2.845

2023影响因子

(CJCR)

  • 中文核心
  • EI
  • 中国科技核心
  • Scopus
  • CSCD
  • 英国科学文摘

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

事件触发观测下时滞马尔科夫跳跃系统广义记忆滑模控制

杨玥 黄佳男 马宗方 苏晓杰

杨玥, 黄佳男, 马宗方, 苏晓杰. 事件触发观测下时滞马尔科夫跳跃系统广义记忆滑模控制. 自动化学报, xxxx, xx(x): x−xx doi: 10.16383/j.aas.c240723
引用本文: 杨玥, 黄佳男, 马宗方, 苏晓杰. 事件触发观测下时滞马尔科夫跳跃系统广义记忆滑模控制. 自动化学报, xxxx, xx(x): x−xx doi: 10.16383/j.aas.c240723
Yang Yue, Huang Jia-Nan, Ma Zong-Fang, Su Xiao-Jie. Generalized memory sliding mode control for time-delay Markov jump systems based on event-triggered observers. Acta Automatica Sinica, xxxx, xx(x): x−xx doi: 10.16383/j.aas.c240723
Citation: Yang Yue, Huang Jia-Nan, Ma Zong-Fang, Su Xiao-Jie. Generalized memory sliding mode control for time-delay Markov jump systems based on event-triggered observers. Acta Automatica Sinica, xxxx, xx(x): x−xx doi: 10.16383/j.aas.c240723

事件触发观测下时滞马尔科夫跳跃系统广义记忆滑模控制

doi: 10.16383/j.aas.c240723 cstr: 32138.14.j.aas.c240723
基金项目: 国家自然科学基金(62306228, 62441237), 陕西省重点研发计划(2024GX-YBXM-132)资助
详细信息
    作者简介:

    杨玥:西安建筑科技大学信息与控制工程学院副教授. 2022年获得重庆大学控制理论与工程专业博士学位. 主要研究方向为智能无人系统的安全控制. 本文通信作者. E-mail: yangyue@xauat.edu.cn

    黄佳男:西安建筑科技大学信息与控制工程学院硕士研究生. 主要研究方向为滑模控制, 模糊控制, 及其在机器人系统中的应用. E-mail: h_jn123@xauat.edu.cn

    马宗方:西安建筑科技大学信息与控制工程学院教授. 2011年获得西北工业大学博士学位. 主要研究方向为信息融合, 计算机视觉和智能建造. E-mail: zongfangma@xauat.edu.cn

    苏晓杰:重庆大学自动化学院教授. 2013年获得哈尔滨工业大学控制科学与工程专业博士学位. 主要研究方向为智能控制系统及其在无人系统中的应用. E-mail: suxiaojie@cqu.edu.cn

Generalized Memory Sliding Mode Control for Time-delay Markov Jump Systems Based on Event-triggered Observers

Funds: Supported by National Natural Science Foundation of China (62306228, 62441237) and Shaanxi Province Key Research and Development Program (2024GX-YBXM-132)
More Information
    Author Bio:

    YANG Yue Associate professor at the College of Information and Control Engineering, Xi'an University of Architecture and Technology. She received her Ph.D. degree in control theory and engineering from Chongqing University in 2022. Her main research interest is the security control of intelligent unmanned systems. Corresponding author of this paper

    HUANG Jia-Nan Master student at the College of Information and Control Engineering, Xi'an University of Architecture and Technology. His research interest covers sliding mode control, fuzzy control, and their applications in robotic systems

    MA Zong-Fang Professor at the College of Information and Control Engineering, Xi'an University of Architecture and Technology. He received his Ph.D. degree from Northwestern Polytechnical University in 2011. His research interest covers information fusion, computer vision, and intelligent construction

    SU Xiao-Jie Professor at the College of Automation, Chongqing University. He received his Ph.D. degree in control science and engineering from the Harbin Institute of Technology in 2013. His research interest covers intelligent control systems and their applications in unmanned systems

