2.845

2023影响因子

(CJCR)

  • 中文核心
  • EI
  • 中国科技核心
  • Scopus
  • CSCD
  • 英国科学文摘

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

事件触发下多移动机器人抗干扰固定时间预定性能编队

王健安 闫慧娴 张君如 张捷 李明杰 赵志诚

王健安, 闫慧娴, 张君如, 张捷, 李明杰, 赵志诚. 事件触发下多移动机器人抗干扰固定时间预定性能编队. 自动化学报, xxxx, xx(x): x−xx doi: 10.16383/j.aas.c230654
引用本文: 王健安, 闫慧娴, 张君如, 张捷, 李明杰, 赵志诚. 事件触发下多移动机器人抗干扰固定时间预定性能编队. 自动化学报, xxxx, xx(x): x−xx doi: 10.16383/j.aas.c230654
Wang Jian-An, Yan Hui-Xian, Zhang Jun-Ru, Zhang Jie, Li Ming-Jie, Zhao Zhi-Cheng. Anti-disturbance fixed-time prescribed performance formation control of multi-mobile robots via event-triggered mechanism. Acta Automatica Sinica, xxxx, xx(x): x−xx doi: 10.16383/j.aas.c230654
Citation: Wang Jian-An, Yan Hui-Xian, Zhang Jun-Ru, Zhang Jie, Li Ming-Jie, Zhao Zhi-Cheng. Anti-disturbance fixed-time prescribed performance formation control of multi-mobile robots via event-triggered mechanism. Acta Automatica Sinica, xxxx, xx(x): x−xx doi: 10.16383/j.aas.c230654

事件触发下多移动机器人抗干扰固定时间预定性能编队

doi: 10.16383/j.aas.c230654 cstr: 32138.14.j.aas.c230654
基金项目: 国家自然科学基金(62003077), 山西省科技重大专项“揭榜挂帅”项目(202301020101001, 202201090301013), 山西省重点研发计划(202202100401002, 2022ZDYF069), 山西省基础研究计划(20210302123210, 202203021222186)资助
详细信息
    作者简介:

    王健安:太原科技大学电子信息工程学院教授. 主要研究方向为多智能体系统协同控制和复杂网络. 本文通信作者. E-mail: jiananwang@tyust.edu.cn

    闫慧娴:太原科技大学电子信息工程学院硕士研究生. 主要研究方向为移动机器人编队和多智能体系统协同控制. E-mail: yanhuixian@sxgy.edu.cn

    张君如:太原科技大学电子信息工程学院硕士研究生. 主要研究方向为复杂网络预设性能同步. E-mail: mzhangjr6@163.com

    张捷:太原科技大学电子信息工程学院副教授. 主要研究方向为多智能体系统的协同输出调节和容错控制. E-mail: zhangjie_hao666@163.com

    李明杰:太原科技大学电子信息工程学院教授. 主要研究方向为数据驱动的复杂工业过程建模与控制. E-mail: limingjie@tyust.edu.cn

    赵志诚:太原科技大学电子信息工程学院教授. 主要研究方向为先进控制理论与应用. E-mail: zhzhich@tyust.edu.cn

Anti-disturbance Fixed-time Prescribed Performance Formation Control of Multi-mobile Robots via Event-triggered Mechanism

Funds: Supported by National Natural Science Foundation of China (62003077), Major Science and Technology Project of Shanxi Province (202301020101001, 202201090301013), Key Research and Development Program of Shanxi Province (202202100401002, 2022ZDYF069), and Fundamental Research Program of Shanxi Province (20210302123210, 202203021222186)
More Information
    Author Bio:

    WANG Jian-An Professor at the School of Electronic Information Engineering, Taiyuan University of Science and Technology. His research interest covers cooperative control of multi-agent systems and complex networks. Corresponding author of this paper

    YAN Hui-Xian Master student at the School of Electronic Information Engineering, Taiyuan University of Science and Technology. Her research interest covers formation of mobile robots and cooperative control of multi-agent systems

    ZHANG Jun-Ru Master student at the School of Electronic Information Engineering, Taiyuan University of Science and Technology. Her main research interest is prescribed performance synchronization of complex networks

