2.845

2023影响因子

(CJCR)

  • 中文核心
  • EI
  • 中国科技核心
  • Scopus
  • CSCD
  • 英国科学文摘

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

考虑牵引链温度场的货运列车动态建模及优化算法研究

陶新坤 冯晓云 郭佑星 王青元 孙鹏飞

陶新坤, 冯晓云, 郭佑星, 王青元, 孙鹏飞. 考虑牵引链温度场的货运列车动态建模及优化算法研究. 自动化学报, xxxx, xx(x): x−xx doi: 10.16383/j.aas.c240658
引用本文: 陶新坤, 冯晓云, 郭佑星, 王青元, 孙鹏飞. 考虑牵引链温度场的货运列车动态建模及优化算法研究. 自动化学报, xxxx, xx(x): x−xx doi: 10.16383/j.aas.c240658
Tao Xin-Kun, Feng Xiao-Yun, Guo You-Xing, Wang Qing-Yuan, Sun Peng-Fei. Research on dynamic modeling and optimization algorithm of freight trains considering the temperature field of traction chains. Acta Automatica Sinica, xxxx, xx(x): x−xx doi: 10.16383/j.aas.c240658
Citation: Tao Xin-Kun, Feng Xiao-Yun, Guo You-Xing, Wang Qing-Yuan, Sun Peng-Fei. Research on dynamic modeling and optimization algorithm of freight trains considering the temperature field of traction chains. Acta Automatica Sinica, xxxx, xx(x): x−xx doi: 10.16383/j.aas.c240658

考虑牵引链温度场的货运列车动态建模及优化算法研究

doi: 10.16383/j.aas.c240658 cstr: 32138.14.j.aas.c240658
基金项目: 国家自然科学基金资助(U2368216, U21A20169)
详细信息
    作者简介:

    陶新坤:西南交通大学电气工程学院博士研究生. 主要研究方向为轨道交通电气化与自动化,智能驾驶技术与优化算法设计. E-mail: XinkunTao@my.swjtu.edu.cn

    冯晓云:西南交通大学电气学院教授. 主要研究方向为电力牵引交流传动及其控制,列车运行控制与牵引计算. 本文通信作者. E-mail: fengxy@home.swjtu.edu.cn

    郭佑星:西南交通大学电气学院博士研究生. 主要研究方向为自适应控制,滑模控制,迭代学习控制,多智能体系统和智能轨迹跟踪控制. E-mail: youxingguo@my.swjtu.edu.cn

    王青元:西南交通大学电气学院教授. 主要研究方向为控制理论与控制工程,列车运行优化控制理论与方法. E-mail: wangqy@swjtu.edu.cn

    孙鹏飞:西南交通大学电气学院副教授. 主要研究方向为列车最优控制理论和自动列车运行应用. E-mail: pengfeisun@home.swjtu.edu.cn

Research on Dynamic Modeling and Optimization Algorithm of Freight Trains Considering the Temperature Field of Traction Chains

Funds: Supported by National Natural Science Foundation of China (U2368216, U21A20169)
More Information
    Author Bio:

    TAO Xin-Kun Ph.D. candidate at the School of Electrical Engineering, Southwest Jiaotong University. His research interest covers railway electrification and automation, intelligent driving technology, and optimization algorithm design

    FENG Xiao-Yun Professor at the School of Electrical Engineering, Southwest Jiaotong University. Her research interest covers electric traction AC drive and its control, train operation control and traction calculation. Corresponding author of this paper

    GUO You-Xing Ph.D. candidate at the School of Electrical Engineering, Southwest Jiaotong University. His research interest covers adaptive control, sliding mode control, iterative learning control, multi-agent system, and intelligent trajectory tracking control

    WANG Qing-Yuan Professor at the School of Electrical Engineering, Southwest Jiaotong University. His research interest covers control theory and control engineering, and train operation optimization control theory and methods

    SUN Peng-Fei Associate Professor at the School of Electrical Engineering, Southwest Jiaotong University. His research interest covers train optimal control theory and automatic train operation applications

