2.845

2023影响因子

(CJCR)

  • 中文核心
  • EI
  • 中国科技核心
  • Scopus
  • CSCD
  • 英国科学文摘

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

基于最小化背景判别性知识的小样本目标检测算法

张雅楠 宋飞 靳毅凡 王晓明 刘立祥 李江梦

张雅楠, 宋飞, 靳毅凡, 王晓明, 刘立祥, 李江梦. 基于最小化背景判别性知识的小样本目标检测算法. 自动化学报, xxxx, xx(x): x−xx doi: 10.16383/j.aas.c240341
引用本文: 张雅楠, 宋飞, 靳毅凡, 王晓明, 刘立祥, 李江梦. 基于最小化背景判别性知识的小样本目标检测算法. 自动化学报, xxxx, xx(x): x−xx doi: 10.16383/j.aas.c240341
Zhang Ya-Nan, Song Fei, Jin Yi-Fan, Wang Xiao-Ming, Liu Li-Xiang, Li Jiang-Meng. Minimizing background discriminative knowledge for few-shot object detection. Acta Automatica Sinica, xxxx, xx(x): x−xx doi: 10.16383/j.aas.c240341
Citation: Zhang Ya-Nan, Song Fei, Jin Yi-Fan, Wang Xiao-Ming, Liu Li-Xiang, Li Jiang-Meng. Minimizing background discriminative knowledge for few-shot object detection. Acta Automatica Sinica, xxxx, xx(x): x−xx doi: 10.16383/j.aas.c240341

基于最小化背景判别性知识的小样本目标检测算法

doi: 10.16383/j.aas.c240341 cstr: 32138.14.j.aas.c240341
基金项目: 基础科研计划 (JCKY2022130C020)资助
详细信息
    作者简介:

    张雅楠:2025年获得中国科学院软件研究所博士学位. 主要研究方向为小样本学习, 目标检测. E-mail: yanan2018@iscas.ac.cn

    宋飞:中国科学院软件研究所博士研究生. 2021年获得河南大学软件学院学士学位. 主要研究方向为多模态提示学习. E-mail: songfei2022@iscas.ac.cn

    靳毅凡:中国科学院软件研究所在读博士研究生. 2020年获得中南大学计算机学院学士学位. 主要研究方向为深度学习, 图表示学习. E-mail: yifan2020@iscas.ac.cn

    王晓明:北京跟踪与通信技术研究所. 2014年获得国防科技大学博士学位. 研究方向为天基智能化. E-mail: wxm_01@bittt.cn

    刘立祥:中国科学院软件研究所研究员. 2002年毕业于上海交通大学电子工程学院, 获博士学位. 主要从事大型综合信息系统智能组网协议、大规模一体化系统地面验证以及复杂信息系统体系结构方面的研究. E-mail: lixiang@iscas.ac.cn

    李江梦:中国科学院软件研究所助理研究员. 2023年在中国科学院软件研究所获得博士学位. 主要研究方向为可信多模态信息融合. 本文通信作者. E-mail: jiangmeng2019@iscas.ac.cn

Minimizing Background Discriminative Knowledge for Few-shot Object Detection

Funds: Supported by the Fundamental Research Program, China (JCKY2022130C020)
More Information
    Author Bio:

    ZHANG Ya-Nan Received her Ph.D. degree from the Institute of Software, Chinese Academy of Sciences in 2025. Her research interest covers few-shot learning and object detection

    SONG Fei Ph.D. candidate at the Institute of Software, Chinese Academy of Sciences. Received her bachelor degree from the Software College of Henan University in 2021. Her main research focus is on multimodal prompt learning

    JIN Yi-Fan Ph.D. candidate at the Institute of Software, Chinese Academy of Sciences. Received her bachelor degree from Central South University in 2020. Her main research focuses on deep learning and graph representation learning

    WANG Xiao-Ming Beijing Institute of Tracking and Telecommunications Technology. Received his Ph.D. degree from National University of Defense Technology in 2014. His research focuses on space-based intelligent systems

    LIU Li-Xiang Professor of the Institute of software of the Chinese Academy of Sciences (ISCAS). Graduated from the Shanghai Jiaotong University in 2002 with a doctor's degree. His research interests include intelligent networking of space-based integrated information systems, ground verification of large-scale network integrated system and complex information system architecture