  • 摘要: 马尔科夫跳跃系统镇定过程常伴随通信信道堵塞、状态信息未知、时滞效应不全等问题. 基于此, 提出一种基于动态事件触发观测器的广义记忆异步滑模控制器. 其中动态事件触发观测器结合丢包补偿, 克服了已有文献单一考虑网络环境下频繁数据传输导致的通道堵塞问题. 针对观测时滞状态与控制器异步行为, 在滑模函数中引入时变时滞及其边界条件, 设计基于隐马尔科夫模型的广义记忆异步滑模控制器. 由于高效时滞利用率和多独立控制增益相互补偿, 闭环系统稳定性、收敛速度和超调等静态/动态性能较传统记忆/无记忆滑模控制器稳定提升. 同时, 为进一步耦合广义记忆控制时滞信息, 提出一组指数型反凸组合不等式, 通过预置指数型参数, 在不增加计算复杂度的前提下, 降低广义控制镇定条件保守性, 提升控制增益镇定精度. 最后通过数值算例和柔性机械臂实例验证了所提控制方案的有效性.
  • 图  1  异步行为观测

    Fig.  1  Asynchronous behavior observation

    图  2  信号触发时刻与释放间隔

    Fig.  2  Signal triggering time and release interval

    图  5  闭环系统状态轨迹

    Fig.  5  Closed-loop system state trajectory

    图  3  闭环系统状态轨迹

    Fig.  3  Closed-loop system state trajectory

    图  4  闭环系统状态轨迹

    Fig.  4  Closed-loop system state trajectory

    图  6  应用场景((a)模式1; (b)模式2;(c)模式3; (d)模式4)

    Fig.  6  Application scenarios((a) Mode 1; (b) Mode 2;(c) Mode 3; (d) Mode 4)

    图  7  信号触发时刻与释放间隔

    Fig.  7  Signal triggering time and release interval

    图  8  异步行为观测

    Fig.  8  Asynchronous behavior observation

    图  9  闭环系统状态轨迹

    Fig.  9  Closed-loop system state trajectory

  • [1] Shi D W, Elliott R J, Chen T W. On finite-state stochastic modeling and secure estimation of cyber-physical systems. IEEE Transactions on Automatic Control, 2017, 62(1): 65−80 doi: 10.1109/TAC.2016.2541919
    [2] Tao Y Y, Wu Z G. Asynchronous stabilization for hidden Markov jump linear systems with complex transition probabilities. Automatica, 2023, 156: Article No. 111200 doi: 10.1016/j.automatica.2023.111200
    [3] Wang L X, Long Y, Li T S, Yang H Q, Philip Chen C L. Asynchronous attack tolerant control for Markov jump cyber-physical systems under hybrid cyber-attacks. Applied Mathematics and Computation, 2024, 470: Article No. 128583 doi: 10.1016/j.amc.2024.128583
    [4] He J, Liu J, Su W, Shen Y L, Jiang X H, Shiratori N. Jamming and link selection for joint secrecy/delay guarantees in buffer-aided relay system. IEEE Transactions on Communications, 2022, 70(8): 5451−5468 doi: 10.1109/TCOMM.2022.3187761
    [5] Moon J. Linear-quadratic stochastic leader-follower differential games for Markov jump-diffusion models. Automatica, 2023, 147: Article No. 110713 doi: 10.1016/j.automatica.2022.110713
    [6] Cuvelier T, Ogden R, Tanaka T. Minimum bitrate neuromorphic encoding for continuous-time Gauss-Markov processes. IEEE Transactions on Automatic Control, 2025, 70(1): 50−64 doi: 10.1109/TAC.2024.3419586
    [7] Neufeld A, Sester J. Robust Q-learning algorithm for Markov decision processes under Wasserstein uncertainty. Automatica, 2024, 168: Article No. 111825 doi: 10.1016/j.automatica.2024.111825
    [8] Impicciatore A, Lun Y Z, Pepe P, D' Innocenzo A. Optimal output-feedback control over Markov wireless communication channels. IEEE Transactions on Automatic Control, 2024, 69(3): 1643−1658 doi: 10.1109/TAC.2023.3328268
    [9] 李晓航, 朱芳来. 延迟不确定马尔科夫跳变系统的执行器和传感器故障同时估计方法. 自动化学报, 2017, 43(1): 72−82