    ZHANG Jie Associate professor at the School of Electronic Information Engineering, Taiyuan University of Science and Technology. His research interest covers cooperative output regulation and fault-tolerant control of multi-agent systems

    LI Ming-Jie Professor at the School of Electronic Information Engineering, Taiyuan University of Science and Technology. His research interest covers data-driven modeling and control for complex industrial process

    ZHAO Zhi-Cheng Professor at the School of Electronic Information Engineering, Taiyuan University of Science and Technology. His research interest covers advanced control theory and applications

  • 摘要: 考虑多移动机器人编队系统存在模型参数不确定、未知扰动和有限通信资源问题, 提出一种固定时间预定性能的事件触发编队控制方法. 首先, 设计新的固定时间干扰观测器以精确估计系统的复合扰动. 其次, 基于干扰观测器、预定性能函数、反步法和固定时间理论, 并考虑通信资源受限问题, 设计时变阈值事件触发的固定时间预定性能编队控制器, 使得编队误差在固定时间内收敛且满足预定性能要求. 所提出的触发机制可减少因控制器和执行器频繁通信造成的网络资源浪费, 且无Zeno行为发生. 最后, 通过对三个移动机器人进行编队仿真, 验证所提方法的有效性.
  • 图  1  领导−跟随者编队模型

    Fig.  1  The leader-follower formation model

    图  2  编队跟踪控制示意图

    Fig.  2  The formation tracking control diagram

    图  3  编队运动轨迹图

    Fig.  3  Formation motion trajectory diagram

    图  4  跟踪误差曲线

    Fig.  4  Tracking error curves

    图  5  不同预定性能参数下的跟踪误差对比

    Fig.  5  Comparison of tracking errors under different prescribed performance parameters

    图  6  不同初始状态下的跟踪误差对比

    Fig.  6  Comparison of tracking errors under different initial states

    图  7  复合扰动及其估计值

    Fig.  7  The compound disturbance and its estimated value

    图  8  扰动观测误差对比

    Fig.  8  Comparison of perturbation observation errors

    图  9  事件触发控制输入对比

    Fig.  9  Comparison of event-triggered control inputs

    图  10  不同事件触发机制的触发间隔和触发时刻对比

    Fig.  10  Comparison of triggering intervals and triggering moments for different event-triggered mechanisms

    图  11  PPC与NPPC跟踪误差对比

    Fig.  11  Comparison of tracking error between PPC and NPPC

    表  1  移动机器人的初始状态

    Table  1  The initial states of the mobile robots

    状态 leader follower1 follower2
    $ q_1(0) $ $ [3,\; 4,\; \pi/6]^\mathrm{T} $ $ [0,\; 5,\; -\pi/6]^\mathrm{T} $ $ [2,\; 0,\; \pi/3]^\mathrm{T} $
    $ v_1(0) $ $ [2,\; 0]^\mathrm{T} $ $ [2,\; 0]^\mathrm{T} $ $ [2,\; 0]^\mathrm{T} $
    $ q_2(0) $ $ [0,\; 0,\; \pi/6]^\mathrm{T} $ $ [-9,\; 3,\; -\pi/6]^\mathrm{T} $ $ [-1,\; 0,\; \pi/6]^\mathrm{T} $
    $ v_2(0) $ $ [2,\; 0]^\mathrm{T} $ $ [0,\; 0]^\mathrm{T} $ $ [0,\; 0]^\mathrm{T} $
    下载: 导出CSV
  • [1] Nair R R, Behera L, Kumar V, Jamshidi M. Multisatellite formation control for remote sensing applications using artificial potential field and adaptive fuzzy sliding mode control. IEEE Systems Journal, 2015, 9(2): 508−518 doi: 10.1109/JSYST.2014.2335442
    [2] Lee G, Chwa D. Decentralized behavior-based formation control of multiple robots considering obstacle avoidance. Intelligent Service Robotics, 2018, 11(1): 127−138 doi: 10.1007/s11370-017-0240-y
    [3] Mehrjerdi H, Ghommam J, Saad M. Nonlinear coordination control for a group of mobile robots using a virtual structure. Mechatronics, 2011, 21(7): 1147−1155 doi: 10.1016/j.mechatronics.2011.06.006
    [4] Ding T F, Ge M F, Xiong C, Liu Z W, Ling G. Prescribed-time formation tracking of second-order multi-agent networks with directed graphs. Automatica, 2023, 152: Article No. 110997 doi: 10.1016/j.automatica.2023.110997
    [5] Cui L, Liang S, Yang H, Zuo Z. Formation tracking control for an air-ground system under position deviations and wind disturbances. Journal of Field Robotics, 2024, 41(3): 624−638 doi: 10.1002/rob.22282
    [6] 李艳东, 朱玲, 郭媛, 于颖. 基于径向基函数神经网络的移动机器人多变量固定时间编队控制. 信息与控制, 2019, 48(6): 649−657

