimizing cross-$l_p $ regularization. Moreover, BDKMR uses the weight norm manager to adjust the weight norm of each category in the classifier in order to enhance the model's attention to new categories, while alleviating its bias toward the background category. Additionally, considering that BDKMR can alter the feature space distribution, the decoupled box classifier module is introduced to adjust the impact of the regulator on the feature extractor during the fine-tuning stage. Experimental results on multiple datasets validate that the proposed method effectively reduces the misclassification of novel object instances and improves the performance of novel categories.
-
Key words:
- Few-shot learning /
- few-shot object detection /
- regularization /
- discriminative knowledge
-
表 1 COCO数据集中新类的小样本目标检测性能(%)
Table 1 FSOD performances of novel categories on COCO dataset (%)
方法 样本数 1 2 3 5 10 30 FSRW[22] — — — — 5.6 9.1 TFA[14] 3.4 4.6 6.6 8.3 10.0 13.7 MPSR[65] 2.3 3.5 5.2 6.7 9.8 14.1 FSCE[25] — — — — 11.9 16.4 SRR-FSD[16] — — — — 11.3 14.7 DeFRCN[39] 6.5 11.8 13.4 15.3 18.6 22.5 FCT[35] 5.6 7.9 11.1 14.0 17.1 21.4 BDKMR (本文) 9.8 13.3 13.8 15.5 18.1 21.6 注: 加粗字体表示各列最优结果. 表 2 VOC数据集中新类的小样本目标检测性能(%)
Table 2 FSOD performances of the novel categories on VOC dataset (%)
方法 新类分割1 新类分割2 新类分割3 1 2 3 5 10 1 2 3 5 10 1 2 3 5 10 TFA[14] 39.8 36.1 44.7 55.7 56.0 23.5 26.9 34.1 35.1 39.1 30.8 34.8 42.8 49.5 49.8 MPSR[65] 41.7 42.5 51.4 55.2 61.8 24.4 29.3 39.2 39.9 47.8 35.6 41.8 42.3 48.0 49.7 FSCE[25] 44.2 43.8 51.4 61.9 63.4 27.3 29.5 43.5 44.2 50.2 37.2 41.9 47.5 54.6 58.5 SRR-FSD[16] 47.8 50.5 51.3 55.2 56.8 32.5 35.3 39.1 40.8 43.8 40.1 41.5 44.3 46.9 46.4 DeFRCN*[39] 55.1 61.9 64.9 65.8 66.2 33.8 45.1 46.1 53.2 52.3 51.0 56.6 55.6 59.7 61.9 Meta Faster R-CNN[41] 43.0 54.5 60.6 66.1 65.4 27.7 35.5 46.1 47.8 51.4 40.6 46.4 53.4 59.9 58.6 FCT[35] 49.9 57.1 57.9 63.2 67.1 27.6 34.5 43.7 49.2 51.2 39.5 54.7 52.3 57.0 58.7 Pseudo-Labelling[40] 54.5 53.2 58.8 63.2 65.7 32.8 29.2 50.7 49.8 50.6 48.4 52.7 55.0 59.6 59.6 ICPE[37] 54.3 59.5 62.4 65.7 66.2 33.5 40.1 48.7 51.7 52.5 50.9 53.1 55.3 60.6 60.1 $\sigma$-ADP[36] 52.3 55.5 63.1 65.9 66.7 42.7 45.8 48.7 54.8 56.3 47.8 51.8 56.8 60.3 62.4 BDKMR (本文) 58.3 65.1 67.2 67.8 66.6 37.6 47.2 48.9 53.8 52.3 55.2 58.8 57.8 60.9 62.5 表 4 在VOC数据集的30个随机训练样本上的实验结果(%)
Table 4 Experimental results over 30 random training samples on VOC dataset (%)