  • 摘要: 货运列车在运行中表现出时变行为, 而静态机理模型难以捕捉这些变化, 导致优化结果与列车运行状态不相符. 此外, 不当的驾驶策略可能导致电力设备温度过高. 为此, 提出一种用于评估列车能耗与温度的动态建模方法, 并设计一种大规模自适应多策略多目标竞争群优化器(Large-scale adaptive multi-strategy multi-objective competitive swarm optimizer, LAMOCSO). 具体而言, 首先, 建立“列车−线路−电网”的机理模型, 用于计算多列车运行过程中的功率和网压; 并提出一种融合机理模型、数据驱动模型和补偿模型的混合建模方法, 用于捕捉列车和环境的时变特征. 其次, 建立电力设备的温升模型, 并设计基于拉普拉斯变换的快速求解方法. 然后, 构建一个优化牵引供电系统能效与电力设备温度的多目标优化模型, 并提出一种LAMOCSO 算法, 用于解决多列车长距离运行的大规模多目标优化问题. 最后, 实验验证了动态建模方法的有效性; 通过与四种经典算法的比较, 验证了所提算法的性能; 结果表明多列车综合优化方法可以降低变电所18.2%的能耗, 确保电力设备处于适宜的温度环境.
  • 图  1  混合建模原理图

    Fig.  1  Schematic Diagram of Hybrid Modeling

    图  2  多列车运行场景

    Fig.  2  Operational scenarios of multi-train

    图  3  基于AT供电的TPSS系统

    Fig.  3  TPSS system based on AT power supply

    图  4  链式网络模型

    Fig.  4  Chain network model

    图  5  平行多导体传输线$\pi$型等效电路

    Fig.  5  The $\pi$ equivalent circuit of a parallel multi-conductor transmission line

    图  6  降压变压器等效模型

    Fig.  6  The equivalent model of a step-down transformer

    图  7  电机温升模型

    Fig.  7  Motor temperature rise model

    图  8  变流器温升模型

    Fig.  8  Converter temperature rise model

    图  9  变压器温升模型

    Fig.  9  Transformer temperature rise model

    图  10  动态建模过程

    Fig.  10  Dynamic modeling process

    图  11  电机各节点的三维温度图

    Fig.  11  Three dimensional temperature map of each node of the motor

    图  12  变流器各节点的三维温度图

    Fig.  12  Three dimensional temperature map of each node of the converter

    图  13  变压器各节点的三维温度图

    Fig.  13  Three dimensional temperature map of each node of the transformer

    图  14  五种算法优化DTLZ2的对比结果

    Fig.  14  Comparison results of five algorithms for optimizing DTLZ2

    图  15  五种算法优化结果对比

    Fig.  15  Comparison of Optimization Results of Five Algorithms

    图  16  LA-MOCSO的自适应变化曲线

    Fig.  16  Adaptive variation curve of LA-MOCSO

    图  17  五种算法的箱型图

    Fig.  17  Box plots of five algorithms

    图  18  静态TTP与动态TTPT的对比结果

    Fig.  18  Comparison results between static TTP and dynamic TTPT

    图  19  对比模型的能耗分析

    Fig.  19  Energy consumption analysis of comparative models

    图  20  电机温度曲线对比

    Fig.  20  Comparison of motor temperature curves

    图  21  变流器温度曲线对比

    Fig.  21  Comparison of converter temperature curves

    图  22  变流器温度曲线对比

    Fig.  22  Comparison of converter temperature curves

    图  23  多车综合优化的帕累托前沿

    Fig.  23  Pareto front for comprehensive optimization of multiple trains

    图  24  多车综合优化结果

    Fig.  24  Comprehensive optimization results for multiple trains

    图  25  多车潮流解算结果

    Fig.  25  Power flow calculation results for multiple trains

    图  26  多车功率和网压升降原理分析图

    Fig.  26  Diagram for analysis of multi-train power and grid voltage fluctuation principles

    图  27  电机各节点温度曲线

    Fig.  27  Temperature curves at various nodes of the electric motor

    图  28  变流器温度曲线

    Fig.  28  Inverter temperature curves

    图  29  变压器各节点温度曲线

    Fig.  29  Temperature curves at various nodes of the transformer

    表  1  TSK-FNN的输入和输出

    Table  1  Input and output of TSK-FNN

    采样数据变量 含义 单位
    输出$ P_{\rm{net}}(fs) $列车变压器功率kW
    $ v(fs) $列车速度km/h
    输入$ R(fs) $线路曲线半径m
    $ Tu(fs) $距隧道入口距离km
    $ Sl(fs) $线路坡度
    $ Le(fs) $距变电所的长度km
    $ v(fs-1) $上次采样的列车速度km/h
    $ F(fs) $列车控制力kN
    $ AT(fs) $列车与AT站的距离km
    下载: 导出CSV