    LI Jiang-Meng Assistant researcher at the Institute of Software, Chinese Academy of Sciences. Received his Ph.D. degree from the Institute of Software, Chinese Academy of Sciences in 2023. His primary research focuses on trustworthy multimodal information fusion. Corresponding author of this paper

  • 摘要: 在小样本目标检测领域, “训练和微调”两阶段表征学习范式因学习策略简单, 应用广泛. 然而, 通过探索性实验发现, 基于该范式的模型容易将新类别实例错误地分类为背景类, 从而降低了对新类的识别能力. 为了解决这一问题, 提出构造一个正则化分类器, 并使用“最小化背景判别性知识的调节器 (Background discriminative knowledge minimizing regulator, BDKMR)”来引导分类器训练. BDKMR通过“最小化背景判别性知识的交叉$l_p $正则项(Background discriminative knowledge minimizing cross-$l_p $ regularization, BMCR)”显式地减少背景判别性知识对构建新类分类器的干扰, 并利用“权重范数管理器(Weight norm manager, WNM)”调节分类器中各类别的权重范数, 以提高模型对新类别的关注度, 同时降低其对背景类别的偏好. 此外, 考虑到 BDKMR 可能改变特征空间分布, 提出“分类器解耦模块(Decoupled box classifier, DBC)”, 以调控模型微调过程中正则化分类器对特征提取器学习的影响. 多个数据集上的实验结果表明, 所提出的方法能够有效减少模型对新类实例的错误分类, 进而显著提升对新类的检测性能.
  • 图  1  分类错误的统计结果

    Fig.  1  Exploratory experiments of classification errors

    图  2  权重和特征沿维度的分布

    Fig.  2  Distributions of weights and features along dimensions

    图  3  新类的权重范数平均值和正权重范数平均值随训练迭代次数的变化

    Fig.  3  The variation of the average norm of weights and the average norm of positive weights for novel classes with respect to the number of training iterations

    图  4  不同类别权重范数与正权重范数的比较

    Fig.  4  Comparisons of weight norms and positive weight norms between different categories

    图  5  前景类原型与背景类原型的相似度分析

    Fig.  5  Analysis of the similarity between prototypes of foreground classes and the background

    图  6  前景类别与背景类别的分类器权重相似度分析

    Fig.  6  Similarity analysis of classifier weights for foreground and background categories

    图  7  BDKMR方法概述图

    Fig.  7  Illustration of BDKMR

    图  8  不同样本数设置下新类与背景类权重的相似度比较

    Fig.  8  Comparison of weight similarity between novel and background categories under different shot settings

    图  9  DeFRCN和BDKMR的分类结果对比

    Fig.  9  Comparison of classification results between DeFRCN and BDKMR

    图  10  BDKMR相较于DeFRCN的新类-背景类权重相似度变化

    Fig.  10  Changes of weight similarity between novel and background classes: BDKMR compared to DeFRCN

    图  11  BDKMR和DeFRCN检测结果的可视化对比

    Fig.  11  Visual comparison of detection results between BDKMR and DeFRCN

    表  1  COCO数据集中新类的小样本检测性能(%)

    Table  1  FSOD results of novel categories on COCO (%)

    方法样本数
    12351030
    FSRW[22]5.69.1
    TFA[14]3.44.66.68.310.013.7
    MPSR[65]2.33.55.26.79.814.1
    FSCE[25]11.916.4
    SRR-FSD[16]11.314.7
    DeFRCN[39]6.511.813.415.318.622.5
    FCT[35]5.67.911.114.017.121.4
    BDKMR (本文)9.813.313.815.518.121.6
    注: 加粗字体表示各列最优结果
    下载: 导出CSV

    表  2  VOC数据集中新类的小样本检测性能(%)

    Table  2  FSOD results of the novel categories on VOC (%)

    方法新类分割1 新类分割2 新类分割3
    123510 123510 123510
    TFA[14]39.836.144.755.756.023.526.934.135.139.130.834.842.849.549.8
    MPSR[65]41.742.551.455.261.824.429.339.239.947.835.641.842.348.049.7
    FSCE[25]44.243.851.461.963.427.329.543.544.250.237.241.947.554.658.5
    SRR-FSD[16]47.850.551.355.256.832.535.339.140.843.840.141.544.346.946.4
    DeFRCN*[39]55.161.964.965.866.233.845.146.153.252.351.056.655.659.761.9
    Meta Faster R-CNN[41]43.054.560.666.165.427.735.546.147.851.440.646.453.459.958.6
    FCT[35]49.957.157.963.267.127.634.543.749.251.239.554.752.357.058.7
    Pseudo-Labelling[40]54.553.258.863.265.732.829.250.749.850.648.452.755.059.659.6
    ICPE[37]54.359.562.465.766.233.540.148.751.752.550.953.155.360.660.1
    $\sigma$-ADP[36]52.355.563.165.966.742.745.848.754.856.347.851.856.860.362.4
    BDKMR (本文)58.365.167.267.866.637.647.248.953.852.355.258.857.860.962.5
    下载: 导出CSV