方法 新类分割1 新类分割2 新类分割3 1 2 3 5 10 1 2 3 5 10 1 2 3 5 10 FRCN+ft-full[33] 9.9 15.6 21.6 28.0 35.6 9.4 13.8 17.4 21.9 29.8 8.1 13.9 19.0 23.9 31.0 Xiao等[15] 24.2 35.3 42.2 49.1 57.4 21.6 24.6 31.9 37.0 45.7 21.2 30.0 37.2 43.8 49.6 TFA[14] 25.3 36.4 42.1 47.9 52.8 18.3 27.5 30.9 34.1 39.5 17.9 27.2 34.3 40.8 45.6 FSCE[25] 32.9 44.0 46.8 52.9 59.7 23.7 30.6 38.4 43.0 48.5 22.6 33.4 39.5 47.3 54.0 DeFRCN*[39] 39.3 50.9 55.3 61.8 65.3 27.4 36.8 40.4 45.1 50.8 35.0 45.1 50.2 55.7 58.9 DCNet[34] 33.9 37.4 43.7 51.1 59.6 23.2 24.8 30.6 36.7 46.6 32.3 34.9 39.7 42.6 50.7 FCT[35] 38.5 49.6 53.5 59.8 64.3 25.9 34.2 40.1 44.9 47.4 34.7 43.9 49.3 53.1 56.3 $\sigma$-ADP[36] 35.9 40.3 49.8 56.8 65.1 25.6 30.3 41.7 41.8 50.3 33.9 35.6 43.5 47.1 55.9 BDKMR (本文) 43.6 54.3 58.1 63.1 66.4 30.1 38.2 41.5 45.7 51.1 39.9 48.3 52.4 57.5 59.8 $\pm$3.2 $\pm$2.0 $\pm$1.8 $\pm$1.1 $\pm$1.0 $\pm$2.7 $\pm$2.1 $\pm$1.7 $\pm$1.9 $\pm$1.0 $\pm$3.2 $\pm$2.2 $\pm$1.5 $\pm$1.1 $\pm$1.1 表 3 在COCO数据集10个随机训练样本上的实验结果(%)
Table 3 Experimental results over 10 random training samples on COCO dataset (%)
样本数 方法 新类 nAP nAP50 nAP75 1 FRCN+ft-full[33] 1.7$\pm$0.2 3.3$\pm$0.3 1.6$\pm$0.2 TFA[14] 1.9$\pm$0.4 3.8$\pm$0.6 1.7$\pm$0.5 DeFRCN[39] 4.8$\pm$0.6 9.5$\pm$0.9 4.4$\pm$0.8 BDKMR (本文) 7.3$\pm$0.6 14.7$\pm$0.9 6.5$\pm$0.8 2 FRCN+ft-full[33] 3.1$\pm$0.3 6.1$\pm$0.6 2.9$\pm$0.3 TFA[14] 3.9$\pm$0.4 7.8$\pm$0.7 3.6$\pm$0.6 DeFRCN[39] 8.5$\pm$0.9 16.3$\pm$1.4 7.8$\pm$1.1 BDKMR (本文) 10.7$\pm$0.7 20.6$\pm$1.1 9.9$\pm$0.9 3 FRCN+ft-full[33] 3.7$\pm$0.4 7.1$\pm$0.8 3.5$\pm$0.4 TFA[14] 5.1$\pm$0.6 9.9$\pm$0.9 4.8$\pm$0.6 DeFRCN[39] 10.7$\pm$0.7 20.0$\pm$1.2 10.3$\pm$0.8 BDKMR (本文) 12.4$\pm$0.4 23.2$\pm$0.9 11.8$\pm$0.5 5 FRCN+ft-full[33] 4.6$\pm$0.5 8.7$\pm$1.0 4.4$\pm$0.6 TFA[14] 7.0$\pm$0.7 13.3$\pm$1.2 6.5$\pm$0.7 DeFRCN[39] 13.5$\pm$0.6 24.7$\pm$1.1 13.0$\pm$0.6 BDKMR (本文) 14.3$\pm$0.5 26.5$\pm$1.2 13.8$\pm$0.5 10 FRCN+ft-full[33] 5.5$\pm$0.9 10.0$\pm$1.6 5.5$\pm$0.9 TFA[14] 9.1$\pm$0.5 17.1$\pm$1.1 8.8$\pm$0.5 DeFRCN[39] 16.7$\pm$0.6 29.6$\pm$1.3 16.7$\pm$0.4 BDKMR (本文) 16.9$\pm$0.5 30.1$\pm$1.1 16.8$\pm$0.6 30 FRCN+ft-full[33] 7.4$\pm$1.1 13.1$\pm$2.1 7.4$\pm$1.0 TFA[14] 12.1$\pm$0.4 22.0$\pm$0.7 12.0$\pm$0.5 DeFRCN[39] 21.0$\pm$0.4 36.7$\pm$0.8 21.4$\pm$0.4 BDKMR (本文) 19.7$\pm$0.5 34.4$\pm$1.0 20.2$\pm$0.4 表 5 基于COCO数据集的分类器消融实验结果(%)
Table 5 Ablative experimental results in the classifiers on COCO dataset (%)
分类器 nAP nAP50 BMCR PWE WN 1 2 3 5 10 30 1 2 3 5 10 30 $\times$ $\times$ $\times$ 7.3 10.9 12.5 14.1 17.1 20.0 13.4 20.9 23.8 27.7 32.9 37.0 $\times$ $\times$ $\checkmark$ 8.0 11.4 12.7 14.1 16.9 19.7 14.4 21.5 24.1 27.4 32.6 36.6 $\checkmark$ $\times$ $\checkmark$ 8.4 11.7 13.0 14.3 17.2 19.8 15.3 22.0 24.9 28.0 32.9 36.7 $\times$ $\checkmark$ $\checkmark$ 8.3 11.6 12.6 13.9 16.8 19.4 15.2 22.0 24.1 27.4 32.5 36.3 $\checkmark$ $\checkmark$ $\checkmark$ 8.9 12.1 12.9 14.3 17.0 19.5 17.0 23.1 25.1 28.2 32.9 36.2 表 6 基于COCO数据集的特征提取器消融实验结果(%)
Table 6 Ablative experimental results in the feature extractor on COCO dataset (%)
