Anti-disturbance Fixed-time Prescribed Performance Formation Control of Multi-mobile Robots via Event-triggered Mechanism
-
摘要: 考虑多移动机器人编队系统存在模型参数不确定、未知扰动和有限通信资源问题, 提出一种固定时间预定性能的事件触发编队控制方法. 首先, 设计新的固定时间干扰观测器以精确估计系统的复合扰动. 其次, 基于干扰观测器、预定性能函数、反步法和固定时间理论, 并考虑通信资源受限问题, 设计时变阈值事件触发的固定时间预定性能编队控制器, 使得编队误差在固定时间内收敛且满足预定性能要求. 所提出的触发机制可减少因控制器和执行器频繁通信造成的网络资源浪费, 且无Zeno行为发生. 最后, 通过对三个移动机器人进行编队仿真, 验证所提方法的有效性.Abstract: This paper deals with the formation control problem of multi-mobile robots subject to uncertain model parameters, unknown disturbances and limited communication resources. An anti-disturbance event-triggered formation control method based on fixed-time prescribed performance is proposed. Firstly, a new fixed-time disturbance observer is designed to estimate the compound disturbance accurately. Then, based on the disturbance observer, prescribed performance function, backstepping method and fixed-time stability theory, an anti-disturbance fixed-time prescribed performance formation controller under time-varying threshold event-triggered mechanism is designed to save limited communication resources. The controller can make the formation errors converge to zero in a fixed setting-time and ensure that the static and dynamic performance satisfy the prescribed performance. The proposed time-varying threshold event-triggered mechanism can effectively reduce the waste of network resources caused by frequent communication between the controller and the actuator, and the Zeno behavior is excluded. Finally, the effectiveness of the proposed method is verified by the formation simulation of three mobile robots.
-
Key words:
- Multi-mobile robot /
- formation control /
- disturbance observer /
- prescribed performance /
- fixed-time /
- event-triggered
-
表 1 移动机器人的初始状态
Table 1 The initial states of the mobile robots
状态 leader follower1 follower2 $ q_1(0) $ $ [3,\; 4,\; \pi/6]^\mathrm{T} $ $ [0,\; 5,\; -\pi/6]^\mathrm{T} $ $ [2,\; 0,\; \pi/3]^\mathrm{T} $ $ v_1(0) $ $ [2,\; 0]^\mathrm{T} $ $ [2,\; 0]^\mathrm{T} $ $ [2,\; 0]^\mathrm{T} $ $ q_2(0) $ $ [0,\; 0,\; \pi/6]^\mathrm{T} $ $ [-9,\; 3,\; -\pi/6]^\mathrm{T} $ $ [-1,\; 0,\; \pi/6]^\mathrm{T} $ $ v_2(0) $ $ [2,\; 0]^\mathrm{T} $ $ [0,\; 0]^\mathrm{T} $ $ [0,\; 0]^\mathrm{T} $ -
[1] Nair R R, Behera L, Kumar V, Jamshidi M. Multisatellite formation control for remote sensing applications using artificial potential field and adaptive fuzzy sliding mode control. IEEE Systems Journal, 2015, 9(2): 508−518 doi: 10.1109/JSYST.2014.2335442 [2] Lee G, Chwa D. Decentralized behavior-based formation control of multiple robots considering obstacle avoidance. Intelligent Service Robotics, 2018, 11(1): 127−138 doi: 10.1007/s11370-017-0240-y [3] Mehrjerdi H, Ghommam J, Saad M. Nonlinear coordination control for a group of mobile robots using a virtual structure. Mechatronics, 2011, 21(7): 1147−1155 doi: 10.1016/j.mechatronics.2011.06.006 [4] Ding T F, Ge M F, Xiong C, Liu Z W, Ling G. Prescribed-time formation tracking of second-order multi-agent networks with directed graphs. Automatica, 2023, 152: Article No. 110997 doi: 10.1016/j.automatica.2023.110997 [5] Cui L, Liang S, Yang H, Zuo Z. Formation tracking control for an air-ground system under position deviations and wind disturbances. Journal of Field Robotics, 2024, 41(3): 624−638 doi: 10.1002/rob.22282 [6] 李艳东, 朱玲, 郭媛, 于颖. 