    表  4  在VOC数据集的30个随机训练集上的实验结果(%)

    Table  4  FSOD results on VOC over 30 random samples (%)

    方法新类分割1新类分割2新类分割3
    123510 123510 123510
    FRCN+ft-full[33]9.915.621.628.035.69.413.817.421.929.88.113.919.023.931.0
    Xiao et al[15]24.235.342.249.157.421.624.631.937.045.721.230.037.243.849.6
    TFA[14]25.336.442.147.952.818.327.530.934.139.517.927.234.340.845.6
    FSCE[25]32.944.046.852.959.723.730.638.443.048.522.633.439.547.354.0
    DeFRCN*[39]39.350.955.361.865.327.436.840.445.150.835.045.150.255.758.9
    DCNet[34]33.937.443.751.159.623.224.830.636.746.632.334.939.742.650.7
    FCT[35]38.549.653.559.864.325.934.240.144.947.434.743.949.353.156.3
    $\sigma$-ADP[36]35.940.349.856.865.125.630.341.741.850.333.935.643.547.155.9
    BDKMR (本文) 43.654.358.163.166.430.138.241.545.751.139.948.352.457.559.8
    $\pm$3.2$\pm$2.0$\pm$1.8$\pm$1.1$\pm$1.0$\pm$2.7$\pm$2.1$\pm$1.7$\pm$1.9$\pm$1.0$\pm$3.2$\pm$2.2$\pm$1.5$\pm$1.1$\pm$1.1
    下载: 导出CSV

    表  3  在COCO数据集10个随机训练集上的实验结果(%)

    Table  3  Experimental results over 10 random samples on COCO (%)

    样本数方法新类
    nAPnAP$_{50}$nAP$_{75}$
    1FRCN+ft-full[33]1.7$\pm$0.23.3$\pm$0.31.6$\pm$0.2
    TFA[14]1.9$\pm$0.43.8$\pm$0.61.7$\pm$0.5
    DeFRCN[39]4.8$\pm$0.69.5$\pm$0.94.4$\pm$0.8
    BDKMR (本文)7.3$\pm$0.614.7$\pm$0.96.5$\pm$0.8
    2FRCN+ft-full[33]3.1$\pm$0.36.1$\pm$0.62.9$\pm$0.3
    TFA[14]3.9$\pm$0.47.8$\pm$0.73.6$\pm$0.6
    DeFRCN[39]8.5$\pm$0.916.3$\pm$1.47.8$\pm$1.1
    BDKMR (本文)10.7$\pm$0.720.6$\pm$1.19.9$\pm$0.9
    3FRCN+ft-full[33]3.7$\pm$0.47.1$\pm$0.83.5$\pm$0.4
    TFA[14]5.1$\pm$0.69.9$\pm$0.94.8$\pm$0.6
    DeFRCN[39]10.7$\pm$0.720.0$\pm$1.210.3$\pm$0.8
    BDKMR (本文)12.4$\pm$0.423.2$\pm$0.911.8$\pm$0.5
    5FRCN+ft-full[33]4.6$\pm$0.58.7$\pm$1.04.4$\pm$0.6
    TFA[14]7.0$\pm$0.713.3$\pm$1.26.5$\pm$0.7
    DeFRCN[39]13.5$\pm$0.624.7$\pm$1.113.0$\pm$0.6
    BDKMR (本文)14.3$\pm$0.526.5$\pm$1.213.8$\pm$0.5
    10FRCN+ft-full[33]5.5$\pm$0.910.0$\pm$1.65.5$\pm$0.9
    TFA[14]9.1$\pm$0.517.1$\pm$1.18.8$\pm$0.5
    DeFRCN[39]16.7$\pm$0.629.6$\pm$1.316.7$\pm$0.4
    BDKMR (本文)16.9$\pm$0.530.1$\pm$1.116.8$\pm$0.6
    30FRCN+ft-full[33]7.4$\pm$1.113.1$\pm$2.17.4$\pm$1.0
    TFA[14]12.1$\pm$0.422.0$\pm$0.712.0$\pm$0.5
    DeFRCN[39]21.0$\pm$0.436.7$\pm$0.821.4$\pm$0.4
    BDKMR (本文)19.7$\pm$0.534.4$\pm$1.020.2$\pm$0.4
    下载: 导出CSV