BDKMR FE nAP nAP50 微调 DBC 1 2 3 5 10 30 1 2 3 5 10 30 $\times$ $\checkmark$ $\times$ 6.5 11.8 13.4 15.3 18.6 22.5 11.0 20.6 24.3 28.4 34.6 39.9 $\checkmark$ $\checkmark$ $\times$ 8.7 12.1 13.0 14.7 17.4 20.8 15.8 22.4 24.7 28.7 33.2 37.7 $\checkmark$ $\checkmark$ $\checkmark$ 9.8 13.3 13.8 15.5 18.1 21.6 17.9 24.7 26.3 30.4 34.4 39.0 表 7 COCO数据集上不同$\alpha $值下的实验结果(%)
Table 7 Experimental results for different $\alpha $ values on COCO dataset (%)
$\alpha$ 样本数 合计$\Delta$ 1 2 3 10 0 8.0 11.4 12.7 16.9 — 1 8.1 11.5 12.7 17.0 +0.3 10 8.3 11.5 12.6 16.9 +0.3 30 8.4 11.8 13.0 16.9 +1.1 50 8.4 11.7 13.0 17.2 +1.3 70 8.3 11.4 12.8 17.0 +0.5 90 8.3 11.6 13.0 17.0 +0.9 5 000 7.3 10.3 11.5 15.7 −4.2 表 8 COCO数据集上不同$\beta $值下的实验结果(%)
Table 8 Experimental results for different $\beta $values on COCO dataset (%)
$\beta$ 样本数 合计$\Delta$ 1 2 3 10 0.0 8.4 11.7 13.0 17.2 — 0.1 8.7 11.9 13.1 17.0 +0.4 0.2 8.9 12.1 12.9 17.0 +0.6 0.4 9.1 11.9 12.7 16.7 +0.1 0.8 9.0 11.7 12.4 16.3 −0.9 表 9 COCO数据集上不同p值下的实验结果(%)
Table 9 Experimental results for different $p $ values on COCO dataset (%)
$p$ 样本数 合计$\Delta$ 1 2 3 10 固定特征提取器参数 — 7.3 10.9 12.5 17.1 — 1 8.7 11.7 12.8 17.0 +2.4 2 8.9 12.1 12.9 17.0 +3.1 3 8.8 12.0 13.0 16.7 +2.7 4 8.9 12.1 12.8 16.6 +2.4 5 8.7 12.1 12.8 16.6 +2.4 更新特征提取器参数 — 6.5 11.8 13.4 18.6 — 1 9.6 13.0 13.8 18.0 +4.1 2 9.8 13.3 13.8 18.1 +4.7 3 10.0 13.2 14.1 18.0 +5.0 4 9.2 13.0 13.5 17.5 +2.9 5 9.1 12.7 13.8 17.6 +2.8 表 10 COCO数据集上两种PWE实现方式的比较(%)
Table 10 Comparisons of two implementations of PWE on COCO dataset (%)
APWE CPWE $\gamma$ 样本数 合计$\Delta$ 1 2 3 10 $\times$ $\times$ — 8.0 11.4 12.7 16.9 — $\checkmark$ $\times$ — 8.3 11.6 12.6 16.8 +0.3 $\times$ $\checkmark$ 1.00 8.3 11.2 12.2 16.2 −1.1 $\times$ $\checkmark$ 0.95 8.4 11.6 12.6 16.7 +0.3 $\times$ $\checkmark$ 0.90 8.2 11.6 12.7 16.8 +0.3 $\times$ $\checkmark$ 0.85 8.2 11.5 12.7 17.0 +0.4 $\times$ $\checkmark$ 0.80 8.1 11.6 12.8 16.8 +0.3 表 11 将BDKMR插入其他基线方法的模型性能(%)
Table 11 Model performance by integrating BDKMR into other baseline methods (%)
表 12 基于VOC数据集新类分割1的全部实验结果(%)
Table 12 Full experimental results on the novel set 1 of VOC dataset (%)
方法 1-shot 2-shot 3-shot 5-shot 10-shot mAP bAP nAP mAP bAP nAP mAP bAP nAP mAP bAP nAP mAP bAP nAP MPSR[65] 56.8 — 41.7 60.4 — 42.5 62.8 — 51.4 66.1 — 55.2 69.0 — 61.8 TFA w/ fc[14] 69.3 80.2 36.8 66.9 79.5 29.1 70.3 79.2 43.6 73.4 79.2 55.7 73.2 78.6 57.0 TFA w/ cosine[14] 69.7 79.6 39.8 68.2 78.9 36.1 70.5 79.1 44.7 73.4 79.3 55.7 72.8 78.4 56.0 Retentive R-CNN[45] 71.3 — 42.4 72.3 — 45.8 72.1 — 45.9 74.0 — 53.7 74.6 — 56.1 DeFRCN*[39] 72.4 78.1 55.1 73.1 76.9 61.9 73.5 76.4 64.9 74.3 77.2 65.8 74.1 76.7 66.2 BDKMR (本文) 73.3 78.3 58.3 74.0 77.0 65.1 74.7 77.1 67.2 75.0 77.4 67.8 74.5 77.1 66.6 表 13 模型复杂度对比分析
Table 13 Comparative analysis of model complexity
模型 训练 测试 时间 参数量 时间 参数量 DeFRCN[39] 0.7 s/迭代 约5 237.5万 0.7 s/图像 约5 237.5万 BDKMR (本文) 0.7 s/迭代 约5 241.8万 0.7 s/图像 约5 237.5万 -
