Research on Dynamic Modeling and Optimization Algorithm of Freight Trains Considering the Temperature Field of Traction Chains
-
摘要: 货运列车在运行中表现出时变行为, 而静态机理模型难以捕捉这些变化, 导致优化结果与列车运行状态不相符. 此外, 不当的驾驶策略可能导致电力设备温度过高. 为此, 提出一种用于评估列车能耗与温度的动态建模方法, 并设计一种大规模自适应多策略多目标竞争群优化器(Large-scale adaptive multi-strategy multi-objective competitive swarm optimizer, LAMOCSO). 具体而言, 首先, 建立“列车−线路−电网”的机理模型, 用于计算多列车运行过程中的功率和网压; 并提出一种融合机理模型、数据驱动模型和补偿模型的混合建模方法, 用于捕捉列车和环境的时变特征. 其次, 建立电力设备的温升模型, 并设计基于拉普拉斯变换的快速求解方法. 然后, 构建一个优化牵引供电系统能效与电力设备温度的多目标优化模型, 并提出一种LAMOCSO 算法, 用于解决多列车长距离运行的大规模多目标优化问题. 最后, 实验验证了动态建模方法的有效性; 通过与四种经典算法的比较, 验证了所提算法的性能; 结果表明多列车综合优化方法可以降低变电所18.2%的能耗, 确保电力设备处于适宜的温度环境.
-
关键词:
- 动态建模 /
- 列车节能 /
- 大规模综合优化 /
- 数据驱动 /
- 列车−线路−电网−温度场
Abstract: Freight trains exhibit time-varying behavior during operation, making it difficult for static mechanistic models to capture these variations, which results in optimization results that do not align with train operating conditions. Moreover, improper driving strategies may lead to excessive temperatures in electrical equipment. To address this issue, this paper proposes a dynamic modeling approach for evaluating train energy consumption and temperature and designs a large-scale adaptive multi-strategy multi-objective competitive swarm optimizer (LAMOCSO). Specifically, first, a “train-track-power grid” mechanistic model is established to calculate power and voltage during multi-train operations; Furthermore, a hybrid modeling approach that integrates mechanistic models, data-driven models, and compensation models is proposed to capture the time-varying characteristics of trains and their environment. Next, a thermal rise model for electrical equipment is developed, and a rapid solution method for temperature rise based on the Laplace transformation is designed. Then, a multi-objective optimization model is formulated to optimize both the energy efficiency of the traction power supply system and the temperature of electrical equipment. Furthermore, the LAMOCSO algorithm is proposed to address the large-scale multi-objective optimization problem in long-distance multi-train operations. Finally, experiments validate the effectiveness of the dynamic modeling approach; The performance of the proposed algorithm is verified through comparisons with four classical algorithms; The results demonstrate that the multi-train comprehensive optimization method can reduce substation energy consumption by 18.2%, while ensuring that electrical equipment operates within an appropriate temperature range. -
表 1 TSK-FNN的输入和输出
Table 1 Input and output of TSK-FNN
采样数据变量 含义 单位 输出 $ P_{\rm{net}}(fs) $ 列车变压器功率 kW $ v(fs) $ 列车速度 km/h 输入 $ R(fs) $ 线路曲线半径 m $ Tu(fs) $ 距隧道入口距离 km $ Sl(fs) $ 线路坡度 ‰ $ Le(fs) $ 距变电所的长度 km $ v(fs-1) $ 上次采样的列车速度 km/h $ F(fs) $ 列车控制力 kN $ AT(fs) $ 列车与AT站的距离 km 表 2 算法参数设置
Table 2 Algorithm parameter settings