    表  5  基于COCO数据集的分类器消融实验结果(%)

    Table  5  Ablative experimental results in the classifiers on COCO (%)

    分类器 nAP nAP$_{50}$
    BMCRPWEWN 12351030 12351030
    $\times$$\times$$\times$7.310.912.514.117.120.013.420.923.827.732.937.0
    $\times$$\times$$\checkmark$8.011.412.714.116.919.714.421.524.127.432.636.6
    $\checkmark$$\times$$\checkmark$8.411.713.014.317.219.815.322.024.928.032.936.7
    $\times$$\checkmark$$\checkmark$8.311.612.613.916.819.415.222.024.127.432.536.3
    $\checkmark$$\checkmark$$\checkmark$8.912.112.914.317.019.517.023.125.128.232.936.2
    下载: 导出CSV

    表  6  基于COCO数据集的特征提取器消融实验结果(%)

    Table  6  Comparison results of different fine-tuning methods on COCO (%)

    BDKMRFEnAPnAP$_{50}$
    微调DBC 12351030 12351030
    $\times$$\checkmark$$\times$6.511.813.415.318.622.511.020.624.328.434.639.9
    $\checkmark$$\checkmark$$\times$8.712.113.014.717.420.815.822.424.728.733.237.7
    $\checkmark$$\checkmark$$\checkmark$9.813.313.815.518.121.617.924.726.330.434.439.0
    下载: 导出CSV

    表  7  COCO数据集上不同$\alpha $值下的实验结果(%)

    Table  7  Experimental results for different $\alpha $ values on COCO (%)

    $\alpha$样本数合计$\Delta$
    12310
    08.011.412.716.9
    18.111.512.717.0+0.3
    108.311.512.616.9+0.3
    308.411.813.016.9+1.1
    508.411.713.017.2+1.3
    708.311.412.817.0+0.5
    908.311.613.017.0+0.9
    5 0007.310.311.515.7−4.2
    下载: 导出CSV

    表  8  COCO数据集上不同$\beta $值下的实验结果(%)

    Table  8  Experimental results for different $\beta $values on COCO (%)

    $\beta$样本数合计$\Delta$
    12310
    0.08.411.713.017.2
    0.18.711.913.117.0+0.4
    0.28.912.112.917.0+0.6
    0.49.111.912.716.7+0.1
    0.89.011.712.416.3−0.9
    下载: 导出CSV

    表  9  COCO数据集上不同p值下的实验结果(%)

    Table  9  Experimental results for different $p $ values on COCO (%)

    $p$样本数合计$\Delta$
    12310
    固定特征提取器参数
    7.310.912.517.1
    18.711.712.817.0+2.4
    28.912.112.917.0+3.1
    38.812.013.016.7+2.7
    48.912.112.816.6+2.4
    58.712.112.816.6+2.4
    更新特征提取器参数
    6.511.813.418.6
    19.613.013.818.0+4.1
    29.813.313.818.1+4.7
    310.013.214.118.0+5.0
    49.213.013.517.5+2.9
    59.112.713.817.6+2.8
    下载: 导出CSV

    表  10  COCO数据集上两种PWE实现方式的比较(%)

    Table  10  Comparisons of two implementations of PWE on the COCO dataset (%)

    APWECPWE$\gamma$样本数合计$\Delta$
    12310
    $\times$$\times$8.011.412.716.9
    $\checkmark$$\times$8.311.612.616.8+0.3
    $\times$$\checkmark$1.008.311.212.216.2−1.1
    $\times$$\checkmark$0.958.411.612.616.7+0.3
    $\times$$\checkmark$0.908.211.612.716.8+0.3
    $\times$$\checkmark$0.858.211.512.717.0+0.4
    $\times$$\checkmark$0.808.111.612.816.8+0.3
    下载: 导出CSV

    表  11  将BDKMR插入到其他基线方法的模型性能(%)