[1] Redmon J, Divvala S, Girshick R, Farhadi A. You only look once: Unified, real-time object detection. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR). Las Vegas, USA: IEEE, 2016. 779−788 [2] Lin T Y, Goyal P, Girshick R, He K M, Dollár P. Focal loss for dense object detection. In: Proceedings of the IEEE International Conference on Computer Vision (ICCV). Venice, Italy: IEEE, 2017. 2999−3007 [3] Ren S Q, He K M, Girshick R, Sun J. Faster R-CNN: Towards real-time object detection with region proposal networks. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2017, 39(6): 1137−1149 doi: 10.1109/TPAMI.2016.2577031 [4] He K M, Gkioxari G, Dollár P, Girshick R. Mask R-CNN. In: Proceedings of the IEEE International Conference on Computer Vision (ICCV). Venice, Italy: IEEE, 2017. 2980−2988 [5] Tian Z, Shen C H, Chen H, He T. FCOS: A simple and strong anchor-free object detector. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2022, 44(4): 1922−1933 [6] Zhou X Y, Wang D Q, Krähenbühl P. Objects as points. arXiv preprint arXiv: 1904.07850, 2019. [7] 刘小波, 肖肖, 王凌, 蔡之华, 龚鑫, 郑可心. 基于无锚框的目标检测方法及其在复杂场景下的应用进展. 自动化学报, 2023, 49(7): 1369−1392Liu Xiao-Bo, Xiao Xiao, Wang Ling, Cai Zhi-Hua, Gong Xin, Zheng Ke-Xin. Anchor-free based object detection methods and its application progress in complex scenes. Acta Automatica Sinica, 2023, 49(7): 1369−1392 [8] Chen S F, Sun P Z, Song Y B, Luo P. Diffusiondet: Diffusion model for object detection. In: Proceedings of the IEEE/CVF International Conference on Computer Vision (ICCV). Paris, France: IEEE, 2023. 19773−19786 [9] Zhao Y, Lv W Y, Xu S L, Wei J M, Wang G Z, Dang Q Q, et al. DETRs beat YOLOs on real-time object detection. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR). Seattle, USA: IEEE, 2024. 16965−16974 [10] Wang A, Chen H, Liu L H, Chen K, Lin Z J, Han J G, et al. YOLOv10: Real-time end-to-end object detection. In: Proceedings of the 38th Conference on Neural Information Processing Systems. Vancouver, Canada: NeurIPS, 2024. 107984−108011 [11] Pachetti E, Colantonio S. A systematic review of few-shot learning in medical imaging. Artificial Intelligence in Medicine, 2024, 156: Article No. 102949 doi: 10.1016/j.artmed.2024.102949 [12] Zhou Z, Zhao L J, Ji K F, Kuang G Y. A domain-adaptive few-shot SAR ship detection algorithm driven by the latent similarity between optical and SAR images. IEEE Transactions on Geoscience and Remote Sensing, 2024, 62: Article No. 5216318 [13] Chen H, Wang Y L, Wang G Y, Qiao Y. LSTD: A low-shot transfer detector for object detection. In: Proceedings of the 32nd AAAI Conference on Artificial Intelligence. New Orleans, USA: AAAI, 2018. 2836−2843 [14] Wang X, Huang T E, Darrell T, Gonzalez J E, Yu F. Frustratingly simple few-shot object detection. In: Proceedings of the 37th International Conference on Machine Learning. Virtual Event: JMLR.org, 2020. Article No. 920 [15] Xiao Y, Lepetit V, Marlet R. Few-shot object detection and viewpoint estimation for objects in the wild. