2.845

2023影响因子

(CJCR)

  • 中文核心
  • EI
  • 中国科技核心
  • Scopus
  • CSCD
  • 英国科学文摘

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

控制系统隐私保护研究综述

王继民 张纪峰 陈嘉龙

王继民, 张纪峰, 陈嘉龙. 控制系统隐私保护研究综述. 自动化学报, xxxx, xx(x): x−xx doi: 10.16383/j.aas.c250082
引用本文: 王继民, 张纪峰, 陈嘉龙. 控制系统隐私保护研究综述. 自动化学报, xxxx, xx(x): x−xx doi: 10.16383/j.aas.c250082
Wang Ji-Min, Zhang Ji-Feng, Chen Jia-Long. A survey of privacy protection in control systems. Acta Automatica Sinica, xxxx, xx(x): x−xx doi: 10.16383/j.aas.c250082
Citation: Wang Ji-Min, Zhang Ji-Feng, Chen Jia-Long. A survey of privacy protection in control systems. Acta Automatica Sinica, xxxx, xx(x): x−xx doi: 10.16383/j.aas.c250082

控制系统隐私保护研究综述

doi: 10.16383/j.aas.c250082 cstr: 32138.14.j.aas.c250082
基金项目: 国家自然科学基金(62433020, 62203045, T2293770)资助
详细信息
    作者简介:

    王继民:北京科技大学自动化学院副教授. 主要研究方向为隐私保护, 系统辨识和网络化控制系统. E-mail: jimwang@ustb.edu.cn

    张纪峰:中国科学院数学与系统科学研究院研究员. 主要研究方向为隐私保护, 系统建模与辨识, 随机系统, 适应控制, 多个体系统和有限信息系统. 本文通信作者. E-mail: jif@iss.ac.cn

    陈嘉龙:中国科学院数学与系统科学研究院博士研究生. 主要研究方向为隐私保护, 分布式优化和随机系统. E-mail: chenjialong@amss.ac.cn

A Survey of Privacy Protection in Control Systems

Funds: Supported by National Natural Science Foundation of China (62433020, 62203045,T2293770)
More Information
    Author Bio:

    WANG Ji-Min Associate professor at the School of Automation and Electrical Engineering, University of Science and Technology Beijing. His research interest covers privacy protection, system identification, and networked control systems

    ZHANG Ji-Feng Researcher at the Academy of Mathematics and Systems Science, Chinese Academy of Sciences. His research interest covers privacy protection, system modeling and identification, stochastic systems, adaptive control, multi-agent systems, and finite-bite information systems. Corresponding author of this paper

    CHEN Jia-Long Ph.D. candidate at the Academy of Mathematics and Systems Science, Chinese Academy of Sciences. His research interest covers privacy protection, distributed optimization, and stochastic systems

  • 摘要: 控制系统隐私保护是随着数字化、信息化和智能化的发展而诞生的新兴方向, 具有广泛的实际需求与应用价值, 是现代控制理论在新时代的重要发展. 鉴于此, 本综述从研究背景与意义、国内外现状、未来研究方向及总结与展望四个方面, 对该方向进行系统梳理. 控制系统隐私问题无处不在, 隐私保护对控制系统至关重要. 由于该方向具有交叉性、不确定性、实时性和应用性等特点, 其研究具有挑战性. 在国内外研究现状部分, 详细介绍基于系统结构的方法、基于确定性变换的方法和基于随机混淆或扰动的方法, 并着重阐述同态加密、安全多方计算、差分隐私等常见技术的理论基础及在控制系统中的应用. 针对面临的诸多挑战性问题, 总结未来重点研究方向, 尤其是隐私、控制与通信的一体化设计, 以及隐私保护与系统性能之间的权衡. 最后, 对该方向进行总结与展望, 旨在为相关研究人员提供参考, 进一步推动国家安全战略的实施.
    1)  11 所列应用包括但不限于上述成果, 实际建模中可根据所需保护的敏感信息和实现的具体控制任务, 选择合适的隐私保护方法和控制模型
    2)  22 此处与控制系统中常见的模型预测控制 (Model predictive control, MPC) 不同
  • 图  1  状态分解示例

    Fig.  1  An example of state decomposition

    表  1  基于确定性变换的方法

    Table  1  The deterministic transformation-based method

    方法类别 实现技术 应用场景 对应文献
    同态加密Paillier密码体制机器学习[70]
    离散时间参数估计[22, 71]
    离散时间分布式优化[26, 72, 73, 7476, 77]
    离散时间分布式趋同[7881, 82]
    离散时间线性系统协同控制[62, 83, 8485, 86]
    云控制系统[8790]
    离散时间线性系统状态估计[28, 66, 9192, 93]
    联邦学习[94]
    离散时间模型预测控制[95]
    RSA密码体制离散时间非线性系统控制[96]
    离散时间线性系统控制[97]
    离散时间系统状态估计[98]
    ElGamal密码体制离散时间线性系统协同控制[99, 100]
    离散时间分布式优化[101]
    Learning With Errors密码体制离散时间线性系统控制[41, 102]
    离散时间线性系统状态估计[103]
    离散时间系统分布式最优控制[104]
    全同态加密联邦学习[105]
    离散时间线性系统控制[106]
    安全多方计算混淆电路机器学习[107, 108]
    基因分析[109110]
    秘密分享机器学习[111113, 114118]
    联邦学习[119121]
    基因分析[122]
    线性方程组求解[123124]
    连续时间多项式控制[125]
    离散时间模型预测控制[126]
    隐私比较离散时间系统Kalman滤波[127]
    其他变换同构变换离散时间线性二次最优控制[14]
    仿射变换离散时间分布式趋同[52]
    离散时间系统状态估计[54, 6465]
    云控制系统[67]
    连续时间分布式优化[68]
    离散时间分布式最优控制[69]
    时变变换连续时间分布式趋同[63]
    下载: 导出CSV

    表  2  添加扰动后的两次输出

    Table  2  Two outputs after adding perturbation

    $ P(150\le M_i<250) $ $ P(250\le M_i<350) $
    $ i=1 $ 0.139 0.116
    $ i=2 $ 0.116 0.139
    下载: 导出CSV

    表  3  隐私预算$ \epsilon $为0.1、0.3和10时的两次输出

    Table  3  Two outputs when$ \epsilon $ is 0.1, 0.3, and 10

    $ P(150\le M_i<250) $ $ P(250\le M_i<350) $
    $ \epsilon=0.1 $$ i=1 $0.04870.0453
    $ i=2 $0.04530.0487
    $ \epsilon=0.3 $$ i=1 $0.1390.116
    $ i=2 $0.1160.139
    $ \epsilon=10 $$ i=1 $0.9930.007
    $ i=2 $0.0070.993
    下载: 导出CSV

    表  4  差分隐私方法

    Table  4  Differential privacy method

    应用场景 对应文献
    离散时间分布式优化 [18, 47, 50, 148, 157, 165172, 173]
    离散时间分布式趋同 [149, 158, 160, 174178]
    离散时间线性系统控制 [148, 179180, 181183]
    社交网络参数估计 [151]
    离散时间系统Kalman滤波 [16, 150151]
    离散时间系统非线性观测器设计 [154]
    离散时间系统区间观测器设计 [155]
    离散时间系统线性二次Gauss控制 [156]
    连续时间分布式趋同 [159, 161]
    离散时间参数估计 [160161, 171172, 184]
    离散时间分布式聚合博弈 [164, 182]
    离散时间线性系统状态估计 [185, 186]
    离散时间系统线性二次控制 [187]
    机器学习 [173, 187]
    联邦学习 [180]
    非线性不确定系统异常检测 [181]
    下载: 导出CSV
  • [1] 中华人民共和国中央人民政府. 中华人民共和国国民经济和社会发展第十四个五年规划和2035年远景目标纲要 [Online], available: https://www.gov.cn/xinwen/2021-03/13/content_5592681.htm, 2025-07-11.

    The State Council of the People's Republic of China. Outline of the People's Republic of China 14th five-year plan for national economic and social development and long-range objectives for 2035 [Online], available: https://www.gov.cn/xinwen/2021-03/13/content 5592681.htm, July 11, 2025
    [2] 全国人民代表大会. 中华人民共和国网络安全法 [Online], available: http://www.npc.gov.cn/zgrdw/npc/xinwen/2016-11/07/content_2001605.htm, 2025-07-11.