基于径向基函数神经网络的移动机器人多变量固定时间编队控制. 信息与控制, 2019, 48(6): 649−657Li Yan-Dong, Zhu Ling, Guo Yuan, Yu Ying. Radial basis function neural network-based multivariable fixed-time formation control of mobile robots. Information and Control, 2019, 48(6): 649−657 [7] Li Y M, Dong S J, Li K W, Tong S C. Fuzzy adaptive fault tolerant time-varying formation control for nonholonomic multirobot systems with range constraints. IEEE Transactions on Intelligent Vehicles, 2023, 8(6): 3668−3679 doi: 10.1109/TIV.2023.3264800 [8] 高振宇, 郭戈. 基于扰动观测器的AUVs固定时间编队控制. 自动化学报, 2019, 45(6): 1094−1102Gao Zhen-Yu, Guo Ge. Fixed-time formation control of AUVs based on a disturbance observer. Acta Automatica Sinica, 2019, 45(6): 1094−1102 [9] Qiang J P, Liu L, Xu M, Fang Y M. Fixed-time backstepping control based on adaptive super-twisting disturbance observers for a class of nonlinear systems. International Journal of Control, 2022, 95(9): 2294−2306 doi: 10.1080/00207179.2021.1908597 [10] Mu C X, Yao J Y, Yang H J, Lu M, Han Q N. Cooperative control for air-ground systems via bidirectional signal connection in complex environment. IEEE Transactions on Systems, Man, and Cybernetics: Systems, 2024, 54(9): 5680−5691 doi: 10.1109/TSMC.2024.3408152 [11] Lu K, Dai S L, Jin X. Fixed-time rigidity-based formation maneuvering for nonholonomic multirobot systems with prescribed performance. IEEE Transactions on Cybernetics, 2024, 54(4): 2129−2141 doi: 10.1109/TCYB.2022.3226297 [12] Shi W X, Wang Q W, Gong L S. Formation control of multiple mobile robots with prescribed performance. In: Proceedings of the Chinese Control and Decision Conference (CCDC). Hefei, China: IEEE, 2020. 22−24 [13] Dai S L, He S D, Chen X, Xu J. Adaptive leader-follower formation control of nonholonomic mobile robots with prescribed transient and steady-state performance. IEEE Transactions on Industrial Informatics, 2019, 16(6): 3662−3671 [14] Yoo S J, Park B S. Quantized feedback control strategy for tracking performance guarantee of nonholonomic mobile robots with uncertain nonlinear dynamics. Applied Mathematics and Computation, 2021, 407: Article No. 126349 doi: 10.1016/j.amc.2021.126349 [15] Zhuang M L, Tan L G, Li K H, Song S M. Fixed-time formation control for spacecraft with prescribed performance guarantee under input saturation. Aerospace Science and Technology, 2021, 119: Article No. 107176 doi: 10.1016/j.ast.2021.107176 [16] 陈世明, 邵赛. 基于事件触发非线性多智能体系统的固定时间一致性. 