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2023, 45(3): 3090−3106 [16] Zhu C C, Chen F Y, Ahmed U, Shen Z Q, Savvides M. Semantic relation reasoning for shot-stable few-shot object detection (CVPR). In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition. Nashville, USA: IEEE, 2021. 8778−8787 [17] 刘颖, 雷研博, 范九伦, 王富平, 公衍超, 田奇. 基于小样本学习的图像分类技术综述. 自动化学报, 2021, 47(2): 297−315Liu Ying, Lei Yan-Bo, Fan Jiu-Lun, Wang Fu-Ping, Gong Yan-Chao, Tian Qi. Survey on image classification technology based on small sample learning. Acta Automatica Sinica, 2021, 47(2): 297−315 [18] 王多瑞, 杜杨, 董兰芳, 胡卫明, 李兵. 基于特征变换和度量网络的小样本学习算法. 自动化学报, 2023, 50(7): 1305−1314Wang Duo-Rui, Du Yang, Dong Lan-Fang, Hu Wei-Ming, Li Bing. Feature transformation and metric networks for few-shot learning. Acta Automatica Sinica, 2023, 50(7): 1305−1314 [19] Zhang R H, Tan J Y, Cao Z, Xu L X, Liu Y M, Si L Y, et al. Part-aware correlation networks for few-shot learning. IEEE Transactions on Multimedia, 2024, 26: 9527−9538 doi: 10.1109/TMM.2024.3394681 [20] Zhang H, Xu J Z, Jiang S L, He Z A. Simple semantic-aided few-shot learning. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR). Seattle, USA: IEEE, 2024. 28588−28597 [21] Xin Z M, Chen S M, Wu T X, Shao Y J, Ding W P, You X G. Few-shot object detection: Research advances and challenges. Information Fusion, 2024, 107: Article No. 102307 doi: 10.1016/j.inffus.2024.102307 [22] Kang B Y, Liu Z, Wang X, Yu F, Feng J S, Darrell T. Few-shot object detection via feature reweighting. In: Proceedings of the IEEE/CVF International Conference on Computer Vision (ICCV). Seoul, South Korea: IEEE, 2019. 8419−8428 [23] Wang Y X, Ramanan D, Hebert M. Meta-learning to detect rare objects. In: Proceedings of the IEEE/CVF International Conference on Computer Vision (ICCV). Seoul, South Korea: IEEE, 2019. 9924−9933 [24] Wang Z C, Yang B, Yue H N, Ma Z H. Fine-grained prototypes distillation for few-shot object detection. In: Proceedings of the 38th AAAI Conference on Artificial Intelligence. Vancouver, Canada: AAAI, 2024. 5859−5866 [25] Sun B, Li B H, Cai S C, Yuan Y, Zhang C. FSCE: Few-shot object detection via contrastive proposal encoding. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR). Nashville, USA: IEEE, 2021. 7348−7358 [26] Ma J W, Niu Y L, Xu J C, Huang S Y, Han G X, Chang S F. DiGeo: Discriminative geometry-aware learning for generalized few-shot object detection. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR). Vancouver, Canada: IEEE, 2023. 