    National People's Congress. Cybersecurity law of the People's Republic of China [Online], available: http://www.npc.gov.cn/zgrdw/npc/xinwen/2016-11/07/content 2001605.htm, July 11, 2025
    [3] 全国人民代表大会. 中华人民共和国数据安全法 [Online], available: http://www.npc.gov.cn/zgrdw/npc/xinwen/2016-11/07/content_2001605.htm, 2025-07-11.

    National People's Congress. Data security law of the People's Republic of China [Online], available: http://www.npc.gov.cn/zgrdw/npc/xinwen/2016-11/07/content 2001605.htm, July 11, 2025
    [4] 全国人民代表大会. 中华人民共和国个人信息保护法 [Online], available: http://www.npc.gov.cn/zgrdw/npc/xinwen/2016-11/07/content_2001605.htm, 2025-07-11.

    National People's Congress. Personal information protection law of the People's Republic of China [Online], available: http://www.npc.gov.cn/zgrdw/npc/xinwen/2016-11/07/content 2001605.htm, July 11, 2025
    [5] The United States Congress. The American privacy rights act [Online], available: https://www.congress.gov/crs-product/LSB11161.htm, July 11, 2025
    [6] The European Parliament and of The Council. General data protection regulation (GDPR) [Online], available: https://www.gov.cn/xinwen/2021-03/13/content_5592681.htm, July 11, 2025
    [7] Atzori L, Iera A, Morabito G. The internet of things: A survey. Computer Networks, 2010, 54(15): 2787−2805 doi: 10.1016/j.comnet.2010.05.010
    [8] Chen Y K. Challenges and opportunities of internet of things. In: Proceedings of the 17th Asia and South Pacific Design Automation Conference. Sydney, Australia: IEEE, 2012. 383−388
    [9] Xia Y Q. Cloud control systems. IEEE/CAA Journal of Automatica Sinica, 2015, 2(2): 134−142 doi: 10.1109/JAS.2015.7081652
    [10] Samad T, Annaswamy A M. Controls for smart grids: Architectures and applications. Proceedings of the IEEE, 2017, 105(11): 2244−2261 doi: 10.1109/JPROC.2017.2707326
    [11] Sufyan A, Khan K B, Khashan O A, Mir T, Mir U. From 5G to beyond 5G: A comprehensive survey of wireless network evolution, challenges, and promising technologies. Electronics, 2023, 12(10): Article No. 2200
    [12] Wang Y H, Wang J, Fan S P. Parameter identification of a PN-guided incoming missile using an improved multiple-model mechanism. IEEE Transactions on Aerospace and Electronic Systems, 2023, 59(5): 5888−5899
    [13] Gollmann D, Gurikov P, Isakov A, Krotofil M, Larsen J, Winnicki A. Cyber-physical systems security: Experimental analysis of a vinyl acetate monomer plant. In: Proceedings of the 1st ACM Workshop on Cyber-physical System Security. Singapore: ACM, 2015. 1−12
    [14] Sultangazin A, Tabuada P. Symmetries and isomorphisms for privacy in control over the cloud. IEEE Transactions on Automatic Control, 2021, 66(2): 538−549 doi: 10.1109/TAC.2020.2982611
    [15] Eckhoff D, Sommer C. Driving for big data? Privacy concerns in vehicular networking. IEEE Security & Privacy, 2014, 12(1): 77−79
    [16] le Ny J, Pappas G J. Differentially private filtering. IEEE Transactions on Automatic Control, 2014, 59(2): 341−354 doi: 10.1109/TAC.2013.2283096
    [17] Brighente A, Conti M, Donadel D, Poovendran R, Turrin F, Zhou J Y. Electric vehicles security and privacy: Challenges, solutions, and future needs. arXiv preprint arXiv: 2301.04587, 2023.
    [18] Han S, Topcu U, Pappas G J. Differentially private distributed constrained optimization. IEEE Transactions on Automatic Control, 2017, 62(1): 50−64 doi: 10.1109/TAC.2016.2541298
    [19] Pham V V H, Yu S, Sood K, Cui L. Privacy issues in social networks and analysis: A comprehensive survey. IET Networks, 2018, 7(2): 74−84 doi: 10.1049/iet-net.2017.0137
    [20] Wang J M, Ke J M, Zhang J F. Differentially private bipartite consensus over signed networks with time-varying noises. IEEE Transactions on Automatic Control, 2024, 69(9): 5788−5803 doi: 10.1109/TAC.2024.3351869
    [21] Butler D. Data network threatens patient privacy. Nature, 1997, 386(6620): Article No. 6
    [22] 谭建伟, 王继民, 张纪峰. 多方ARX系统的协作安全辨识——一种基于门限Paillier密码体制的最小二乘辨识方法. 中国科学: 信息科学, 2023, 53(12): 2472−2492 doi: 10.1360/SSI-2023-0140

    Tan Jian-Wei, Wang Ji-Min, Zhang Ji-Feng. Cooperative secure parameter identification of multi-participant ARX systems——A threshold Paillier cryptosystem-based least-squares identification algorithm. Scientia Sinica Informationis, 2023, 53(12): 2472−2492 doi: 10.1360/SSI-2023-0140
    [23] Nekouei E, Sandberg H, Skoglund M, Johansson K H. A model randomization approach to statistical parameter privacy. IEEE Transactions on Automatic Control, 2023, 68(2): 839−850 doi: 10.1109/TAC.2022.3145664
    [24] Wang J M, Zhang J F. Differentially private distributed stochastic optimization with time-varying sample sizes. IEEE Transactions on Automatic Control, 2024, 69(9): 6341−6348 doi: 10.1109/TAC.2024.3379387
    [25] Mo Y L, Kim T H J, Brancik K, Dickinson D, Lee H, Perrig A, et al. Cyber-physical security of a smart grid infrastructure. Proceedings of the IEEE, 2012, 100(1): 195−209 doi: 10.1109/JPROC.2011.2161428
    [26] Yan Y M, Chen Z Y, Varadharajan V, Hossain M J, Town G E. Distributed consensus-based economic dispatch in power grids using the Paillier cryptosystem. IEEE Transactions on Smart Grid, 2021, 12(4): 3493−3502 doi: 10.1109/TSG.2021.3063712
    [27] Huang X. The small-drone revolution is coming——Scientists need to ensure it will be safe. Nature, 2025, 637(8044): 29−30 doi: 10.1038/d41586-024-04167-7
    [28] Yan X H, Zhou G Z, Huang Y, Meng W, Nguyen A T, Huang H L. Secure estimation using partially homomorphic encryption for unmanned aerial systems in the presence of eavesdroppers. IEEE Transactions on Intelligent Vehicles, DOI: 10.1109/TIV.2024.3378288
    [29] Ma C, Li J, Wei K, Liu B, Ding M, Yuan L, et al. Trusted AI in multiagent systems: An overview of privacy and security for distributed learning. Proceedings of the IEEE, 2023, 111(9): 1097−1132 doi: 10.1109/JPROC.2023.3306773
    [30] Rao F Y, Bertino E. Privacy techniques for edge computing systems. Proceedings of the IEEE, 2019, 107(8): 1632−1654 doi: 10.1109/JPROC.2019.2918749
    [31] Serpanos D N, Papalambrou A. Security and privacy in distributed smart cameras. Proceedings of the IEEE, 2008, 96(10): 1678−1687 doi: 10.1109/JPROC.2008.928763
    [32] Xie A T, Wang X F, Yang W, Cao M, Ren X Q. The least information set needed by privacy attackers. IEEE Transactions on Automatic Control, 2025, 70(3): 1652−1666 doi: 10.1109/TAC.2024.3470848
    [33] Zhang J F, Tan J W, Wang J M. Privacy security in control systems. Science China Information Sciences, 2021, 64(7): Article No. 176201
    [34] Duan X M, Xu Z, Yan R, Topcu U. Privacy-utility tradeoffs against limited adversaries. IEEE Transactions on Automatic Control, 2024, 69(1): 519−526 doi: 10.1109/TAC.2023.3269360
    [35] Farokhi F, Sandberg H. Ensuring privacy with constrained additive noise by minimizing Fisher information. Automatica, 2019, 99: 275−288 doi: 10.1016/j.automatica.2018.10.012
    [36] Nekouei E, Sandberg H, Skoglund M, Johansson K H. Optimal privacy-aware estimation. IEEE Transactions on Automatic Control, 2022, 67(5): 2253−2266 doi: 10.1109/TAC.2021.3077868
    [37] Murguia C, Shames I, Farokhi F, Nešić D, Poor H V. On privacy of dynamical systems: An optimal probabilistic mapping approach. IEEE Transactions on Information Forensics and Security, 2021, 16: 2608−2620 doi: 10.1109/TIFS.2021.3055022
    [38] Guo L P, Wang J M, Zhao Y L, Zhang J F. Privacy-preserving optimal state estimation with low complexity via Cramér-Rao lower bound approach. arXiv preprint arXiv: 2410.08756, 2024.
    [39] Nekouei E, Tanaka T, Skoglund M, Johansson K H. Information-theoretic approaches to privacy in estimation and control. Annual Reviews in Control, 2019, 47: 412−422 doi: 10.1016/j.arcontrol.2019.04.006
    [40] Lu Y, Zhu M H. A control-theoretic perspective on cyber-physical privacy: Where data privacy meets dynamic systems. Annual Reviews in Control, 2019, 47: 423−440 doi: 10.1016/j.arcontrol.2019.04.010
    [41] Kim J, Kim D, Song Y, Shim H, Sandberg H, Johansson K H. Comparison of encrypted control approaches and tutorial on dynamic systems using Learning With Errors-based homomorphic encryption. Annual Reviews in Control, 2022, 54: 200−218 doi: 10.1016/j.arcontrol.2022.10.002
    [42] Schlüter N, Binfet P, Darup M S. A brief survey on encrypted control: From the first to the second generation and beyond. Annual Reviews in Control, 2023, 56: Article No. 100913
    [43] Wang Y Q. Privacy in multi-agent systems. arXiv preprint arXiv: 2403.02631, 2024.
    [44] Chen Z Q, Wang Y Q. Privacy-preserving distributed optimization and learning. arXiv preprint arXiv: 2403.00157, 2024.
    [45] Sankar L, Rajagopalan S R, Mohajer S, Poor H V. Smart meter privacy: A theoretical framework. IEEE Transactions on Smart Grid, 2013, 4(2): 837−846 doi: 10.1109/TSG.2012.2211046
    [46] Sankar L, Rajagopalan S R, Poor H V. Utility-privacy tradeoffs in databases: An information-theoretic approach. IEEE Transactions on Information Forensics and Security, 2013, 8(6): 838−852 doi: 10.1109/TIFS.2013.2253320
    [47] Cao X Y, Zhang J S, Poor H V, Tian Z. Differentially private ADMM for regularized consensus optimization. IEEE Transactions on Automatic Control, 2021, 66(8): 3718−3725 doi: 10.1109/TAC.2020.3022856
    [48] Manshaei M H, Zhu Q Y, Alpcan T, Başar T, Hubaux J P. Game theory meets network security and privacy. ACM Computing Surveys, 2013, 45(3): Article No. 25
    [49] Zhu Q Y, Başar T. Game-theoretic methods for robustness, security, and resilience of cyberphysical control systems: Games-in-games principle for optimal cross-layer resilient control systems. IEEE Control Systems Magazine, 2015, 35(1): 46−65 doi: 10.1109/MCS.2014.2364710
    [50] Wang Y Q, Başar T. Quantization enabled privacy protection in decentralized stochastic optimization. IEEE Transactions on Automatic Control, 2023, 68(7): 4038−4052
    [51] 管晓宏, 沈超, 刘烃. 数据安全是网络空间安全的基础. 中国网信, 2022, 1: Article No. 233