    表  2  算法参数设置

    Table  2  Algorithm parameter settings

    算法 参数设置
    LA-MOCSO N = 300; Net = 100; IT = 400
    MOPSO N = 300; Net = 100; IT = 400; $ \omega = 0.4 $;
    c1 = c2 = 1.429
    NSGA-II N = 300; Net = 100; IT = 400; pm = 1/I;
    d1 = 20; d2 = 20
    KMMOPSO N = 300; Net = 100; IT = 400
    cd-MOPSO N = 300; Net = 100; IT = 400; $\omega = 0.4$;
    c1 = c2 = 1.429; pm = 1/I; d1 = 20; d2 = 20
    下载: 导出CSV

    表  3  IGD指标

    Table  3  IGD indicator

    测试函数 指标 LAMOCSO MOPSO NSGA-II KAMOCSO cdMOPSO
    DTLZ1Mean1.010E − 22.651E + 11.432E − 11.025E − 21.905E − 1
    Std.1.745E − 49.108E + 06.382E + 02.581E − 42.386E − 3
    Best8.022E − 31.281E − 14.153E − 28.093E − 36.211E − 2
    Worst1.751E − 24.581E + 12.751E − 11.116E − 25.214E − 1
    DTLZ2Mean3.841E − 31.001E − 11.902E − 12.612E − 25.701E − 2
    Std.1.348E − 42.541E − 31.584E − 38.284E − 48.284E − 3
    Best1.254E − 33.284E − 25.311E − 21.607E − 22.201E − 2
    Worst4.017E − 32.401E − 12.610E − 15.113E − 28.087E − 2
    DTLZ3Mean3.589E − 34.311E + 12.001E + 16.477E − 21.124E − 2
    Std.7.458E − 51.980E + 16.825E + 06.258E − 46.224E − 3
    Best1.285E − 34.918E − 19.446E − 12.517E − 28.009E − 3
    Worst3.854E − 38.475E + 16.481E + 18.170E − 22.648E − 2
    WFG1Mean4.180E − 37.184E − 16.174E − 16.987E − 38.818E − 3
    Std.6.841E − 56.870E − 22.841E − 13.007E − 43.184E − 4
    Best3.481E − 34.116E − 17.184E − 14.318E − 38.127E − 3
    Worst8.874E − 31.077E + 08.367E − 18.284E − 39.981E − 3
    WFG2Mean2.641E − 28.011E − 21.016E − 11.329E − 25.318E − 2
    Std.6.184E − 31.851E − 26.218E − 25.231E − 39.340E − 3
    Best7.954E − 36.381E − 26.318E − 21.084E − 23.314E − 2
    Worst1.689E − 29.405E − 21.841E − 11.931E − 27.031E − 2
    下载: 导出CSV

    表  4  HV指标

    Table  4  HV indicator

    测试函数 指标 LAMOCSO MOPSO NSGA-II KAMOCSO cdMOPSO
    DTLZ1Mean1.184E + 06.758E − 18.873E − 19.241E − 17.534E − 1
    Std.3.368E − 37.334E − 23.227E − 26.917E − 34.523E − 2
    Best1.351E + 08.204E − 11.13 E + 01.127E + 01.011E + 0
    Worst8.014E − 14.003E − 13.401E − 16.740E − 18.503E − 2
    DTLZ2Mean1.771E + 02.885E − 13.396E − 19.981E − 13.545E − 1
    Std.4.616E − 31.887E − 29.603E − 31.093E − 35.613E − 3
    Best1.971E + 06.155E − 18.369E − 11.532E + 09.358E − 1
    Worst1.575E + 06.528E − 26.126E − 23.253E − 11.536E − 1
    DTLZ3Mean1.023E + 09.794E − 13.433E − 19.871E − 12.053E − 1
    Std.8.382E − 45.554E − 29.801E − 32.565E − 24.469E − 2
    Best1.115E + 01.029E + 06.472E − 11.228E + 08.641E − 1
    Worst9.337E − 15.704E − 25.285E − 26.847E − 29.356E − 2
    WFG1Mean9.153E − 11.059E − 13.463E − 17.193E − 12.757E − 1
    Std.5.446E − 33.863E − 31.921E − 14.023E − 41.256E − 1
    Best1.148E + 02.907E − 18.036E − 11.091E + 08.125E − 1
    Worst6.348E − 15.284E − 21.365E − 15.284E − 19.553E − 2
    WFG2Mean8.112E − 15.443E − 15.616E − 16.066E − 14.124E − 1
    Std.2.461E − 38.270E − 38.274E − 36.352E − 38.918E − 3
    Best9.612E − 16.226E − 16.759E − 19.358E − 17.172E − 1
    Worst6.62 E − 11.718E − 14.570E − 14.847E − 12.589E − 1
    下载: 导出CSV