3208−3218 [27] Xin Z M, Wu T X, Chen S M, Zou Y X, Shao L, You X G. ECEA: Extensible co-existing attention for few-shot object detection. IEEE Transactions on Image Processing, 2024, 33: 5564−5576 doi: 10.1109/TIP.2024.3411771 [28] Lin T Y, Maire M, Belongie S, Hays J, Perona P, Ramanan D, et al. Microsoft COCO: Common objects in context. In: Proceedings of the 13th European Conference on Computer Vision. Zurich, Switzerland: Springer, 2014. 740−755 [29] Finn C, Abbeel P, Levine S. Model-agnostic meta-learning for fast adaptation of deep networks. In: Proceedings of the 34th International Conference on Machine Learning. Sydney, Australia: JMLR.org, 2017. 1126−1135 [30] Li Z G, Zhou F W, Chen F, Li H. Meta-SGD: Learning to learn quickly for few-shot learning. arXiv preprint arXiv: 1707.09835, 2017. [31] Nichol A, Achiam J, Schulman J. On first-order meta-learning algorithms. arXiv preprint arXiv: 1803.02999, 2018. [32] Luo X, Wu H, Zhang J, Gao L L, Xu J, Song J K. A closer look at few-shot classification again. In: Proceedings of the 40th International Conference on Machine Learning. Honolulu, USA: JMLR.org, 2023. Article No. 960 [33] Yan X P, Chen Z L, Xu A N, Wang X X, Liang X D, Lin L. Meta R-CNN: Towards general solver for instance-level low-shot learning. In: Proceedings of the IEEE/CVF International Conference on Computer Vision (ICCV). Seoul, South Korea: IEEE, 2019. 9576−9585 [34] Hu H Z, Bai S, Li A X, Cui J S, Wang L W. Dense relation distillation with context-aware aggregation for few-shot object detection. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR). Nashville, USA: IEEE, 2021. 10180−10189 [35] Han G X, Ma J W, Huang S Y, Chen L, Chang S F. Few-shot object detection with fully cross-transformer. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR). New Orleans, USA: IEEE, 2022. 5311−5320 [36] Du J H, Zhang S, Chen Q, Le H F, Sun Y P, Ni Y, et al. σ-adaptive decoupled prototype for few-shot object detection. In: Proceedings of the IEEE/CVF International Conference on Computer Vision (ICCV). Paris, France: IEEE, 2023. 18904−18914 [37] Lu X N, Diao W H, Mao Y Q, Li J X, Wang P J, Sun X, et al. Breaking immutable: Information-coupled prototype elaboration for few-shot object detection. In: Proceedings of the 37th AAAI Conference on Artificial Intelligence. Washington, USA: AAAI, 2023. 1844−1852 [38] Zhao X Y, Zou X, Wu Y. Morphable detector for object detection on demand. In: Proceedings of the IEEE/CVF International Conference on Computer Vision (ICCV). Montreal, Canada: IEEE, 2021. 4751−4760 [39] Qiao L M, Zhao Y X, Li Z Y, Qiu X, Wu J N, Zhang C. DeFRCN: Decoupled faster R-CNN for few-shot object detection. In: Proceedings of the IEEE/CVF International Conference on Computer Vision (ICCV). Montreal, Canada: IEEE, 2021. 8661−8670 [40] Kaul P, Xie W D, Zisserman A. Label, verify, correct: A simple few shot object detection method. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR). New Orleans, USA: IEEE, 2022. 