    Li Xiao-Hang, Zhu Fang-Lai. Simultaneous estimation of actuator and sensor faults for uncertain time-delayed Markovian jump systems. Acta Automatica Sinica, 2017, 43(1): 72−82
    [10] 李稚, 谭德庆. 基于马尔科夫决策过程的ATO系统独立组件与产品双需求最优决策研究. 自动化学报, 2016, 42(5): 782−791

    Li Zhi, Tan De-Qing. Optimal control of ATO system with individual components and product demands based on Markov decision process. Acta Automatica Sinica, 2016, 42(5): 782−791
    [11] Shen Y, Wu Z G, Shi P, Shu Z, Karimi H R. H control of Markov jump time-delay systems under asynchronous controller and quantizer. Automatica, 2019, 99: 352−360 doi: 10.1016/j.automatica.2018.10.056
    [12] Song J, Niu Y G, Zou Y Y. Asynchronous sliding mode control of Markovian jump systems with time-varying delays and partly accessible mode detection probabilities. Automatica, 2018, 93: 33−41 doi: 10.1016/j.automatica.2018.03.037
    [13] Ding K, Zhu Q X. Extended dissipative anti-disturbance control for delayed switched singular semi-Markovian jump systems with multi-disturbance via disturbance observer. Automatica, 2021, 128: Article No. 109556 doi: 10.1016/j.automatica.2021.109556
    [14] 张振, 郭一楠, 巩敦卫, 朱松, 田滨. 基于改进扩展状态观测器的液压锚杆钻机滑模摆角控制. 自动化学报, 2023, 49(6): 1256−1271

    Zhang Zhen, Guo Yi-Nan, Gong Dun-Wei, Zhu Song, Tian Bin. Sliding mode swing angle control for a hydraulic roofbolter based on improved extended state observer. Acta Automatica Sinica, 2023, 49(6): 1256−1271
    [15] Esmail A H, Ghous I, Duan Z X, Jaffery M H, Li S. Observer-based control for time-delayed quasi-one-sided Lipschitz nonlinear systems under input saturation. Journal of the Franklin Institute, 2024, 361(18): Article No. 107326 doi: 10.1016/j.jfranklin.2024.107326
    [16] Iqbal W, Ghous I, Ansari E A, Duan Z X, Imran M, Khan A A, et al. Robust nonlinear observer-based controller design for one-sided Lipschitz switched systems with time-varying delays. Journal of the Franklin Institute, 2023, 360(3): 2046−2067 doi: 10.1016/j.jfranklin.2022.12.046
    [17] Wang X X, Ma Y C. Observer-based finite-time asynchronous sliding mode control for Markov jump systems with time-varying delay. Journal of the Franklin Institute, 2022, 359(11): 5488−5511 doi: 10.1016/j.jfranklin.2022.05.010
    [18] Yang R N, Ding S F, Zheng W X. Event-triggered sliding mode control for 2-D Roesser model with mismatched disturbance. Automatica, 2024, 159: Article No. 111355 doi: 10.1016/j.automatica.2023.111355
    [19] Liang T T, Shi S L, Ma Y C. Asynchronous sliding mode control of continuous-time singular Markov jump systems with time-varying delay under event-triggered strategy. Applied Mathematics and Computation, 2023, 448: Article No. 127947 doi: 10.1016/j.amc.2023.127947
    [20] Liu X X, Su X J, Shi P, Shen C, Peng Y. Event-triggered sliding mode control of nonlinear dynamic systems. Automatica, 2020, 112: Article No. 108738 doi: 10.1016/j.automatica.2019.108738
    [21] Ma X F, Dong J J, Tai W P, Zhou J P, Paszke W. Asynchronous event-triggered H control for 2D Markov jump systems subject to networked random packet losses. Communications in Nonlinear Science and Numerical Simulation, 2023, 126: Article No. 107453 doi: 10.1016/j.cnsns.2023.107453
    [22] Xue M, Yan H C, Zhang H, Shen H, Shi P. Dissipativity-based filter design for Markov jump systems with packet loss compensation. Automatica, 2021, 133: Article No. 109843 doi: 10.1016/j.automatica.2021.109843
    [23] 祁波, 孙书利. 带未知通信干扰和丢包补偿的多传感器网络化不确定系统的分布式融合滤波. 自动化学报, 2018, 44(6): 1107−1114