    表  5  牵引供电系统参数与列车参数

    Table  5  TPSS parameters and train parameters

    牵引网参数列车参数
    供电臂长度20 km质量15988 t
    AT所位置10.5/19.5 km质量回转系数0.06
    额定电压27.5 kV最大加速度0.07 m/s2
    牵引变压器阻抗J9.6 $\Omega$/31.5 MVA最小加速度−0.04 m/s2
    电力系统阻抗J9.6 $\Omega$/31.5 MVA运行时间1650/1900 s
    AT漏抗0.1+j0.45 $\Omega$运行距离20/40 km
    大地导电率0.1+j0.45 $\Omega$发车时间间隔600 s
    钢轨泄漏电阻10-4 1/$\Omega \cdot$ cm最大起牵引力760 kN
    接地电阻2-5 $\Omega$最大牵引功率9600 kW
    下载: 导出CSV

    表  6  电力设备各节点的发热量和最高温度

    Table  6  The heat generation and maximum temperature of each node in power equipment

    列车1 列车2
    最高温度/℃ 发热量/kWh 最高温度/℃ 发热量/kWh
    定子 63.971 5.140 64.006 5.752
    绕组 110.446 10.255 110.410 12.523
    转子 50.829 0.884 50.980 1.205
    变流器结温 111.299 0.884 119.267 0.439
    高压绕组 108.209 8.607 108.209 10.464
    低压绕组 129.544 18.794 129.544 22.648
    铁芯 111.185 6.258 111.185 7.431
    绝缘油 40.434 40.434
    下载: 导出CSV
  • [1] Erofeyev E. Calculation of optimum train control using dynamic programming method. Moscow Railway Engineering Institute: Moscow, Russia, 1967, 811: 16−30
    [2] Wingelaar B, Silva G R G D, Lazar M. Model Predictive Eco-Driving Control for Heavy-Duty Trucks Using Branch and Bound Optimization. IEEE Transactions on Intelligent Transportation Systems, 2023, 24(12): 15178−15189 doi: 10.1109/TITS.2023.3309467
    [3] Ying P, Zeng X, Song H, et al. Energy-efficient train operation with steep track and speed limits: A novel Pontryagin's maximum principle-based approach for adjoint variable discontinuity cases. IET Intelligent Transport Systems, 2021, 15(9): 1183−1202 doi: 10.1049/itr2.12093
    [4] Wu C, Lu S, Tian Z, et al. Energy-Efficient Train Control With Onboard Energy Storage Systems Considering Stochastic Regenerative Braking Energy. IEEE Transactions on Transportation Electrification, 2025, 11(1): 257−274 doi: 10.1109/TTE.2024.3389960
    [5] Lin X, Liang Z, Shen L, et al. Reinforcement learning method for the multi-objective speed trajectory optimization of a freight train. Control Engineering Practice, 2023, 138(1): 105605
    [6] Xiao Z, Wang Q, Sun P, et al. Modeling and Energy-Optimal Control for High-Speed Trains. IEEE Transactions on Transportation Electrification, 2020, 6(2): 797−807 doi: 10.1109/TTE.2020.2983855
    [7] Chen M, Murgovski N, Xiao Z, et al. Multi-Train Eco-Driving and Safety-Tracking Cooperative Optimization by Nonlinear Programming. IEEE Transactions on Vehicular Technology, 2025, 74(2): 2406−2417 doi: 10.1109/TVT.2024.3472074
    [8] Tao X, Wang Q, Chen M, et al. Comprehensive optimization of energy consumption and network voltage stability of freight multi-train operation based on amMOPSO algorithm. IEEE Transactions on Transportation Electrification, 2024, 10(2): 4074−4094 doi: 10.1109/TTE.2023.3312275
    [9] Chen M, Feng X, Guo Y, et al. Optimal Cooperative Eco-Driving of Multitrain With TLET Comprehensive System. IEEE Transactions on Transportation Electrification, 2024, 10(1): 2095−2111 doi: 10.1109/TTE.2023.3288622
    [10] Claudio S, Tommaso A, Daniele R, et al. A new methodology for the assessment of the running resistance of trains without knowing the characteristics of the track: Application to full-scale experimental data. Proceedings of the Institution of Mechanical Engineers Part F Journal of Rail & Rapid Transit, 2018, 232(6): 1814−1827
    [11] Peng Y, Chen F, Chen F, et al. Energy-Efficient Train Control: A Comparative Study Based on Permanent Magnet Synchronous Motor and Induction Motor. IEEE Transactions on Vehicular Technology, 2024, 73(11): 16148−16159 doi: 10.1109/TVT.2024.3412941
    [12] Kishore S, Bharti S K, Anand P, et al. Temperature Prediction for Electric Vehicles Using Machine Learning Algorithms. IEEE Transactions on Industry Applications, 2024, 60(6): 9251−9259 doi: 10.1109/TIA.2024.3456753
    [13] Yang H, Fu Y, Zhang K, et al. Speed tracking control using an ANFIS model for high-speed electric multiple unit. Control Engineering Practice, 2014, 23(1): 57−65
    [14] Yang H, Zhang K P, Liu H E. Online Regulation of High Speed Train Trajectory Control Based on T-S Fuzzy Bilinear Model. IEEE Transactions on Intelligent Transportation Systems, 2016, 17(6): 1496−1508 doi: 10.1109/TITS.2015.2497320
    [15] Davies R, Haitao H, Fang H. A Multiscale Framework for Capturing Oscillation Dynamics of Autonomous Vehicles in Data-Driven Car-Following Models. IEEE Transactions on Intelligent Transportation Systems, 2024, 25(11): 18224−18235 doi: 10.1109/TITS.2024.3433563
    [16] 李中奇, 金柏, 杨辉, 等. 高速动车组强耦合模型的分布式滑模控制策略. 自动化学报, 2020, 46(03): 495−508