14217−14227 [41] Han G X, Huang S Y, Ma J W, He Y C, Chang S F. Meta faster R-CNN: Towards accurate few-shot object detection with attentive feature alignment. In: Proceedings of the 36th AAAI Conference on Artificial Intelligence. Vancouver, Canada: AAAI, 2022. 780−789 [42] Zhang G J, Luo Z P, Cui K W, Lu S J, Xing E P. Meta-DETR: Image-level few-shot detection with inter-class correlation exploitation. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2023, 45(11): 12832−12843 [43] Vaswani A, Shazeer N, Parmar N, Uszkoreit J, Jones L, Gomez A N, et al. Attention is all you need. In: Proceedings of the 31st International Conference on Neural Information Processing System. Long Beach, USA: Curran Associates Inc., 2017. 6000−6010 [44] Carion N, Massa F, Synnaeve G, Usunier N, Kirillov A, Zagoruyko S. End-to-end object detection with transformers. In: Proceedings of the 16th European Conference on Computer Vision. Glasgow, UK: Springer, 2020. 213−229 [45] Fan Z B, Ma Y C, Li Z M, Sun J. Generalized few-shot object detection without forgetting. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR). Nashville, USA: IEEE, 2021. 4525−4534 [46] Li J M, Zhang Y N, Qiang W W, Si L Y, Jiao C B, Hu X H, et al. Disentangle and remerge: Interventional knowledge distillation for few-shot object detection from a conditional causal perspective. In: Proceedings of the 37th AAAI Conference on Artificial Intelligence. Washington, USA: AAAI, 2023. 1323−1333 [47] Li A X, Li Z G. Transformation invariant few-shot object detection. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR). Nashville, USA: IEEE, 2021. 3093−3101 [48] Xu J Y, Le H, Samaras D. Generating features with increased crop-related diversity for few-shot object detection. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR). Vancouver, Canada: IEEE, 2023. 19713−19722 [49] Salimans T, Kingma D P. Weight normalization: A simple reparameterization to accelerate training of deep neural networks. In: Proceedings of the 30th International Conference on Neural Information Processing Systems. Barcelona, Spain: Curran Associates Inc., 2016. 901−909 [50] Liu W Y, Wen Y D, Yu Z F, Li M, Raj B, Song L. SphereFace: Deep hypersphere embedding for face recognition. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR). Honolulu, USA: IEEE, 2017. 6738−6746 [51] Liu Y, Li H Y, Wang X G. Learning deep features via congenerous cosine loss for person recognition. arXiv preprint arXiv: 1702.06890, 2017. [52] Hasnat A, Bohné J, Milgram J, Gentric S, Chen L M. von Mises-fisher mixture model-based deep learning: Application to face verification. arXiv preprint arXiv: 1706.04264, 2017. [53] Wang F, Xiang X, Cheng J, Yuille A L. NormFace: L2 hypersphere embedding for face verification. In: Proceedings of the 25th ACM International Conference on Multimedia. Mountain View, USA: ACM, 2017. 