    Table  11  Model performance by integrating BDKMR into other baseline methods (%)

    方法集成 BDKMR样本数
    123510
    TFA-fc[14]$\times$41.5*38.0*43.7*54.7*56.0*
    $ \checkmark$44.941.944.454.955.4
    TFA-cosine[14]$\times$46.3*41.5*45.0*53.8*54.4*
    $ \checkmark$47.042.745.454.754.9
    DeFRCN[39]$\times$55.1*61.9*64.9*65.8*66.2*
    $ \checkmark$58.365.167.267.866.6
    下载: 导出CSV

    表  12  基于VOC数据集新类分割1的全部实验结果(%)

    Table  12  Full results on the novel set 1 of VOC (%)

    方法1-shot2-shot3-shot5-shot10-shot
    mAPbAPnAPmAPbAPnAPmAPbAPnAPmAPbAPnAPmAPbAPnAP
    MPSR[65]56.841.760.442.562.851.466.155.269.061.8
    TFA w/ fc[14]69.380.236.866.979.529.170.379.243.673.479.255.773.278.657.0
    TFA w/ cosine[14]69.779.639.868.278.936.170.579.144.773.479.355.772.878.456.0
    Retentive R-CNN[45]71.342.472.345.872.145.974.053.774.656.1
    DeFRCN*[39]72.478.155.173.176.961.973.576.464.974.377.265.874.176.766.2
    BDKMR73.378.358.374.077.065.174.777.167.275.077.467.874.577.166.6
    下载: 导出CSV

    表  13  模型复杂度对比分析

    Table  13  Comparative analysis of model complexity

    模型训练测试
    时间参数量时间参数量
    DeFRCN[39]0.7s/iter约5 237.5万0.7s/img约5 237.5万
    BDKMR0.7s/iter约5 241.8万0.7s/img约5 237.5万
    下载: 导出CSV
  • [1] Redmon J, Divvala S, Girshick R, Farhadi A. You only look once: Unified, real-time object detection. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition. Las Vegas, Nevada, USA: 2016. 779−788
    [2] Lin T Y, Goyal P, Girshick R, He K, Dollár P. Focal loss for dense object detection. In: Proceedings of the IEEE/CVF International Conference on Computer Vision. Venice, Italy: IEEE 2017. 2999−3007
    [3] Ren S, He K, Girshick R, Sun J. Faster r-cnn: Towards real-time object detection with region proposal networks. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2017, 39(6): 1137−1149 doi: 10.1109/TPAMI.2016.2577031
    [4] He K, Gkioxari G, Dollár P, Girshick R. Mask r-cnn. In: Proceedings of the IEEE/CVF International Conference on Computer Vision. Venice, Italy: IEEE 2017. 2980−2988
    [5] Tian Z, Shen C, Chen H, He T. FCOS: a simple and strong anchor-free object detector. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2022, 44(4): 1922−1933
    [6] Zhou X, Wang D, Krähenbühl P. Objects as points. arXiv preprint arXiv: 1904.07850, 2019.
    [7] 刘小波, 肖肖, 王凌, 蔡之华, 龚鑫, 郑可心. 基于无锚框的目标检测方法及其在复杂场景下的应用进展. 自动化学报, 2023, 49(7): 1369−1392