    Li Z, Jin B, Yang H, et al. Distributed sliding mode control strategy for high-speed EMU strong coupling model. Acta Automatica Sinica, 2020, 46(03): 495−508
    [17] Tao X, Sun P, Xiao Z, et al. Modeling and Energy-Optimal Control for Freight Trains based on Data-Driven Approaches. Future Generation Computer Systems, 2024, 152: 346−360 doi: 10.1016/j.future.2023.11.012
    [18] 李天梅, 司小胜, 刘翔, 等. 大数据下数模联动的随机退化设备剩余寿命预测技术. 自动化学报, 2022, 48(09): 2119−2141

    Li T, Si X, Liu X, et al. Data-model interactive remaining useful life prediction technologies for stochastic degrading devices with big data. Acta Automatica Sinica, 2022, 48(09): 2119−2141
    [19] 江昌旭, 周龙灿, 庄鹏威, 等. 基于数据-模型混合驱动方法的多类型移动应急资源优化调度策略. 电网技术, 2025, 01(04): 1−21

    Jiang C, Zhou L, Zhuang P, et al. scheduling optimization strategy for multi-type mobile emergeney resources based on a data-Model hybrid driven approach. Power System Technology, 2025, 01(04): 1−21
    [20] Xu N, Li S, Xu K, et al. Research on methane Hazard interval prediction method based on hybrid "model-data"driven strategy. Applied Energy, 2025, 377: 124613 doi: 10.1016/j.apenergy.2024.124613
    [21] 周利军, 王健, 王路伽, 等.数据驱动下高速铁路牵引变压器热点温度预测[J]. 中国电机工程学报, 2019, 39(18): 5547-5554, 5603.