    Li Yan-Dong, Zhu Ling, Guo Yuan, Yu Ying. Radial basis function neural network-based multivariable fixed-time formation control of mobile robots. Information and Control, 2019, 48(6): 649−657
    [7] Li Y M, Dong S J, Li K W, Tong S C. Fuzzy adaptive fault tolerant time-varying formation control for nonholonomic multirobot systems with range constraints. IEEE Transactions on Intelligent Vehicles, 2023, 8(6): 3668−3679 doi: 10.1109/TIV.2023.3264800
    [8] 高振宇, 郭戈. 基于扰动观测器的AUVs固定时间编队控制. 自动化学报, 2019, 45(6): 1094−1102

    Gao Zhen-Yu, Guo Ge. Fixed-time formation control of AUVs based on a disturbance observer. Acta Automatica Sinica, 2019, 45(6): 1094−1102
    [9] Qiang J P, Liu L, Xu M, Fang Y M. Fixed-time backstepping control based on adaptive super-twisting disturbance observers for a class of nonlinear systems. International Journal of Control, 2022, 95(9): 2294−2306 doi: 10.1080/00207179.2021.1908597
    [10] Mu C X, Yao J Y, Yang H J, Lu M, Han Q N. Cooperative control for air-ground systems via bidirectional signal connection in complex environment. IEEE Transactions on Systems, Man, and Cybernetics: Systems, 2024, 54(9): 5680−5691 doi: 10.1109/TSMC.2024.3408152
    [11] Lu K, Dai S L, Jin X. Fixed-time rigidity-based formation maneuvering for nonholonomic multirobot systems with prescribed performance. IEEE Transactions on Cybernetics, 2024, 54(4): 2129−2141 doi: 10.1109/TCYB.2022.3226297
    [12] Shi W X, Wang Q W, Gong L S. Formation control of multiple mobile robots with prescribed performance. In: Proceedings of the Chinese Control and Decision Conference (CCDC). Hefei, China: IEEE, 2020. 22−24
    [13] Dai S L, He S D, Chen X, Xu J. Adaptive leader-follower formation control of nonholonomic mobile robots with prescribed transient and steady-state performance. IEEE Transactions on Industrial Informatics, 2019, 16(6): 3662−3671
    [14] Yoo S J, Park B S. Quantized feedback control strategy for tracking performance guarantee of nonholonomic mobile robots with uncertain nonlinear dynamics. Applied Mathematics and Computation, 2021, 407: Article No. 126349 doi: 10.1016/j.amc.2021.126349
    [15] Zhuang M L, Tan L G, Li K H, Song S M. Fixed-time formation control for spacecraft with prescribed performance guarantee under input saturation. Aerospace Science and Technology, 2021, 119: Article No. 107176 doi: 10.1016/j.ast.2021.107176
    [16] 陈世明, 邵赛. 基于事件触发非线性多智能体系统的固定时间一致性. 控制理论与应用, 2019, 36(10): 1606−1614 doi: 10.7641/CTA.2019.80742