控制理论与应用, 2019, 36(10): 1606−1614 doi: 10.7641/CTA.2019.80742Chen Shi-Ming, Shao Sai. Distributed event-triggered fixed-time consensus control for multi-agent systems with nonlinear uncertainties. Control Theory & Applications, 2019, 36(10): 1606−1614 doi: 10.7641/CTA.2019.80742 [17] Xing L T, Wen C Y, Liu Z T, Su H Y, Cai J P. Event-triggered adaptive control for a class of uncertain nonlinear systems. IEEE Transactions on Automatic Control, 2017, 62(4): 2071−2076 doi: 10.1109/TAC.2016.2594204 [18] Wang D D, Pan S Y, Zhou J, Pan Q K, Miao Z H, Yang J K. Event-triggered integral formation controller for networked nonholonomic mobile robots: Theory and experiment. IEEE Transactions on Intelligent Transportation Systems, 2024, 24(12): 14620−14632 [19] Tang F H, Wang H Q, Chang X H, Zhang L, Alharbi K H. Dynamic event-triggered control for discrete-time nonlinear Markov jump systems using policy iteration-based adaptive dynamic programming. Nonlinear Analysis: Hybrid Systems, 2023, 49: Article No. 101338 doi: 10.1016/j.nahs.2023.101338 [20] Cao L, Yao D Y, Li H Y, Meng W, Lu R Q. Fuzzy-based dynamic event triggering formation control for nonstrict-feedback nonlinear MASs. Fuzzy Sets and Systems, 2023, 452: 1−22 doi: 10.1016/j.fss.2022.03.005 [21] Shen M Q, Gu Y, Wang Q G, Wu Z G, Park J H. Tighter interval estimation for discrete-time linear systems with a new dynamic triggering approach. IEEE Transactions on Instrumentation and Measurement, 2023, 72: Article No. 1008011 [22] Parsegov S E, Polyakov A E, Shcherbakov P S. Fixed-time consensus algorithm for multi-agent systems with integrator dynamics. IFAC Proceedings Volumes, 2013, 46(27): 110−115 doi: 10.3182/20130925-2-DE-4044.00055 [23] Ba D S, Li Y X, Tong S C. Fixed-time adaptive neural tracking control for a class of uncertain nonstrict nonlinear systems. Neurocomputing, 2019, 363: 273−280 doi: 10.1016/j.neucom.2019.06.063 [24] Zuo Z Y, Tie L. A new class of finite-time nonlinear consensus protocols for multi-agent systems. International Journal of Control, 2014, 87(2): 363−370 doi: 10.1080/00207179.2013.834484 [25] Zuo Z Y. Non-singular fixed-time terminal sliding mode control of non-linear systems. IET Control Theory & Applications, 2014, 9(4): 545−552 [26] Zuo Z Y, Ke R Q, Han Q L. Fully distributed adaptive practical fixed-time consensus protocols for multi-agent systems. Automatica, 2023, 157: Article No. 111248 doi: 10.1016/j.automatica.2023.111248 [27] Yang H J, Ye D. Adaptive fixed-time bipartite tracking consensus control for unknown nonlinear multi-agent systems: An information classification mechanism. Information Sciences, 2018, 459: 238−254 doi: 10.1016/j.ins.2018.04.016 [28] 周竞烨, 李家旺, 邸青, 方凯, 姚佳琪, 黄汉涛. 非完整轮式机器人的鲁棒同步编队跟踪及镇定控制. 控制理论与应用, 2020, 37(7): 1461−1470 doi: 10.7641/CTA.2020.90260Zhou Jing-Ye, Li Jia-Wang, Di Qing, Fang Kai, Yao Jia-Qi, Huang Han-Tao. Robust simultaneous formation tracking and stabilization of nonholonomic wheeled mobile robots. Control Theory & Applications, 2020, 37(7): 1461−1470 doi: 10.7641/CTA.2020.90260 [29] Peng Z X, Wen G G, Rahmani A, Yu Y G. Leader-follower formation control of nonholonomic mobile robots based on a bioinspired neurodynamic based approach. Robotics & Autonomous Systems, 2013, 61(9): 988−996 [30] 王健安, 闫慧娴, 赵志诚. 事件触发策略下多移动机器人抗干扰固定时间编队控制. 电子学报, 2023, 51(5): 1256−1265Wang Jian-An, Yan Hui-Xian, Zhao Zhi-Cheng. Anti-disturbance fixed-time formation control of multi-mobile robots via event-triggered mechanism. Acta Electronica Sinica, 2023, 51(5): 1256−1265 -
计量
- 文章访问数: 39
- HTML全文浏览量: 28
- 被引次数: 0