    Zhou L, Wang J, Wang L, et al. Data Driven Prediction for Traction Transformer Hot-spot Temperature in High Speed Railway[J]. Proceedings of the CSEE, 2019, 39(18): 5547-5554, 5603.
    [22] Ahn H, Oh Y, Kim J, et al. Experimental Verification and Finite Element Analysis of Short-Circuit Electromagnetic Force for Dry-Type Transformer. IEEE Transactions on Magnetics, 2012, 48(2): 819−822 doi: 10.1109/TMAG.2011.2174212
    [23] Martinez A. Resistance-capacitance thermal models as alternatives to finite-element numerical models in the simulation of thermoelectric modules for electric power generation. Energy Conversion and Management, 2023, 292: 117419 doi: 10.1016/j.enconman.2023.117419
    [24] Bian X, Liang Y. Circuit Network Model of Stator Transposition Bar in Large Generators and Calculation of Circulating Current. IEEE Transactions on Industrial Electronics, 2015, 62(3): 1392−1399 doi: 10.1109/TIE.2014.2347264
    [25] Yan X, Li Y, Cheng Z, et al. Prediction of temperature rise for ventilated dry-type transformer by 3-D coupled magneto-fluid-thermal model. International Journal of Applied Electromagnetics and Mechanics, 2020, 62(4): 725−735 doi: 10.3233/JAE-190054
    [26] Rodriguez G R, Garelli L, Storti M, et al. Numerical and Experimental Thermo-Fluid Dynamic Analysis of a Power Transformer working in ONAN mode. Applied Thermal Engineering, 2017, 112: 1271−1280 doi: 10.1016/j.applthermaleng.2016.08.171
    [27] Shell K. Applications of Pontryagin's Maximum Principle to Economics[J]. Working papers, 1968. DOI: 10.1007/978-3-642-46196-5_12.
    [28] Ichikawa, Kunihiko. Application of Optimization Theory for Bounded State Variable Problems to the Operation of Train. Bulletin of Jsme, 1968, 11(47): 857−865 doi: 10.1299/jsme1958.11.857
    [29] 朱金陵, 李会超, 王青元, 等. 列车节能控制的优化分析. 中国铁道科学, 2008(02): 104−108 doi: 10.3321/j.issn:1001-4632.2008.02.020

    Zhu J, Li H, Wang Q, et al. Optimization analysis on the energy saving control for trains. (China Academy of Railway Sciences), 2008(02): 104−108 doi: 10.3321/j.issn:1001-4632.2008.02.020
    [30] 王青元. 高速列车准点节能优化操纵研究[Ph.D. dissertation], 西南交通大学, 中国, 2017.

    Wang Q. Energy-efficient control of high-speed trainsconsidering punctuality constraint[Ph.D. dissertation], Southwest Jiaotong University, China, 2017.
    [31] Xiao Z, Murgovski N, Wang P, et al. Energy-efficient predictive control for trams incorporating disjunctive time constraints from traffic lights[J]. Transportation Research Part C: Emerging Technologies, 2023, 151.
    [32] 赖晴鹰, 刘军, 赵若愚, 等. 基于变间距动态规划的中高速磁悬浮列车速度曲线优化. 吉林大学学报(工学版), 2019, 49(03): 749−756

    Lai Q, Liu J, Zhao R, et al. Optimal trajectory planning for middle-to-high speed maglev based on dynamic programming with mutative spacing. Journal of Jilin University(Engineering and Technology Edition), 2019, 49(03): 749−756
    [33] Cao Y, Zhang Z, Cheng F, et al. Trajectory Optimization for High-Speed Trains via a Mixed Integer Linear Programming Approach. IEEE Transactions on Intelligent Transportation Systems, 2022, 23(10): 17666−17676 doi: 10.1109/TITS.2022.3155628
    [34] Zhong W, Li S, Xu H, et al. On-Line Train Speed Profile Generation of High-Speed Railway With Energy-Saving: A Model Predictive Control Method. IEEE Transactions on Intelligent Transportation Systems, 2022, 23(5): 4063−4074 doi: 10.1109/TITS.2020.3040730
    [35] Fernández-Rodríguez A, Su S, Fernández-Cardador A, et al. A multi-objective algorithm for train driving energy reduction with multiple time targets. Engineering Optimization, 2020, 53(4): 719−734
    [36] Aredah A, Fadhloun K, Rakha H A. Energy optimization in freight train operations: Algorithmic development and testing. Applied Energy, 2024, 364: 123111 doi: 10.1016/j.apenergy.2024.123111
    [37] Xing Z, Zhang Z, Guo J, et al. Rail train operation energy-saving optimization based on improved brute-force search. Applied Energy, 2023, 330: 120345 doi: 10.1016/j.apenergy.2022.120345
    [38] 乔俊飞, 李霏, 杨翠丽. 一种基于均匀分布策略的NSGAⅡ 算法. 自动化学报, 2019, 45(007): 1325−1334