    Guan Xiao-Hong, Shen Chao, Liu Ting. Data security is the foundation of cyberspace security. China Cyberspace, 2022, 1: Article No. 233
    [52] Pan L L, Shao H B, Lu Y, Mesbahi M, Li D W, Xi Y G. Privacy-preserving average consensus via matrix-weighted inter-agent coupling. Automatica, 2025, 174: Article No. 112094
    [53] Wang Y Q. Privacy-preserving average consensus via state decomposition. IEEE Transactions on Automatic Control, 2019, 64(11): 4711−4716 doi: 10.1109/TAC.2019.2902731
    [54] An L W, Yang G H. Enhancement of opacity for distributed state estimation in cyber-physical systems. Automatica, 2022, 136: Article No. 110087
    [55] Chen X M, Huang L Y, Ding K M, Dey S, Shi L. Privacy-preserving push-sum average consensus via state decomposition. IEEE Transactions on Automatic Control, 2023, 68(12): 7974−7981 doi: 10.1109/TAC.2023.3256479
    [56] 胡沁伶, 郑宁, 徐明, 伍益明, 何熊熊. DoS攻击下具备隐私保护的多智能体系统均值趋同控制. 自动化学报, 2022, 48(8): 1961−1971

    Hu Qin-Ling, Zheng Ning, Xu Ming, Wu Yi-Ming, He Xiong-Xiong. Privacy-preserving average consensus control for multi-agent systems under DoS attacks. Acta Automatica Sinica, 2022, 48(8): 1961−1971
    [57] 应晨铎, 伍益明, 徐明, 郑宁, 何熊熊. 欺骗攻击下具备隐私保护的多智能体系统均值趋同控制. 自动化学报, 2023, 49(2): 425−436