    Liu Xiao-Bo, Xiao Xiao, Wang Ling, Cai Zhi-Hua, Gong Xin, Zheng Ke-Xin. Anchor-free based object detection methods and its application progress in complex scenes. Acta Automatica Sinica, 2023, 49(7): 1369−1392
    [8] Chen S, Sun P, Song Y, Luo P. Diffusiondet: Diffusion model for object detection. In: Proceedings of the IEEE/CVF International Conference on Computer Vision. Paris, France: IEEE 2023. 19773−19786
    [9] Zhao Y, Lv W, Xu S, Wei J, Wang G, Dang Q, et al. Detrs beat yolos on real-time object detection. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition. Seattle, WA, USA: 2024. 16965−16974
    [10] Wang A, Chen H, Liu L, Chen K, Lin Z, Han J, et al. Yolov10: Real-time end-to-end object detection. In: Proceedings of Advances in Neural Information Processing Systems. Vancouver, BC, Canada: 2024. 107984−108011
    [11] Pachetti E, Colantonio S. A systematic review of few-shot learning in medical imaging. Artificial Intelligence in Medicine, DOI: 10.1016/J.ARTMED.2024.102949
    [12] Zhou Z, Zhao L, Ji K, Kuang G. A domain adaptive few-shot SAR ship detection algorithm driven by the latent similarity between optical and SAR images. IEEE Transactions on Geoscience and Remote Sensing, DOI: 10.1109/TGRS.2024.3421512
    [13] Chen H, Wang Y, Wang G, Qiao Y. Lstd: A low-shot transfer detector for object detection. In: Proceedings of the AAAI Conference on Artificial Intelligence. New Orleans, Louisiana, USA: 2018. 2836−2843
    [14] Wang X, Huang T E, Gonzalezand J, Darrell T, Yu F. Frustratingly simple few-shot object detection. In: Proceedings of the 37nd International Conference on Machine Learning. Virtual Conference: 2020. 9919−9928
    [15] Xiao Y, Lepetit V, Marlet R. Few-shot object detection and viewpoint estimation for objects in the wild. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2022, 45(3): 3090−3106
    [16] Zhu C, Chen F, Ahmed U, Shen Z, Savvides M. Semantic relation reasoning for shot-stable few-shot object detection. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition. Virtual Conference: 2021. 8782−8791
    [17] 刘颖, 雷研博, 范九伦, 王富平, 公衍超, 田奇. 基于小样本学习的图像分类技术综述. 自动化学报, 2021, 47(2): 297−315

    Liu Ying, Lei Yan-Bo, Fan Jiu-Lun, Wang Fu-Ping, Gong Yan-Chao, Tian Qi. Survey on image classification technology based on small sample learning. Acta Automatica Sinica, 2021, 47(2): 297−315
    [18] 王多瑞, 杜杨, 董兰芳, 胡卫明, 李兵. 基于特征变换和度量网络的小样本学习算法. 自动化学报, 2023, 50(7): 1305−1314