    Qiao J, Li F, Yang C. An NSGAⅡ algorithm based on uniform distribution strategy. Acta Automatica Sinica, 2019, 45(007): 1325−1334
    [39] Zhang X, Zheng X, Cheng R, et al. A competitive mechanism based multi-objective particle swarm optimizer with fast convergence. Information Sciences, 2018, 427: 63−76 doi: 10.1016/j.ins.2017.10.037
    [40] Pan Z, Chen M, Lu S, et al. Integrated Timetable Optimization for Minimum Total Energy Consumption of an AC Railway System. IEEE Transactions on Vehicular Technology, 2020, 69(4): 3641−3653 doi: 10.1109/TVT.2020.2975603
    [41] Chen H, Wang K, Yan W, et al. Temperature Analysis of Switched Reluctance Motor Based on Equivalent Heat Circuit Method. IEEE Transactions on Applied Superconductivity, 2021, 31(8): 1−4
    [42] Williamson S S, Emadi A, Rajashekara K. Comprehensive Efficiency Modeling of Electric Traction Motor Drives for Hybrid Electric Vehicle Propulsion Applications. IEEE Transactions on Vehicular Technology, 2007, 56(4): 1561−1572 doi: 10.1109/TVT.2007.896967
    [43] Wang J, Chen W, Wang L, et al. A Transient 3-D Thermal Modeling Method for IGBT Modules Considering Uneven Power Losses and Cooling Conditions. IEEE Journal of Emerging and Selected Topics in Power Electronics, 2021, 9(4): 3959−3970 doi: 10.1109/JESTPE.2020.3021679
    [44] Dong H, Zhang Q, Yang X, et al. Sensitivity analysis and reasonable matching of key operating parameters of flow and heat transfer in liquid-cooling plate used for IGBT module of high-speed train traction inverters. Case Studies in Thermal Engineering, 2024, 61: 105056 doi: 10.1016/j.csite.2024.105056
    [45] Zhao S, Zhang X, Liu Q, et al. Investigation of Liquid Temperatures and Velocities at Winding Inlet in Natural Cooled Transformers Through Complete-Cooling-Loop Based CFD Simulations and Experiments. IEEE Transactions on Power Delivery, 2025, 40(1): 343−352 doi: 10.1109/TPWRD.2024.3495229
    [46] Coello C a C, Lechuga M S. MOPSO: a proposal for multiple objective particle swarm optimization[C]. Proceedings of the 2002 Congress on Evolutionary Computation. CEC'02 (Cat. No.02TH8600), 2002, 2: 1051−1056.
    [47] Deb K, Pratap A, Agarwal S, et al. A fast and elitist multiobjective genetic algorithm: NSGA-Ⅱ. IEEE Transactions on Evolutionary Computation, 2002, 6(2): 182−197 doi: 10.1109/4235.996017
    [48] Huang W, Ding H, Qiao J. Adaptive multi-objective competitive swarm optimization algorithm based on kinematic analysis for municipal solid waste incineration. Applied Soft Computing, 2023, 149: 110925 doi: 10.1016/j.asoc.2023.110925
    [49] Raquel C R, Jr P C N. An effective use of crowding distance in multiobjective particle swarm optimization[C]. Genetic and Evolutionary Computation Conference, GECCO 2005, Proceedings, Washington DC, USA, June 25−29, 2005, 2005.
    [50] Problems[C]. Evolutionary Computation, 2002. CEC '02. Proceedings of the 2002 Congress on, 2002.
    [51] Huband S, Hingston P, Barone L, et al. A review of multiobjective test problems and a scalable test problem toolkit. IEEE Transactions on Evolutionary Computation, 2006, 10(5): 477−506 doi: 10.1109/TEVC.2005.861417
  • 加载中
计量
  • 文章访问数:  49
  • HTML全文浏览量:  57
  • 被引次数: 0
出版历程
  • 收稿日期:  2024-10-01
  • 录用日期:  2025-03-23
  • 网络出版日期:  2025-05-06

目录

    /

    返回文章
    返回