    Chen Shi-Ming, Shao Sai. Distributed event-triggered fixed-time consensus control for multi-agent systems with nonlinear uncertainties. Control Theory & Applications, 2019, 36(10): 1606−1614 doi: 10.7641/CTA.2019.80742
    [17] Xing L T, Wen C Y, Liu Z T, Su H Y, Cai J P. Event-triggered adaptive control for a class of uncertain nonlinear systems. IEEE Transactions on Automatic Control, 2017, 62(4): 2071−2076 doi: 10.1109/TAC.2016.2594204
    [18] Wang D D, Pan S Y, Zhou J, Pan Q K, Miao Z H, Yang J K. Event-triggered integral formation controller for networked nonholonomic mobile robots: Theory and experiment. IEEE Transactions on Intelligent Transportation Systems, 2024, 24(12): 14620−14632
    [19] Tang F H, Wang H Q, Chang X H, Zhang L, Alharbi K H. Dynamic event-triggered control for discrete-time nonlinear Markov jump systems using policy iteration-based adaptive dynamic programming. Nonlinear Analysis: Hybrid Systems, 2023, 49: Article No. 101338 doi: 10.1016/j.nahs.2023.101338
    [20] Cao L, Yao D Y, Li H Y, Meng W, Lu R Q. Fuzzy-based dynamic event triggering formation control for nonstrict-feedback nonlinear MASs. Fuzzy Sets and Systems, 2023, 452: 1−22 doi: 10.1016/j.fss.2022.03.005
    [21] Shen M Q, Gu Y, Wang Q G, Wu Z G, Park J H. Tighter interval estimation for discrete-time linear systems with a new dynamic triggering approach. IEEE Transactions on Instrumentation and Measurement, 2023, 72: Article No. 1008011
    [22] Parsegov S E, Polyakov A E, Shcherbakov P S. Fixed-time consensus algorithm for multi-agent systems with integrator dynamics. IFAC Proceedings Volumes, 2013, 46(27): 110−115 doi: 10.3182/20130925-2-DE-4044.00055
    [23] Ba D S, Li Y X, Tong S C. Fixed-time adaptive neural tracking control for a class of uncertain nonstrict nonlinear systems. Neurocomputing, 2019, 363: 273−280 doi: 10.1016/j.neucom.2019.06.063
    [24] Zuo Z Y, Tie L. A new class of finite-time nonlinear consensus protocols for multi-agent systems. International Journal of Control, 2014, 87(2): 363−370 doi: 10.1080/00207179.2013.834484
    [25] Zuo Z Y. Non-singular fixed-time terminal sliding mode control of non-linear systems. IET Control Theory & Applications, 2014, 9(4): 545−552
    [26] Zuo Z Y, Ke R Q, Han Q L. Fully distributed adaptive practical fixed-time consensus protocols for multi-agent systems. Automatica, 2023, 157: Article No. 111248 doi: 10.1016/j.automatica.2023.111248
    [27] Yang H J, Ye D. Adaptive fixed-time bipartite tracking consensus control for unknown nonlinear multi-agent systems: An information classification mechanism. Information Sciences, 2018, 459: 238−254 doi: 10.1016/j.ins.2018.04.016
    [28] 周竞烨, 李家旺, 邸青, 方凯, 姚佳琪, 黄汉涛. 非完整轮式机器人的鲁棒同步编队跟踪及镇定控制. 控制理论与应用, 2020, 37(7): 1461−1470 doi: 10.7641/CTA.2020.90260

    Zhou Jing-Ye, Li Jia-Wang, Di Qing, Fang Kai, Yao Jia-Qi, Huang Han-Tao. Robust simultaneous formation tracking and stabilization of nonholonomic wheeled mobile robots. Control Theory & Applications, 2020, 37(7): 1461−1470 doi: 10.7641/CTA.2020.90260
    [29] Peng Z X, Wen G G, Rahmani A, Yu Y G. Leader-follower formation control of nonholonomic mobile robots based on a bioinspired neurodynamic based approach. Robotics & Autonomous Systems, 2013, 61(9): 988−996
    [30] 王健安, 闫慧娴, 赵志诚. 事件触发策略下多移动机器人抗干扰固定时间编队控制. 电子学报, 2023, 51(5): 1256−1265

    Wang Jian-An, Yan Hui-Xian, Zhao Zhi-Cheng. Anti-disturbance fixed-time formation control of multi-mobile robots via event-triggered mechanism. Acta Electronica Sinica, 2023, 51(5): 1256−1265
  • 加载中
计量
  • 文章访问数:  39
  • HTML全文浏览量:  28
  • 被引次数: 0
出版历程
  • 收稿日期:  2023-10-24
  • 录用日期:  2025-02-08
  • 网络出版日期:  2025-06-11

目录

    /

    返回文章
    返回