    Wang Duo-Rui, Du Yang, Dong Lan-Fang, Hu Wei-Ming, Li Bing. Metric based feature transformation networks for few-shot learning. Acta Automatica Sinica, 2023, 50(7): 1305−1314
    [19] Zhang R, Tan J, Cao Z, Xu L, Liu Y, Si L, et al. Part-aware correlation networks for few-shot learning. IEEE Transactions on Multimedia, DOI: 10.1109/TMM.2024.3394681
    [20] Zhang H, Xu J, Jiang S, He Z. Simple semantic-aided few-shot learning. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition. Seattle, WA, USA: 2024. 28588−28597
    [21] Xin Z, Chen S, Wu T, Shao Y, Ding W, You X. Few-shot object detection: Research advances and challenges. Information Fusion, DOI: 10.1016/J.INFFUS.2024.102307
    [22] Kang B, Liu Z, Wang X, Yu F, Feng J, Darrell T. Few-shot object detection via feature reweighting. In: Proceedings of the IEEE/CVF International Conference on Computer Vision. Seoul, South Korea: IEEE 2019. 8419−8428
    [23] Wang Y X, Ramanan D, Hebert M. Meta-learning to detect rare objects. In: Proceedings of the IEEE/CVF International Conference on Computer Vision. Seoul, South Korea: IEEE 2019. 9924−9933
    [24] Wang Z, Yang B, Yue H, Ma Z. Fine-grained prototypes distillation for few-shot object detection. In: Proceedings of the AAAI Conference on Artificial Intelligence. Vancouver, Canada: 2024. 5859−5866
    [25] Sun B, Li B, Cai S, Yuan Y, Zhang C. Fsce: Few-shot object detection via contrastive proposal encoding. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition. Virtual Conference: 2021. 7352−7362
    [26] Ma J, Niu Y, Xu J, Huang S, Han G, Chang S F. Digeo: Discriminative geometry-aware learning for generalized few-shot object detection. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition. Vancouver, BC, Canada: 2023. 3208−3218
    [27] Xin Z, Wu T, Chen S, Zou Y, Shao L, You X. ECEA: Extensible co-existing attention for few-shot object detection. IEEE Transactions on Image Processing, DOI: 10.1109/TIP.2024.3411771
    [28] Lin T Y, Maire M, Belongie S J, Hays J, Perona P, Ramanan D, et al. Microsoft coco: common objects in context. In: Proceedings of European Conference on Computer Vision. Zurich, Switzerland: 2014. 740−755
    [29] Finn C, Abbeel P, Levine S. Model-agnostic meta-learning for fast adaptation of deep networks. In: Proceedings of the 34nd International Conference on Machine Learning. Sydney, Australia: 2017. 1126−1135
    [30] Li Z, Zhou F, Chen F, Li H. Meta-sgd: Learning to learn quickly for few-shot learning. arXiv preprint arXiv: 1707.09835, 2017.
    [31] Nichol A, Achiam J, Schulman J. On first-order meta-learning algorithms. arXiv preprint arXiv: 1803.02999, 2018.
    [32] Luo X, Wu H, Zhang J, Gao L, Xu J, Song J. A closer look at few-shot classification again. In: Proceedings of the International Conference on Machine Learning. Honolulu, Hawaii, USA: 2023. 23103−23123
    [33] Yan X, Chen Z, Xu A, Wang X, Liang X, Lin L. Meta r-cnn: Towards general solver for instance-level low-shot learning. In: Proceedings of the IEEE/CVF International Conference on Computer Vision. Seoul, South Korea: IEEE 2019. 9576−9585
    [34] Hu H, Bai S, Li A, Cui J, Wang L. Dense relation distillation with context-aware aggregation for few-shot object detection. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition. Virtual Conference: 2021. 10185−10194
    [35] Han G, Ma J, Huang S, Chen L, Chang S F. Few-shot object detection with fully cross-transformer. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition. New Orleans, Louisiana, USA: 2022. 5321−5330
    [36] Du J, Zhang S, Chen Q, Le H, Sun Y, Ni Y, et al. σ-adaptive decoupled prototype for few-shot object detection. In: Proceedings of the IEEE/CVF International Conference on Computer Vision. Paris, France: IEEE 2023. 18904−18914
    [37] Lu X, Diao W, Mao Y, Li J, Wang P, Sun X, et al. Breaking immutable: Information-coupled prototype elaboration for few-shot object detection. In: Proceedings of the AAAI Conference on Artificial Intelligence. Washington, DC, USA: 2023. 1844−1852
    [38] Zhao X, Zou X, Wu Y. Morphable detector for object detection on demand. In: Proceedings of the IEEE/CVF International Conference on Computer Vision. Virtual Conference: IEEE 2021. 4751−4760
    [39] Qiao L, Zhao Y, Li Z, Qiu X, Wu J, Zhang C. Defrcn: Decoupled faster r-cnn for few-shot object detection. In: Proceedings of the IEEE/CVF International Conference on Computer Vision. Virtual Conference: IEEE 2021. 8661−8670
    [40] Kaul P, Xie W, Zisserman A. Label, verify, correct: A simple few shot object detection method. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition. New Orleans, Louisiana, USA: 2022. 14237−14247
    [41] Han G, Huang S, Ma J, He Y, Chang S F. Meta faster r-cnn: Towards accurate few-shot object detection with attentive feature alignment. In: Proceedings of the AAAI Conference on Artificial Intelligence. Vancouver, BC, Canada: 2022. 780−789
    [42] Zhang G, Luo Z, Cui K, Lu S, Xing E P. Meta-detr: Image-level few-shot detection with inter-class correlation exploitation. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2022, 45(11): 12832−12843