    Qi Bo, Sun Shu-Li. Distributed fusion filtering for multi-sensor networked uncertain systems with unknown communication disturbances and compensations of packet dropouts. Acta Automatica Sinica, 2018, 44(6): 1107−1114
    [24] Jiang B P, Wu Z T, Karimi H R. A distributed dynamic event-triggered mechanism to HMM-based observer design for H sliding mode control of Markov jump systems. Automatica, 2022, 142: Article No. 110357 doi: 10.1016/j.automatica.2022.110357
    [25] Khodaverdian M, Hajshirmohamadi S, Hakobyan A, Ijaz S. Predictor-based constrained fixed-time sliding mode control of multi-UAV formation flight. Aerospace Science and Technology, 2024, 148: Article No. 109113 doi: 10.1016/j.ast.2024.109113
    [26] Biel D, Arroyo A, Repecho V. Voltage regulation in an interleaved circular chain sliding mode controlled multiphase converter. Journal of the Franklin Institute, 2024, 361(11): Article No. 106928 doi: 10.1016/j.jfranklin.2024.106928
    [27] 周铭浩, 魏可蒙, 冯勇, 穆朝絮, 苏鸿宇. 非匹配不确定MIMO系统的分数阶终端滑模控制. 自动化学报, 2023, 49(10): 2224−2236

    Zhou Ming-Hao, Wei Ke-Meng, Feng Yong, Mu Chao-Xu, Su Hong-Yu. Fractional-order terminal sliding-mode control of MIMO systems with unmatched uncertainties. Acta Automatica Sinica, 2023, 49(10): 2224−2236
    [28] Cong Y Z, Du H B, Zhu W W, Chen C C. Position regulation of industrial robots via bounded integral terminal sliding mode control algorithm. IEEE Transactions on Industrial Electronics, 2024, 71(7): 7403−7412 doi: 10.1109/TIE.2023.3310016
    [29] 李繁飙, 黄培铭, 阳春华, 廖力清, 桂卫华. 基于非线性干扰观测器的飞机全电刹车系统滑模控制设计. 自动化学报, 2021, 47(11): 2557−2569