1041−1049 [54] Chen W Y, Liu Y C, Kira Z, Wang Y C F, Huang J B. A closer look at few-shot classification. In: Proceedings of the 7th International Conference on Learning Representations. New Orleans, USA: OpenReview.net, 2019. [55] Tibshirani R. Regression shrinkage and selection via the lasso. Journal of the Royal Statistical Society: Series B (Methodological), 1996, 58(1): 267−288 doi: 10.1111/j.2517-6161.1996.tb02080.x [56] de Mol C, de Vito E, Rosasco L. Elastic-net regularization in learning theory. Journal of Complexity, 2009, 25(2): 201−230 doi: 10.1016/j.jco.2009.01.002 [57] Liu S Y, Wei L S, Lv S G, Li M. Stability and generalization of ℓ_pregularized stochastic learning for GCN. In: Proceedings of the 32nd International Joint Conference on Artificial Intelligence. Macao, China: IJCAI, 2023. Article No. 631 [58] Ribeiro A H, Zachariah D, Bach F, Schön T B. Regularization properties of adversarially-trained linear regression. In: Proceedings of the 37th Conference on Neural Information Processing Systems. New Orleans, USA: NeurIPS, 2023. [59] Guo Y D, Zhang L. One-shot face recognition by promoting underrepresented classes. arXiv preprint arXiv: 1707.05574, 2018. [60] Dang W Q, Yang Z, Dong W S, Li X, Shi G M. Inverse weight-balancing for deep long-tailed learning. In: Proceedings of the 38th AAAI Conference on Artificial Intelligence. Vancouver, Canada: AAAI, 2024. 11713−11721 [61] Snell J, Swersky K, Zemel R. Prototypical networks for few-shot learning. In: Proceedings of the 31st International Conference on Neural Information Processing Systems. Long Beach, USA: Curran Associates Inc., 2017. 4080−4090 [62] Everingham M, van Gool L, Williams C K I, Winn J, Zisserman A. The PASCAL visual object classes (VOC) challenge. International Journal of Computer Vision, 2010, 88(2): 303−338 doi: 10.1007/s11263-009-0275-4 [63] He K M, Zhang X Y, Ren S Q, Sun J. Deep residual learning for image recognition. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR). Las Vegas, USA: IEEE, 2016. 770−778 [64] Russakovsky O, Deng J, Su H, Krause J, Satheesh S, Ma S A, et al. ImageNet large scale visual recognition challenge. International Journal of Computer Vision, 2015, 115(3): 211−252 doi: 10.1007/s11263-015-0816-y [65] Wu J X, Liu S T, Huang D, Wang Y H. Multi-scale positive sample refinement for few-shot object detection. In: Proceedings of the 16th European Conference on Computer Vision. Glasgow, UK: Springer, 2020. 456−472 [66] McCulloch J A, St. Pierre S R, Linka K, Kuhl E. On sparse regression, L_p-regularization, and automated model discovery. International Journal for Numerical Methods in Engineering, 2024, 125(14): Article No. e7481 doi: 10.1002/nme.7481 -