    Ying Chen-Duo, Wu Yi-Ming, Xu Ming, Zheng Ning, He Xiong-Xiong. Privacy-preserving average consensus control for multi-agent systems under deception attacks. Acta Automatica Sinica, 2023, 49(2): 425−436
    [58] Wang Y Q, Poor H V. Decentralized stochastic optimization with inherent privacy protection. IEEE Transactions on Automatic Control, 2023, 68(4): 2293−2308 doi: 10.1109/TAC.2022.3174187
    [59] Gao H, Wang Y Q, Nedić A. Dynamics based privacy preservation in decentralized optimization. Automatica, 2023, 151: Article No. 110878
    [60] Ramos G, Aguiar A P, Kar S, Pequito S. Privacy-preserving average consensus through network augmentation. IEEE Transactions on Automatic Control, 2024, 69(10): 6907−6919 doi: 10.1109/TAC.2024.3383795
    [61] Rikos A I, Charalambous T, Johansson K H, Hadjicostis C N. Distributed event-triggered algorithms for finite-time privacy-preserving quantized average consensus. IEEE Transactions on Control of Network Systems, 2023, 10(1): 38−50 doi: 10.1109/TCNS.2022.3185561
    [62] Farokhi F, Shames I, Johansson K H. Private routing and ride-sharing using homomorphic encryption. IET Cyber-physical Systems: Theory & Applications, 2020, 5(4): 311−320
    [63] Altafini C. A system-theoretic framework for privacy preservation in continuous-time multiagent dynamics. Automatica, 2020, 122: Article No. 109253
    [64] Huang L Y, Leong A S, Quevedo D E, Shi L. Finite time encryption schedule in the presence of an eavesdropper with operation cost. In: Proceedings of the American Control Conference (ACC). Philadelphia, USA: IEEE, 2019. 4063−4068
    [65] Huang L Y, Ding K M, Leong A S, Quevedo D E, Shi L. Encryption scheduling for remote state estimation under an operation constraint. Automatica, 2021, 127: Article No. 109537
    [66] Ni Y Q, Wu J F, Li L, Shi L. Multi-party dynamic state estimation that preserves data and model privacy. IEEE Transactions on Information Forensics and Security, 2021, 16: 2288−2299 doi: 10.1109/TIFS.2021.3050621
    [67] Zhang K X, Li Z J, Wang Y Q, Li N. Privacy-preserving nonlinear cloud-based model predictive control via affine masking. Automatica, 2025, 171: Article No. 111939
    [68] Yun H, Shim H, Ahn H S. Initialization-free privacy-guaranteed distributed algorithm for economic dispatch problem. Automatica, 2019, 102: 86−93 doi: 10.1016/j.automatica.2018.12.033
    [69] Zhao Y, Gong D K, Wen S X, Ding L, Guo G. A privacy-preserving-based distributed collaborative scheme for connected autonomous vehicles at multi-lane signal-free intersections. IEEE Transactions on Intelligent Transportation Systems, 2024, 25(7): 6824−6835 doi: 10.1109/TITS.2023.3346395
    [70] Sultan A, Tahir S, Tahir H, Anwer T, Khan F, Rajarajan M, et al. A novel image-based homomorphic approach for preserving the privacy of autonomous vehicles connected to the cloud. IEEE Transactions on Intelligent Transportation Systems, 2022, 24(2): 1936−1948
    [71] Xu C B, Zhao Y L, Zhang J F, Qi H S. System identification under information security. IFAC-PapersOnLine, 2017, 50(1): 3756−3761 doi: 10.1016/j.ifacol.2017.08.477
    [72] Lu Y, Zhu M H. Privacy preserving distributed optimization using homomorphic encryption. Automatica, 2018, 96: 314−325 doi: 10.1016/j.automatica.2018.07.005
    [73] Chen W, Liu L, Liu G P. Privacy-preserving distributed economic dispatch of microgrids: A dynamic quantization-based consensus scheme with homomorphic encryption. IEEE Transactions on Smart Grid, 2023, 14(1): 701−713 doi: 10.1109/TSG.2022.3189665
    [74] Zhang C L, Ahmad M, Wang Y Q. ADMM based privacy-preserving decentralized optimization. IEEE Transactions on Information Forensics and Security, 2019, 14(3): 565−580 doi: 10.1109/TIFS.2018.2855169
    [75] Alexandru A B, Gatsis K, Shoukry Y, Seshia S A, Tabuada P, Pappas G J. Cloud-based quadratic optimization with partially homomorphic encryption. IEEE Transactions on Automatic Control, 2021, 66(5): 2357−2364 doi: 10.1109/TAC.2020.3005920
    [76] Alexandru A B, Gatsis K, Pappas G J. Privacy preserving cloud-based quadratic optimization. In: Proceedings of the 55th Annual Allerton Conference on Communication, Control, and Computing (Allerton). Monticello, USA: IEEE, 2017. 1168−1175
    [77] Chen W, Wang Z D, Ge Q B, Dong H L, Liu G P. Quantized distributed economic dispatch for microgrids: Paillier encryption-decryption scheme. IEEE Transactions on Industrial Informatics, 2024, 20(4): 6552−6562 doi: 10.1109/TII.2023.3348816
    [78] Ruan M H, Gao H, Wang Y Q. Secure and privacy-preserving consensus. IEEE Transactions on Automatic Control, 2019, 64(10): 4035−4049 doi: 10.1109/TAC.2019.2890887
    [79] Hadjicostis C N. Privary preserving distributed average consensus via homomorphic encryption. In: Proceedings of the IEEE Conference on Decision and Control (CDC). Miami, USA: IEEE, 2018. 1258−1263
    [80] Hadjicostis C N, Domínguez-García A D. Privacy-preserving distributed averaging via homomorphically encrypted ratio consensus. IEEE Transactions on Automatic Control, 2020, 65(9): 3887−3894 doi: 10.1109/TAC.2020.2968876
    [81] Kishida M. Encrypted average consensus with quantized control law. In: Proceedings of the IEEE Conference on Decision and Control (CDC). Miami, USA: IEEE, 2018. 5850−5856
    [82] Alexandru A B, Pappas G J. Private weighted sum aggregation. IEEE Transactions on Control of Network Systems, 2022, 9(1): 219−230 doi: 10.1109/TCNS.2021.3094788
    [83] Kishida M. Encrypted control system with quantiser. IET Control Theory & Applications, 2019, 13(1): 146−151
    [84] Lin Y K, Farokhi F, Shames I, Nešić D. Secure control of nonlinear systems using semi-homomorphic encryption. In: Proceedings of the IEEE Conference on Decision and Control (CDC). Miami, USA: IEEE, 2018. 5002−5007
    [85] Murguia C, Farokhi F, Shames I. Secure and private implementation of dynamic controllers using semihomomorphic encryption. IEEE Transactions on Automatic Control, 2020, 65(9): 3950−3957 doi: 10.1109/TAC.2020.2992445
    [86] Shi Y X, Nekouei E. Secure adaptive control of linear networked systems using Paillier encryption. IEEE Transactions on Circuits and Systems I: Regular Papers, 2024, 71(11): 5271−5284 doi: 10.1109/TCSI.2024.3401223
    [87] Darup M S, Redder A, Shames I, Farokhi F, Quevedo D. Towards encrypted MPC for linear constrained systems. IEEE Control Systems Letters, 2018, 2(2): 195−200 doi: 10.1109/LCSYS.2017.2779473
    [88] Naseri A M, Lucia W, Youssef A. Encrypted cloud-based set-theoretic model predictive control. IEEE Control Systems Letters, 2022, 6: 3032−3037 doi: 10.1109/LCSYS.2022.3182295
    [89] Stabile F, Lucia W, Youssef A, Franzè G. A verifiable computing scheme for encrypted control systems. IEEE Control Systems Letters, 2024, 8: 1096−1101 doi: 10.1109/LCSYS.2024.3407636
    [90] Xu K, Niu Y G, Zhang Z N. Cloud-based frequency control for multiarea power systems: Privacy preserving via homomorphic encryption. IEEE Transactions on Systems, Man, and Cybernetics: Systems, 2024, 54(8): 5172−5184 doi: 10.1109/TSMC.2024.3393865
    [91] Ristic M, Noack B, Hanebeck U D. Distributed range-only localization that preserves sensor and navigator privacies. IEEE Transactions on Automatic Control, 2023, 68(12): 7151−7163 doi: 10.1109/TAC.2023.3263740
    [92] Zhu K Q, Wang Z D, Ding D R, Dong H L, Xu C Z. Secure state estimation for artificial neural networks with unknown-but-bounded noises: A homomorphic encryption scheme. IEEE Transactions on Neural Networks and Learning Systems, 2025, 36(4): 6780−6791 doi: 10.1109/TNNLS.2024.3389873
    [93] Zhang Z Y, Cheng P, Wu J F, Chen J M. Secure state estimation using hybrid homomorphic encryption scheme. IEEE Transactions on Control Systems Technology, 2021, 29(4): 1704−1720 doi: 10.1109/TCST.2020.3019501
    [94] Shi Z S, Yang Z Y, Hassan A, Li F G, Ding X Y. A privacy preserving federated learning scheme using homomorphic encryption and secret sharing. Telecommunication Systems, 2023, 82(3): 419−433 doi: 10.1007/s11235-022-00982-3
    [95] Alexandru A B, Morari M, Pappas G J. Cloud-based MPC with encrypted data. In: Proceedings of the IEEE Conference on Decision and Control (CDC). Miami, USA: IEEE, 2018. 5014−5019
    [96] Strässer R, Schlor S, Allgöwer F. Decrypting nonlinearity: Koopman interpretation and analysis of cryptosystems. Automatica, 2025, 173: Article No. 112022
    [97] Fauser M, Zhang P. A secure resilient homomorphic encryption scheme for control systems. IEEE Transactions on Automatic Control, 2025, 70(6): 3711−3726 doi: 10.1109/TAC.2024.3518356
    [98] Zou L, Wang Z D, Shen B, Dong H L. Secure recursive state estimation of networked systems against eavesdropping: A partial-encryption-decryption method. IEEE Transactions on Automatic Control, 2025, 70(6): 3681−3694 doi: 10.1109/TAC.2024.3512413
    [99] Darup M S, Alexandru A B, Quevedo D E, Pappas G J. Encrypted control for networked systems: An illustrative introduction and current challenges. IEEE Control Systems Magazine, 2021, 41(3): 58−78 doi: 10.1109/MCS.2021.3062956
    [100] Teranishi K, Sadamoto T, Chakrabortty A, Kogiso K. Designing optimal key lengths and control laws for encrypted control systems based on sample identifying complexity and deciphering time. IEEE Transactions on Automatic Control, 2023, 68(4): 2183−2198 doi: 10.1109/TAC.2022.3174691
    [101] 赵中原, 高旺, 蒋璐瑶, 葛泉波. 基于椭圆曲线ElGamal的隐私保护分布式优化算法. 自动化学报, 2025, 51(1): 210−220