    Li Fan-Biao, Huang Pei-Ming, Yang Chun-Hua, Liao Li-Qing, Gui Wei-Hua. Sliding mode control design of aircraft electric brake system based on nonlinear disturbance observer. Acta Automatica Sinica, 2021, 47(11): 2557−2569
    [30] Liu H, Hu J, Zhang H X, Zuo Z Y. Event-triggered sliding mode control for networked T − S fuzzy delayed systems against random injection attacks. Journal of the Franklin Institute, 2024, 361(18): Article No. 107333 doi: 10.1016/j.jfranklin.2024.107333
    [31] Chen Y, Zhou J. Robust H sliding mode control for delay-dependent uncertain T − S fuzzy descriptor stochastic Markovian jump systems with mode-dependent time-varying delays. Applied Mathematics and Computation, 2024, 479: Article No. 128881 doi: 10.1016/j.amc.2024.128881
    [32] Lian Z, He Y, Wu M. Stability and stabilization for delayed fuzzy systems via reciprocally convex matrix inequality. Fuzzy Sets and Systems, 2021, 402: 124−141 doi: 10.1016/j.fss.2019.12.008
    [33] Lian Z, He Y, Zhang C K, Wu M. Stability and stabilization of T − S fuzzy systems with time-varying delays via delay-product-type functional method. IEEE Transactions on Cybernetics, 2020, 50(6): 2580−2589 doi: 10.1109/TCYB.2018.2890425
    [34] Janani K, Baranitha R, Lim C P, Rakkiyappan R. Observer-based fuzzy integral sliding mode control for bilateral teleoperation systems with time-varying delays. Mathematics and Computers in Simulation, 2024, 225: 1154−1169 doi: 10.1016/j.matcom.2023.11.021
    [35] Ma Y C, Jia X R, Zhang Q L. Robust finite-time non-fragile memory H control for discrete-time singular Markovian jumping systems subject to actuator saturation. Journal of the Franklin Institute, 2017, 354(18): 8256−8282 doi: 10.1016/j.jfranklin.2017.10.019
    [36] Fu L, Ma Y C. H memory feedback control for uncertain singular Markov jump systems with time-varying delay and input saturation. Computational and Applied Mathematics, 2018, 37(4): 4686−4709 doi: 10.1007/s40314-018-0595-5
    [37] Wang G, Jia L, Zhang H. Stability and stabilization of T − S fuzzy time-delay system via relaxed integral inequality and dynamic delay partition. IEEE Transactions on Fuzzy Systems, 2021, 29(10): 2829−2843 doi: 10.1109/TFUZZ.2020.3007416
    [38] Zhang X M, Han Q L, Wang Z D, Zhang B L. Neuronal state estimation for neural networks with two additive time-varying delay components. IEEE Transactions on Cybernetics, 2017, 47(10): 3184−3194 doi: 10.1109/TCYB.2017.2690676
    [39] He H F, Qi W H, Kao Y G. HMM-based adaptive attack-resilient control for Markov jump system and application to an aircraft model. Applied Mathematics and Computation, 2021, 392: Article No. 125668 doi: 10.1016/j.amc.2020.125668
    [40] Zhang C C, Kao Y G, Huang H B, Zhuang Y F. Observer-based sliding mode control of discrete-time delayed singular semi-Markov jump systems with random false data injection attacks. Journal of the Franklin Institute, 2025, 362(1): Article No. 107400 doi: 10.1016/j.jfranklin.2024.107400
    [41] Yang Y B, Wang H J, Qi W H, Cao J D, Cheng J. Dynamic protocol-based sliding mode control for nonlinear semi-Markovian jump systems with deterministic switching. Journal of the Franklin Institute, 2024, 361(10): Article No. 106912 doi: 10.1016/j.jfranklin.2024.106912
    [42] Tian Y F, Wang Z S. H performance state estimation for static neural networks with time-varying delays via two improved inequalities. IEEE Transactions on Circuits and Systems Ⅱ: Express Briefs, 2021, 68(1): 321−325 doi: 10.1109/TCSII.2020.2995604
    [43] Zhang C K, He Y, Jiang L, Wu M, Wang Q G. An extended reciprocally convex matrix inequality for stability analysis of systems with time-varying delay. Automatica, 2017, 85: 481−485 doi: 10.1016/j.automatica.2017.07.056
    [44] Zhang X M, Han Q L, Seuret A, Gouaisbaut F. An improved reciprocally convex inequality and an augmented Lyapunov-Krasovskii functional for stability of linear systems with time-varying delay. Automatica, 2017, 84: 221−226 doi: 10.1016/j.automatica.2017.04.048
    [45] Li Z C, Yan H C, Zhang H, Sun J, Lam H K. Stability and stabilization with additive freedom for delayed Takagi-Sugeno fuzzy systems by intermediary-polynomial-based functions. IEEE Transactions on Fuzzy Systems, 2020, 28(4): 692−705 doi: 10.1109/TFUZZ.2019.2914615
    [46] 郑敏, 费树岷. 区间变时滞不确定线性系统带记忆H 状态反馈控制. 自动化学报, 2007, 33(11): 1211−1215

    Zheng Min, Fei Shu-Min. H state feedback control with memory for uncertain linear systems with interval time-varying delay. Acta Automatica Sinica, 2007, 33(11): 1211−1215
    [47] Zhang H Y, Chen Z X, Ao W G, Shi P. Improved dynamic event-triggered robust control for flexible robotic arm systems with semi-Markov jump process. Sensors, 2023, 23(12): Article No. 5523 doi: 10.3390/s23125523
    [48] Zhang P P, Kao Y, Hu J, Niu B. Robust observer-based sliding mode H control for stochastic Markovian jump systems subject to packet losses. Automatica, 2021, 130: Article No. 109665 doi: 10.1016/j.automatica.2021.109665
  • 加载中
计量
  • 文章访问数:  4
  • HTML全文浏览量:  7
  • 被引次数: 0
出版历程
  • 收稿日期:  2024-11-11
  • 录用日期:  2025-03-05
  • 网络出版日期:  2025-06-30

目录

    /

    返回文章
    返回