    [43] Vaswani A, Shazeer N, Parmar N, Uszkoreit J, Jones L, Gomez A N, et al. Attention is all you need. In: Proceedings of Advances in Neural Information Processing Systems. Long Beach, CA, USA: 2017. 5998−6008
    [44] Carion N, Massa F, Synnaeve G, Usunier N, Kirillov A, Zagoruyko S. End-to-end object detection with transformers. In: Proceedings of European Conference on Computer Vision. Glasgow, UK: 2020. 213−229
    [45] Fan Z, Ma Y, Li Z, Sun J. Generalized few-shot object detection without forgetting. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition. Virtual Conference: 2021. 4527−4536
    [46] Li J, Zhang Y, Qiang W, Si L, Jiao C, Hu X, et al. Disentangle and remerge: interventional knowledge distillation for few-shot object detection from a conditional causal perspective. In: Proceedings of the AAAI Conference on Artificial Intelligence. Washington, DC, USA: 2023. 1323−1333
    [47] Li A, Li Z. Transformation invariant few-shot object detection. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition. Virtual Conference: 2021. 3094−3102
    [48] Xu J, Le H, Samaras D. Generating features with increased crop-related diversity for few-shot object detection. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition. Vancouver, BC, Canada: 2023. 19713−19722
    [49] Salimans T, Kingma D P. Weight normalization: A simple reparameterization to accelerate training of deep neural networks. In: Proceedings of Advances in Neural Information Processing Systems. Barcelona, Spain: 2016. 29
    [50] Liu W, Wen Y, Yu Z, Li M, Raj B, Song L. Sphereface: Deep hypersphere embedding for face recognition. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition. Honolulu, HI, USA: IEEE 2017. 6738−6746
    [51] Liu Y, Li H, Wang X. Learning deep features via congenerous cosine loss for person recognition. arXiv preprint arXiv: 1702.06890, 2017.
    [52] Hasnat M A, Bohné J, Milgram J, Gentric S, Chen L. von mises-fisher mixture model-based deep learning: Application to face verification. arXiv preprint arXiv: 1706.04264, 2017.
    [53] Wang F, Xiang X, Cheng J, Yuille A L. Normface: L2 hypersphere embedding for face verification. In: Proceedings of the 25th ACM International Conference on Multimedia. Mountain View, CA, USA: 2017. 1041−1049
    [54] Chen W Y, Liu Y C, Kira Z, Wang Y C F, Huang J B. A closer look at few-shot classification. In: Proceedings of the 6th International Conference on Learning Representations. New Orleans, Louisiana, USA: ICLR, 2019.
    [55] Tibshirani R. Regression shrinkage and selection via the lasso. Journal of the Royal Statistical Society Series B: Statistical Methodology, 1996, 58(1): 267−288 doi: 10.1111/j.2517-6161.1996.tb02080.x
    [56] De M C, De V E, Rosasco L. Elastic-net regularization in learning theory. Journal of Complexity, 2009, 25(2): 201−230 doi: 10.1016/j.jco.2009.01.002
    [57] Liu S, Wei L, Lv S, Li M. Stability and Generalization of lp-Regularized Stochastic Learning for GCN. In: Proceedings of the International Joint Conferences on Artificial Intelligence. Macao, China: 2023. 5685−5693
    [58] Ribeiro A, Zachariah D, Bach F, Schön T. Regularization properties of adversarially-trained linear regression. In: Proceedings of Advances in Neural Information Processing Systems. New Orleans, Louisiana, USA: 2023. 36
    [59] Guo Y, Zhang L. One-shot face recognition by promoting underrepresented classes. arXiv preprint arXiv: 1707.05574, 2017.
    [60] Dang W, Yang Z, Dong W, Li X, Shi G. Inverse weight-balancing for deep long-tailed learning. In: Proceedings of the AAAI Conference on Artificial Intelligence. Vancouver, Canada: 2024. 11713−11721
    [61] Snell J, Swersky K, Zemel R. Prototypical networks for few-shot learning. In: Proceedings of Advances in Neural Information Processing Systems. Long Beach, CA, USA: 2017. 4077−4087
    [62] Everingham M, Van Gool L, Williams C K I, Winn J M, Zisserman A. The pascal visual object classes (voc) challenge. International Journal of Computer Vision, 2010, 88(2): 303−338 doi: 10.1007/s11263-009-0275-4
    [63] He K, Zhang X, Ren S, Sun J. Deep residual learning for image recognition. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition. Las Vegas, Nevada, USA: 2016. 770−778
    [64] Russakovsky O, Deng J, Su H, Krause J, Satheesh S, Ma S, et al. Imagenet large scale visual recognition challenge. International Journal of Computer Vision, 2015, 115(3): 211−252 doi: 10.1007/s11263-015-0816-y
    [65] Wu J, Liu S, Huang D, Wang Y. Multi-scale positive sample refinement for few-shot object detection. In: Proceedings of European Conference on Computer Vision. Virtual Conference: 2020. 456−472
    [66] McCulloch J A, St. Pierre S R, Linka K, Kuhl E. On sparse regression, lp-regularization, and automated model discovery. International Journal for Numerical Methods in Engineering, 2024, 125(14): e7481 doi: 10.1002/nme.7481
  • 加载中
计量
  • 文章访问数:  37
  • HTML全文浏览量:  40
  • 被引次数: 0
出版历程
  • 收稿日期:  2024-06-12
  • 录用日期:  2025-02-14
  • 网络出版日期:  2025-06-19

目录

    /

    返回文章
    返回