    Zhao Zhong-Yuan, Gao Wang, Jiang Lu-Yao, Ge Quan-Bo. Privacy-preserving distributed optimization algorithm based on elliptic curve ElGamal. Acta Automatica Sinica, 2025, 51(1): 210−220
    [102] Kim J, Shim H, Han K. Dynamic controller that operates over homomorphically encrypted data for infinite time horizon. IEEE Transactions on Automatic Control, 2023, 68(2): 660−672 doi: 10.1109/TAC.2022.3142124
    [103] Tran H Y, Hu J K, Pota H R. A privacy-preserving state estimation scheme for smart grids. IEEE Transactions on Dependable and Secure Computing, 2023, 20(5): 3940−3956 doi: 10.1109/TDSC.2022.3210017
    [104] He Y J, Chen Y, Pan C W, Ali I. Privacy-preserving distributed optimal control for vehicular platoon with quantization. IEEE Transactions on Intelligent Transportation Systems, 2024, 25(10): 14572−14585 doi: 10.1109/TITS.2024.3402962
    [105] Hijazi N M, Aloqaily M, Guizani M, Ouni B, Karray F. Secure federated learning with fully homomorphic encryption for IoT communications. IEEE Internet of Things Journal, 2024, 11(3): 4289−4300 doi: 10.1109/JIOT.2023.3302065
    [106] Kim J. Further methods for encrypted linear dynamic controllers utilizing re-encryption. IEEE Transactions on Automatic Control, 2024, 69(10): 6974−6979 doi: 10.1109/TAC.2024.3386988
    [107] Chandran N, Gupta D, Rastogi A, Sharma R, Tripathi S. EzPC: Programmable and efficient secure two-party computation for machine learning. In: Proceedings of the IEEE European Symposium on Security and Privacy (EuroS&P). Stockholm, Sweden: IEEE, 2019. 496−511
    [108] Tjell K, Schlüter N, Binfet P, Schulze Darup M. Secure learning-based MPC via garbled circuit. In: Proceedings of the 60th IEEE Conference on Decision and Control (CDC). Austin, USA: IEEE, 2021. 4907−4914
    [109] Jha S, Kruger L, Shmatikov V. Towards practical privacy for genomic computation. In: Proceedings of the IEEE Symposium on Security and Privacy (sp 2008). Oakland, USA: IEEE, 2008. 216−230
    [110] Jagadeesh K A, Wu D J, Birgmeier J A, Boneh D, Bejerano G. Deriving genomic diagnoses without revealing patient genomes. Science, 2017, 357(6352): 692−695 doi: 10.1126/science.aam9710
    [111] Mohassel P, Zhang Y P. SecureML: A system for scalable privacy-preserving machine learning. In: Proceedings of the IEEE Symposium on Security and Privacy (SP). San Jose, USA: IEEE, 2017. 19−38
    [112] Mohassel P, Rindal P. ABY3: A mixed protocol framework for machine learning. In: Proceedings of the ACM SIGSAC Conference on Computer and Communications Security. Toronto, Canada: Association for Computing Machinery, 2018. 35−52
    [113] Schoppmann P, Gascón A, Raykova M, Pinkas B. Make some ROOM for the zeros: Data sparsity in secure distributed machine learning. In: Proceedings of the ACM SIGSAC Conference on Computer and Communications Security. London, UK: Association for Computing Machinery, 2019. 1335−1350
    [114] Chaudhari H, Rachuri R, Suresh A. Trident: Efficient 4PC framework for privacy preserving machine learning. arXiv preprint arXiv: 1912.02631, 2021.
    [115] Byali M, Chaudhari H, Patra A, Suresh A. FLASH: Fast and robust framework for privacy-preserving machine learning. Proceedings on Privacy Enhancing Technologies, 2020, 2020(2): 459−480 doi: 10.2478/popets-2020-0036
    [116] Tan S J, Knott B, Tian Y, Wu D J. CryptGPU: Fast privacy-preserving machine learning on the GPU. In: Proceedings of the IEEE Symposium on Security and Privacy. San Francisco, USA: IEEE, 2021. 1021−1038
    [117] Koti N, Pancholi M, Patra A, Suresh A. SWIFT: Super-fast and robust privacy-preserving machine learning. arXiv preprint arXiv: 2005.10296, 2021.
    [118] Wagh S, Tople S, Benhamouda F, Kushilevitz E, Mittal P, Rabin T. FALCON: Honest-majority maliciously secure framework for private deep learning. Proceedings on Privacy Enhancing Technologies, 2021, 2021(1): 188−208 doi: 10.2478/popets-2021-0011
    [119] Fereidooni H, Marchal S, Miettinen M, Mirhoseini A, Möllering H, Nguyen T D, et al. SAFELearn: Secure aggregation for private federated learning. In: Proceedings of the IEEE Security and Privacy Workshops (SPW). San Francisco, USA: IEEE, 2021. 56−62
    [120] Brunetta C, Tsaloli G, Liang B, Banegas G, Mitrokotsa A. Non-interactive, secure verifiable aggregation for decentralized, privacy-preserving learning. In: Proceedings of the 26th Australasian Conference on Information Security and Privacy. Virtual Event: Springer, 2021. 510−528
    [121] Zheng W T, Deng R, Chen W K, Popa R A, Panda A, Stoica I. Cerebro: A platform for multi-party cryptographic collaborative learning. In: Proceedings of the 30th USENIX Security Symposium. Virtual Event: USENIX Association, 2021. 2723−2740
    [122] Cho H, Wu D J, Berger B. Secure genome-wide association analysis using multiparty computation. Nature Biotechnology, 2018, 36(6): 547−551 doi: 10.1038/nbt.4108
    [123] Liu M L, Xiao L L, Zhang Z F. Multiplicative linear secret sharing schemes based on connectivity of graphs. IEEE Transactions on Information Theory, 2007, 53(11): 3973−3978 doi: 10.1109/TIT.2007.907505
    [124] 张志芳. 密钥共享与安全多方计算 [博士学位论文], 中国科学院大学, 中国, 2007.

    Zhang Zhi-Fang. Secret Sharing and Multi-party Computation [Ph. D. dissertation], University of Chinese Academy of Sciences, China, 2007.
    [125] Darup M S. Encrypted polynomial control based on tailored two-party computation. International Journal of Robust and Nonlinear Control, 2020, 30(11): 4168−4187 doi: 10.1002/rnc.5003
    [126] Alexandru A B, Pappas G J. Secure multi-party computation for cloud-based control. Privacy in Dynamical Systems. Singapore: Springer, 2020. 179−207
    [127] Gonzalez-Serrano F J, Amor-Martln A, Casamayon-Anton J. State estimation using an extended Kalman filter with privacy-protected observed inputs. In: Proceedings of the IEEE International Workshop on Information Forensics and Security (WIFS). Atlanta, USA: IEEE, 2014. 54−59
    [128] Katz J, Lindell Y. Introduction to Modern Cryptography (3rd edition). Boca Raton: CRC Press, 2020.
    [129] Rivest R L, Adleman L, Dertouzos M L. On data banks and privacy homomorphisms. Foundations of Secure Computation. New York: Academic Press, 1978. 169−179
    [130] Gentry C. Fully homomorphic encryption using ideal lattices. In: Proceedings of the 41st Annual ACM Symposium on Theory of Computing. Bethesda, USA: Association for Computing Machinery, 2009. 169−178
    [131] Paillier P. Public-key cryptosystems based on composite degree Residuosity Classes. In: Proceedings of the International Conference on the Theory and Applications of Cryptographic Techniques. Prague, Czech Republic: Springer, 1999. 223−238
    [132] Rivest R L, Shamir A, Adleman L. A method for obtaining digital signatures and public-key cryptosystems. Communications of the ACM, 1978, 21(2): 120−126 doi: 10.1145/359340.359342
    [133] ElGamal T. A public key cryptosystem and a signature scheme based on discrete logarithms. IEEE Transactions on Information Theory, 1985, 31(4): 469−472 doi: 10.1109/TIT.1985.1057074
    [134] Fouque P A, Pointcheval D. Threshold cryptosystems secure against chosen-ciphertext attacks. In: Proceedings of the 7th International Conference on the Theory and Application of Cryptology and Information Security. Gold Coast, Australia: Springer, 2001. 351−368
    [135] Yao A C C. How to generate and exchange secrets. In: Proceedings of the 27th Annual Symposium on Foundations of Computer Science (sfcs 1986). Toronto, Canada: IEEE, 1986. 162−167
    [136] Goldreich O, Micali S, Wigderson A. How to play any mental game. In: Proceedings of the 19th Annual ACM Symposium on Theory of Computing. New York, USA: Association for Computing Machinery, 1987. 218−229
    [137] Ben-Or M, Goldwasser S, Wigderson A. Completeness theorems for non-cryptographic fault-tolerant distributed computation. In: Proceedings of the 20th Annual ACM Symposium on Theory of Computing. Chicago, USA: Association for Computing Machinery, 1988. 1−10
    [138] Chaum D, Crépeau C, Damgard I. Multiparty unconditionally secure protocols. In: Proceedings of the 20th Annual ACM Symposium on Theory of Computing. Chicago, USA: Association for Computing Machinery, 1988. 11−19
    [139] Rabin T, Ben-Or M. Verifiable secret sharing and multiparty protocols with honest majority. In: Proceedings of the 21st Annual ACM Symposium on Theory of Computing. Seattle, USA: Association for Computing Machinery, 1989. 73−85
    [140] Beaver D, Micali S, Rogaway P. The round complexity of secure protocols. In: Proceedings of the 22nd Annual ACM Symposium on Theory of Computing. Baltimore, USA: Association for Computing Machinery, 1990. 503−513
    [141] Lindell Y. Secure multiparty computation. Communications of the ACM, 2020, 64(1): 86−96
    [142] 霍炜, 郁昱, 杨糠, 郑中翔, 李祥学, 姚立, 等. 隐私保护计算密码技术研究进展与应用. 中国科学: 信息科学, 2023, 53(9): 1688−1733 doi: 10.1360/SSI-2022-0434

    Huo Wei, Yu Yu, Yang Kang, Zheng Zhong-Xiang, Li Xiang-Xue, Yao Li, et al. Privacy-preserving cryptographic algorithms and protocols: A survey on designs and applications. Scientia Sinica Informationis, 2023, 53(9): 1688−1733 doi: 10.1360/SSI-2022-0434
    [143] Mo Y L, Murray R M. Privacy preserving average consensus. IEEE Transactions on Automatic Control, 2017, 62(2): 753−765 doi: 10.1109/TAC.2016.2564339
    [144] Huang M Y, Manton J H. Coordination and consensus of networked agents with noisy measurements: Stochastic algorithms and asymptotic behavior. SIAM Journal on Control and Optimization, 2009, 48(1): 134−161 doi: 10.1137/06067359X
    [145] Zhang W T, Zuo Z Q, Wang Y J, Hu G Q. How much noise suffices for privacy of multiagent systems? IEEE Transactions on Automatic Control, 2023, 68(10): 6051−6066 doi: 10.1109/TAC.2022.3232050
    [146] Dwork C, McSherry F, Nissim K, Smith A. Calibrating noise to sensitivity in private data analysis. In: Proceedings of the 3rd Theory of Cryptography Conference on Theory of Cryptography. New York, USA: Springer, 2006. 265−284
    [147] Dwork C, Roth A. The algorithmic foundations of differential privacy. Foundations and Trends in Theoretical Computer Science, 2014, 9(3−4): 211−407
    [148] Huang Z Q, Mitra S, Vaidya N. Differentially private distributed optimization. In: Proceedings of the 16th International Conference on Distributed Computing and Networking. Goa, India: Association for Computing Machinery, 2015. Article No. 4
    [149] Huang Z Q, Mitra S, Dullerud G. Differentially private iterative synchronous consensus. In: Proceedings of the ACM Workshop on Privacy in the Electronic Society. Raleigh North, USA: Association for Computing Machinery, 2012. 81−90
    [150] Wang Y, Huang Z Q, Mitra S, Dullerud G E. Differential privacy in linear distributed control systems: Entropy minimizing mechanisms and performance tradeoffs. IEEE Transactions on Control of Network Systems, 2017, 4(1): 118−130 doi: 10.1109/TCNS.2017.2658190
    [151] Koufogiannis F, Pappas G J. Diffusing private data over networks. IEEE Transactions on Control of Network Systems, 2018, 5(3): 1027−1037 doi: 10.1109/TCNS.2017.2673414
    [152] le Ny J, Mohammady M. Differentially private MIMO filtering for event streams. IEEE Transactions on Automatic Control, 2018, 63(1): 145−157 doi: 10.1109/TAC.2017.2713643
    [153] Degue K H, le Ny J. Differentially private Kalman filtering with signal aggregation. IEEE Transactions on Automatic Control, 2023, 68(10): 6240−6246 doi: 10.1109/TAC.2022.3230735
    [154] le Ny J. Differentially private nonlinear observer design using contraction analysis. International Journal of Robust and Nonlinear Control, 2020, 30(11): 4225−4243 doi: 10.1002/rnc.4392
    [155] Degue K H, le Ny J. Differentially private interval observer design with bounded input perturbation. In: Proceedings of the American Control Conference (ACC). Denver, USA: IEEE, 2020. 1465−1470
    [156] Degue K H, le Ny J. Cooperative differentially private LQG control with measurement aggregation. IEEE Control Systems Letters, 2023, 7: 1093−1098 doi: 10.1109/LCSYS.2022.3232304
    [157] Nozari E, Tallapragada P, Cortés J. Differentially private distributed convex optimization via functional perturbation. IEEE Transactions on Control of Network Systems, 2018, 5(1): 395−408 doi: 10.1109/TCNS.2016.2614100
    [158] Nozari E, Tallapragada P, Cortés J. Differentially private average consensus: Obstructions, trade-offs, and optimal algorithm design. Automatica, 2017, 81: 221−231 doi: 10.1016/j.automatica.2017.03.016
    [159] Liang L M, Ding R Q, Liu S, Su R. Event-triggered privacy-preserving consensus control with edge-based additive noise. IEEE Transactions on Automatic Control, 2024, 69(10): 7059−7066 doi: 10.1109/TAC.2024.3390574
    [160] Wang L, Liu W J, Guo F H, Qiao Z X, Wu Z G. Differentially private average consensus with improved accuracy-privacy trade-off. Automatica, 2024, 167: Article No. 111769
    [161] Liu X K, Zhang J F, Wang J M. Differentially private consensus algorithm for continuous-time heterogeneous multi-agent systems. Automatica, 2020, 122: Article No. 109283
    [162] Wang J M, Tan J W, Zhang J F. Differentially private distributed parameter estimation. Journal of Systems Science and Complexity, 2023, 36(1): 187−204 doi: 10.1007/s11424-022-2012-9
    [163] Wang J M, Zhang J F, Liu X K. Differentially private resilient distributed cooperative online estimation over digraphs. International Journal of Robust and Nonlinear Control, 2022, 32(15): 8670−8688 doi: 10.1002/rnc.6303
    [164] Wang J M, Zhang J F, He X K. Differentially private distributed algorithms for stochastic aggregative games. Automatica, 2022, 142: Article No. 110440
    [165] Chen J L, Wang J M, Zhang J F. Differentially private distributed nonconvex stochastic optimization with quantized communication. arXiv preprint arXiv: 2403.18254, 2024.
    [166] Chen J L, Wang J M, Zhang J F. Differentially private gradient-tracking-based distributed stochastic optimization over directed graphs. arXiv preprint arXiv: 2501.06793, 2025.
    [167] Xuan Y, Wang Y Q. Gradient-tracking based differentially private distributed optimization with enhanced optimization accuracy. Automatica, 2023, 155: Article No. 111150
    [168] Wang Y Q, Başar T. Decentralized nonconvex optimization with guaranteed privacy and accuracy. Automatica, 2023, 150: Article No. 110858
    [169] Wang Y Q, Nedić A. Tailoring gradient methods for differentially private distributed optimization. IEEE Transactions on Automatic Control, 2024, 69(2): 872−887 doi: 10.1109/TAC.2023.3272968
    [170] Liu C X, Johansson K H, Shi Y. Private stochastic dual averaging for decentralized empirical risk minimization. IFAC-PapersOnLine, 2022, 55(13): 43−48 doi: 10.1016/j.ifacol.2022.07.233
    [171] Ding T, Zhu S Y, He J P, Chen C L, Guan X P. Differentially private distributed optimization via state and direction perturbation in multiagent systems. IEEE Transactions on Automatic Control, 2022, 67(2): 722−737 doi: 10.1109/TAC.2021.3059427
    [172] Chen F, Chen X Z, Xiang L Y, Ren W. Distributed economic dispatch via a predictive scheme: Heterogeneous delays and privacy preservation. Automatica, 2021, 123: Article No. 109356
    [173] Hale M T, Egerstedt M. Cloud-enabled differentially private multiagent optimization with constraints. IEEE Transactions on Control of Network Systems, 2018, 5(4): 1693−1706 doi: 10.1109/TCNS.2017.2751458
    [174] Gao L, Deng S J, Ren W. Differentially private consensus with an event-triggered mechanism. IEEE Transactions on Control of Network Systems, 2019, 6(1): 60−71 doi: 10.1109/TCNS.2018.2795703
    [175] Gao L, Deng S J, Ren W, Hu C Q. Differentially private consensus with quantized communication. IEEE Transactions on Cybernetics, 2021, 51(8): 4075−4088 doi: 10.1109/TCYB.2018.2890645
    [176] Chen W, Wang Z D, Hu J, Liu G P. Differentially private average consensus with logarithmic dynamic encoding–decoding scheme. IEEE Transactions on Cybernetics, 2023, 53(10): 6725−6736 doi: 10.1109/TCYB.2022.3233296
    [177] He J P, Cai L, Guan X P. Differential private noise adding mechanism and its application on consensus algorithm. IEEE Transactions on Signal Processing, 2020, 68: 4069−4082 doi: 10.1109/TSP.2020.3006760
    [178] Fiore D, Russo G. Resilient consensus for multi-agent systems subject to differential privacy requirements. Automatica, 2019, 106: 18−26 doi: 10.1016/j.automatica.2019.04.029
    [179] Rizk E, Vlaski S, Sayed A H. Enforcing privacy in distributed learning with performance guarantees. IEEE Transactions on Signal Processing, 2023, 71: 3385−3398 doi: 10.1109/TSP.2023.3316590
    [180] Lang N, Sofer E, Shaked T, Shlezinger N. Joint privacy enhancement and quantization in federated learning. IEEE Transactions on Signal Processing, 2023, 71: 295−310 doi: 10.1109/TSP.2023.3244092
    [181] Rostampour V, Ferrari R M G, Teixeira A M H, Keviczky T. Privatized distributed anomaly detection for large-scale nonlinear uncertain systems. IEEE Transactions on Automatic Control, 2021, 66(11): 5299−5313 doi: 10.1109/TAC.2020.3040251
    [182] Ye M J, Hu G Q, Xie L H, Xu S Y. Differentially private distributed Nash equilibrium seeking for aggregative games. IEEE Transactions on Automatic Control, 2022, 67(5): 2451−2458 doi: 10.1109/TAC.2021.3075183
    [183] Sugiura G, Ito K, Kashima K. Bayesian differential privacy for linear dynamical systems. IEEE Control Systems Letters, 2022, 6: 896−901 doi: 10.1109/LCSYS.2021.3087096
    [184] Katewa V, Chakrabortty A, Gupta V. Differential privacy for network identification. IEEE Transactions on Control of Network Systems, 2020, 7(1): 266−277 doi: 10.1109/TCNS.2019.2922169
    [185] Sandberg H, Dán G, Thobaben R. Differentially private state estimation in distribution networks with smart meters. In: Proceedings of the 54th IEEE Conference on Decision and Control (CDC). Osaka, Japan: IEEE, 2015. 4492−4498
    [186] Yan X H, Chen B, Zhang Y C, Yu L. Distributed encryption fusion estimation against full eavesdropping. Automatica, 2023, 153: Article No. 111025
    [187] Yazdani K, Jones A, Leahy K, Hale M. Differentially private LQ control. IEEE Transactions on Automatic Control, 2023, 68(2): 1061−1068 doi: 10.1109/TAC.2022.3148710
    [188] Han Y H, Martínez S. A numerical verification framework for differential privacy in estimation. IEEE Control Systems Letters, 2022, 6: 1712−1717 doi: 10.1109/LCSYS.2021.3132801
    [189] Yan X H, Chen B, Zhang Y C, Yu L. Guaranteeing differential privacy in distributed fusion estimation. IEEE Transactions on Aerospace and Electronic Systems, 2023, 59(3): 3416−3423 doi: 10.1109/TAES.2022.3219799
    [190] Rizk E, Sayed A H. A graph federated architecture with privacy preserving learning. In: Proceedings of the 22nd IEEE International Workshop on Signal Processing Advances in Wireless Communications (SPAWC). Lucca, Italy: IEEE, 2021. 131−135
    [191] Kawano Y, Cao M. Design of privacy-preserving dynamic controllers. IEEE Transactions on Automatic Control, 2020, 65(9): 3863−3878 doi: 10.1109/TAC.2020.2994030
    [192] Kawano Y, Kashima K, Cao M. Modular control under privacy protection: Fundamental trade-offs. Automatica, 2021, 127: Article No. 109518
    [193] Qin S Y, He J P, Fang C R, Lam J. Differential private discrete noise-adding mechanism: Conditions, properties, and optimization. IEEE Transactions on Signal Processing, 2023, 71: 3534−3547 doi: 10.1109/TSP.2023.3317644
    [194] Ito K, Kawano Y, Kashima K. Privacy protection with heavy-tailed noise for linear dynamical systems. Automatica, 2021, 131: Article No. 109732
    [195] Liu L, Kawano Y, Cao M. Privacy analysis for quantized networked control systems. In: Proceedings of the 62nd IEEE Conference on Decision and Control (CDC). Singapore: IEEE, 2023. 5073−5078
    [196] Li T, Fu M Y, Xie L H, Zhang J F. Distributed consensus with limited communication data rate. IEEE Transactions on Automatic Control, 2011, 56(2): 279−292 doi: 10.1109/TAC.2010.2052384
    [197] Dimarogonas D V, Johansson K H. Event-triggered control for multi-agent systems. In: Proceedings of the 48th IEEE Conference on Decision and Control (CDC) Held Jointly With the 28th Chinese Control Conference. Shanghai, China: IEEE, 2009. 7131−7136
    [198] Lv X, Hou X Y, Ren C S, Ge X, Yang P L, Cui Q M, et al. Secure and efficient federated learning with provable performance guarantees via stochastic quantization. IEEE Transactions on Information Forensics and Security, 2024, 19: 4070−4085 doi: 10.1109/TIFS.2024.3374590
    [199] 控制理论若干瓶颈问题项目组. 控制理论若干瓶颈问题. 北京: 科学出版社, 2022.

    The Project Team of 《Some Bottleneck Problems in Control Theory》. Some Bottleneck Problems in Control Theory. Beijing: Science Press, 2022.
    [200] Söderström T. Errors-in-variables methods in system identification. Automatica, 2007, 43(6): 939−958 doi: 10.1016/j.automatica.2006.11.025
    [201] Zhou K M, Doyle J C, Glover K. Robust and Optimal Control. Upper Saddle River: Prentice Hall, 1996.
    [202] Khalil H K. Nonlinear Systems (3rd edition). Upper Saddle River: Prentice Hall, 2001.
    [203] Krstic M, Kanellakopoulos L, Kokotovic P V. Nonlinear and Adaptive Control Design. New York: John Wiley & Sons, Inc., 1995.
    [204] Gorbunov S, Vaikuntanathan V, Wichs D. Leveled fully homomorphic signatures from standard lattices. In: Proceedings of the 47th Annual ACM Symposium on Theory of Computing. Portland, USA: Association for Computing Machinery, 2015. 469−477
    [205] Gennaro R, Wichs D. Fully homomorphic message authenticators. In: Proceedings of the 19th International Conference on Theory and Application of Cryptology and Information Security. Bengaluru, India: Springer, 2013. 301−320
    [206] Sun X Q, Yu F R, Zhang P, Sun Z W, Xie W X, Peng X. A survey on zero-knowledge proof in blockchain. IEEE Network, 2021, 35(4): 198−205 doi: 10.1109/MNET.011.2000473
    [207] Parno B, Howell J, Gentry C, Raykova M. Pinocchio: Nearly practical verifiable computation. Communications of the ACM, 2016, 59(2): 103−112 doi: 10.1145/2856449
    [208] Chida K, Hamada K, Ikarashi D, Kikuchi R, Genkin D, Lindell Y, et al. Fast large-scale honest-majority MPC for malicious adversaries. Journal of Cryptology, 2023, 36(3): Article No. 15
    [209] Keller M, Orsini E, Scholl P. MASCOT: Faster malicious arithmetic secure computation with oblivious transfer. In: Proceedings of the ACM SIGSAC Conference on Computer and Communications Security. Vienna, Austria: Association for Computing Machinery, 2016. 830−842
    [210] Regev O. On lattices, learning with errors, random linear codes, and cryptography. Journal of the ACM, 2009, 56(6): Article No. 34
    [211] Abdalla M, Bourse F, de Caro A, Pointcheval D. Simple functional encryption schemes for inner products. In: Proceedings of the 18th IACR International Conference on Practice and Theory in Public-key Cryptography. Gaithersburg, USA: Springer, 2015. 733−751
    [212] Agrawal S, Libert B, Stehlé D. Fully secure functional encryption for inner products, from standard assumptions. In: Proceedings of the 36th Annual International Cryptology Conference. Santa Barbara, USA: Springer, 2016. 333−362
    [213] Weng C H, Nekouei E, Johansson K H. Optimal privacy-aware dynamic estimation. arXiv preprint arXiv: 2311.05896, 2023.
    [214] Wang L, Cao X H, Zhang H, Sun C Y, Zheng W X. Transmission scheduling for privacy-optimal encryption against eavesdropping attacks on remote state estimation. Automatica, 2022, 137: Article No. 110145
    [215] Shu H Y, Zhou J Y, Yang W, Zhang H. Distortion-based state security codes for distributed sensor networks. Automatica, 2023, 151: Article No. 110904
    [216] Umsonst D, Sandberg H. On the confidentiality of controller states under sensor attacks. Automatica, 2021, 123: Article No. 109329
    [217] Katewa V, Anguluri R, Pasqualetti F. On a security vs privacy trade-off in interconnected dynamical systems. Automatica, 2021, 125: Article No. 109426
    [218] Wang H J, Liu K, Li B J, Fridman E, Xia Y Q. Privacy and security trade-off in interconnected systems with known or unknown privacy noise covariance. Automatica, 2025, 173: Article No. 112071
    [219] Wonham W M. Linear Multivariable Control: A Geometric Approach (3rd edition). New York: Springer, 1985.
    [220] Huang Y H, Huang L N, Zhu Q Y. Reinforcement Learning for feedback-enabled cyber resilience. Annual Reviews in Control, 2022, 53: 273−295 doi: 10.1016/j.arcontrol.2022.01.001
    [221] Zhang K K, Keliris C, Polycarpou M M, Parisini T. Detecting stealthy integrity attacks in a class of nonlinear cyber–physical systems: A backward-in-time approach. Automatica, 2022, 141: Article No. 110262
    [222] Jiang P P, Wang Q, Huang M Q, Wang C, Li Q, Shen C, et al. Building in-the-cloud network functions: Security and privacy challenges. Proceedings of the IEEE, 2021, 109(12): 1888−1919 doi: 10.1109/JPROC.2021.3127277
    [223] Bharathi B, Manivasagam G, Kumar M A. Metrics for performance evaluation of encryption algorithms. International Journal of Advance Research in Science and Engineering, 2017, 6(3): 62−72
    [224] Wang C, Ren K, Wang J. Secure optimization computation outsourcing in cloud computing: A case study of linear programming. IEEE Transactions on Computers, 2016, 65(1): 216−229 doi: 10.1109/TC.2015.2417542
    [225] Khan M A, Puri D. Challenges and opportunities in implementing quantum-safe key distribution in IoT devices. In: Proceedings of the 3rd International Conference for Innovation in Technology (INOCON). Bangalore, India: IEEE, 2024. 1−7
    [226] Jacob R, Lesage J J, Faure J M. Overview of discrete event systems opacity: Models, validation, and quantification. Annual Reviews in Control, 2016, 41: 135−146 doi: 10.1016/j.arcontrol.2016.04.015
    [227] John V M, Katewa V. Opacity versus security in linear dynamical systems. IEEE Transactions on Automatic Control, 2025, 70(1): 323−338 doi: 10.1109/TAC.2024.3426549
    [228] Liu R J, Lu J Q. Enforcement for infinite-step opacity and K-step opacity via insertion mechanism. Automatica, 2022, 140: Article No. 110212
    [229] Yin X, Li Z J, Wang W L, Li S Y. Infinite-step opacity and K-step opacity of stochastic discrete-event systems. Automatica, 2019, 99: 266−274 doi: 10.1016/j.automatica.2018.10.049
    [230] Hou J Y, Yin X, Li S Y. A framework for current-state opacity under dynamic information release mechanism. Automatica, 2022, 140: Article No. 110238
    [231] Tong Y, Lan H, Seatzu C. Verification of K-step and infinite-step opacity of bounded labeled Petri nets. Automatica, 2022, 140: Article No. 110221
    [232] An L W, Yang G H. Opacity enforcement for confidential robust control in linear cyber-physical systems. IEEE Transactions on Automatic Control, 2020, 65(3): 1234−1241 doi: 10.1109/TAC.2019.2925498
    [233] Xie Y F, Li S Y, Yin X. Optimal synthesis of opacity-enforcing supervisors for qualitative and quantitative specifications. IEEE Transactions on Automatic Control, 2024, 69(8): 4958−4973 doi: 10.1109/TAC.2023.3342880
    [234] Ramasubramanian B, Cleaveland R, Marcus S I. Notions of centralized and decentralized opacity in linear systems. IEEE Transactions on Automatic Control, 2020, 65(4): 1442−1455 doi: 10.1109/TAC.2019.2920837
    [235] Lu Y, Zhu M H. On privacy preserving data release of linear dynamic networks. Automatica, 2020, 115: Article No. 108839
    [236] Ji Y D, Yin X, Lafortune S. Opacity enforcement using nondeterministic publicly known edit functions. IEEE Transactions on Automatic Control, 2019, 64(10): 4369−4376 doi: 10.1109/TAC.2019.2897553
    [237] Liu R J, Lu J Q, Hadjicostis C N. Opacity enforcement via attribute-based edit functions in the presence of an intended receiver. IEEE Transactions on Automatic Control, 2023, 68(9): 5646−5652 doi: 10.1109/TAC.2022.3220557
    [238] Li X Y, Hadjicostis C N, Li Z W. Extended insertion functions for opacity enforcement in discrete-event systems. IEEE Transactions on Automatic Control, 2022, 67(10): 5289−5303 doi: 10.1109/TAC.2021.3121249
    [239] Keroglou C, Lafortune S. Embedded insertion functions for opacity enforcement. IEEE Transactions on Automatic Control, 2021, 66(9): 4184−4191 doi: 10.1109/TAC.2020.3037891
    [240] Ji Y D, Wu Y C, Lafortune S. Enforcement of opacity by public and private insertion functions. Automatica, 2018, 93: 369−378 doi: 10.1016/j.automatica.2018.03.041
    [241] Xie Y F, Yin X, Li S Y. Opacity enforcing supervisory control using nondeterministic supervisors. IEEE Transactions on Automatic Control, 2022, 67(12): 6567−6582 doi: 10.1109/TAC.2021.3131125
    [242] Chen W, Wang Z D, Liu Q Y, Yue D, Liu G P. A new privacy-preserving average consensus algorithm with twophase structure: Applications to load sharing of microgrids. Automatica, 2024, 167: Article No. 111715
    [243] Zhang K X, Li Z J, Wang Y Q, Louati A, Chen J. Privacy-preserving dynamic average consensus via state decomposition: Case study on multi-robot formation control. Automatica, 2022, 139: Article No. 110182
    [244] Spiekermann S, Korunovska J, Langheinrich M. Inside the organization: Why privacy and security engineering is a challenge for engineers. Proceedings of the IEEE, 2019, 107(3): 600−615 doi: 10.1109/JPROC.2018.2866769
    [245] Hu C Q, Zhuang H J, Chen J J, Hu P F, Xiang T, Yu J G. Achieving privacy-preserving online multi-layer perceptron model in smart grid. IEEE Transactions on Cloud Computing, 2024, 12(2): 777−788 doi: 10.1109/TCC.2024.3399771
    [246] Donnelly W, Keifer P, Minor R, Muthukumaran U, Parolek B, Tuck B, et al. A review of privacy-preserving and efficient data collection and aggregation in smart grids. In: Proceedings of the 11th International Conference on Information and Communication Technology (ICoICT). Melaka, Malaysia: IEEE, 2023. 326−332
    [247] Gao H, Li Z J, Wang Y Q. Privacy-preserving collaborative estimation for networked vehicles with application to collaborative road profile estimation. IEEE Transactions on Intelligent Transportation Systems, 2022, 23(10): 17301−17311 doi: 10.1109/TITS.2022.3154650
    [248] Das D, Banerjee S, Chatterjee P, Ghosh U, Biswas U. Blockchain for intelligent transportation systems: Applications, challenges, and opportunities. IEEE Internet of Things Journal, 2023, 10(21): 18961−18970 doi: 10.1109/JIOT.2023.3277923
    [249] Bost R, Fouque P A. Security-efficiency tradeoffs in searchable encryption. Proceedings on Privacy Enhancing Technologies, 2019, 2019(4): 132−151 doi: 10.2478/popets-2019-0062
  • 加载中
计量
  • 文章访问数:  211
  • HTML全文浏览量:  103
  • 被引次数: 0
出版历程
  • 收稿日期:  2025-03-06
  • 录用日期:  2025-05-29
  • 网络出版日期:  2025-07-14

目录

    /

    返回文章
    返回