算法 参数设置 LA-MOCSO N = 300; Net = 100; IT = 400 MOPSO N = 300; Net = 100; IT = 400; $ \omega = 0.4 $; c1 = c2 = 1.429 NSGA-II N = 300; Net = 100; IT = 400; pm = 1/I; d1 = 20; d2 = 20 KMMOPSO N = 300; Net = 100; IT = 400 cd-MOPSO N = 300; Net = 100; IT = 400; $\omega = 0.4$; c1 = c2 = 1.429; pm = 1/I; d1 = 20; d2 = 20 表 3 IGD指标
Table 3 IGD indicator
测试函数 指标 LAMOCSO MOPSO NSGA-II KAMOCSO cdMOPSO DTLZ1 Mean 1.010E − 2 2.651E + 1 1.432E − 1 1.025E − 2 1.905E − 1 Std. 1.745E − 4 9.108E + 0 6.382E + 0 2.581E − 4 2.386E − 3 Best 8.022E − 3 1.281E − 1 4.153E − 2 8.093E − 3 6.211E − 2 Worst 1.751E − 2 4.581E + 1 2.751E − 1 1.116E − 2 5.214E − 1 DTLZ2 Mean 3.841E − 3 1.001E − 1 1.902E − 1 2.612E − 2 5.701E − 2 Std. 1.348E − 4 2.541E − 3 1.584E − 3 8.284E − 4 8.284E − 3 Best 1.254E − 3 3.284E − 2 5.311E − 2 1.607E − 2 2.201E − 2 Worst 4.017E − 3 2.401E − 1 2.610E − 1 5.113E − 2 8.087E − 2 DTLZ3 Mean 3.589E − 3 4.311E + 1 2.001E + 1 6.477E − 2 1.124E − 2 Std. 7.458E − 5 1.980E + 1 6.825E + 0 6.258E − 4 6.224E − 3 Best 1.285E − 3 4.918E − 1 9.446E − 1 2.517E − 2 8.009E − 3 Worst 3.854E − 3 8.475E + 1 6.481E + 1 8.170E − 2 2.648E − 2 WFG1 Mean 4.180E − 3 7.184E − 1 6.174E − 1 6.987E − 3 8.818E − 3 Std. 6.841E − 5 6.870E − 2 2.841E − 1 3.007E − 4 3.184E − 4 Best 3.481E − 3 4.116E − 1 7.184E − 1 4.318E − 3 8.127E − 3 Worst 8.874E − 3 1.077E + 0 8.367E − 1 8.284E − 3 9.981E − 3 WFG2 Mean 2.641E − 2 8.011E − 2 1.016E − 1 1.329E − 2 5.318E − 2 Std. 6.184E − 3 1.851E − 2 6.218E − 2 5.231E − 3 9.340E − 3 Best 7.954E − 3 6.381E − 2 6.318E − 2 1.084E − 2 3.314E − 2 Worst 1.689E − 2 9.405E − 2 1.841E − 1 1.931E − 2 7.031E − 2 表 4 HV指标
Table 4 HV indicator
测试函数 指标 LAMOCSO MOPSO NSGA-II KAMOCSO cdMOPSO DTLZ1 Mean 1.184E + 0 6.758E − 1 8.873E − 1 9.241E − 1 7.534E − 1 Std. 3.368E − 3 7.334E − 2 3.227E − 2 6.917E − 3 4.523E − 2 Best 1.351E + 0 8.204E − 1 1.13 E + 0 1.127E + 0 1.011E + 0 Worst 8.014E − 1 4.003E − 1 3.401E − 1 6.740E − 1 8.503E − 2 DTLZ2 Mean 1.771E + 0 2.885E − 1 3.396E − 1 9.981E − 1 3.545E − 1 Std. 4.616E − 3 1.887E − 2 9.603E − 3 1.093E − 3 5.613E − 3 Best 1.971E + 0 6.155E − 1 8.369E − 1 1.532E + 0 9.358E − 1 Worst 1.575E + 0 6.528E − 2 6.126E − 2 3.253E − 1 1.536E − 1 DTLZ3 Mean 1.023E + 0 9.794E − 1 3.433E − 1 9.871E − 1 2.053E − 1 Std. 8.382E − 4 5.554E − 2 9.801E − 3 2.565E − 2 4.469E − 2 Best 1.115E + 0 1.029E + 0 6.472E − 1 1.228E + 0 8.641E − 1 Worst 9.337E − 1 5.704E − 2 5.285E − 2 6.847E − 2 9.356E − 2 WFG1 Mean 9.153E − 1 1.059E − 1 3.463E − 1 7.193E − 1 2.757E − 1 Std. 5.446E − 3 3.863E − 3 1.921E − 1 4.023E − 4 1.256E − 1 Best 1.148E + 0 2.907E − 1 8.036E − 1 1.091E + 0 8.125E − 1 Worst 6.348E − 1 5.284E − 2 1.365E − 1 5.284E − 1 9.553E − 2 WFG2 Mean 8.112E − 1 5.443E − 1 5.616E − 1 6.066E − 1 4.124E − 1 Std. 2.461E − 3 8.270E − 3 8.274E − 3 6.352E − 3 8.918E − 3 Best 9.612E − 1 6.226E − 1 6.759E − 1 9.358E − 1 7.172E − 1 Worst 6.62 E − 1 1.718E − 1 4.570E − 1 4.847E − 1 2.589E − 1 表 5 牵引供电系统参数与列车参数
Table 5 TPSS parameters and train parameters
牵引网参数 列车参数 供电臂长度 20 km 质量 15988 tAT所位置 10.5/19.5 km 质量回转系数 0.06 额定电压 27.5 kV 最大加速度 0.07 m/s2 牵引变压器阻抗 J9.6 $\Omega$/31.5 MVA 最小加速度 −0.04 m/s2 电力系统阻抗 J9.6 $\Omega$/31.5 MVA 运行时间 1650 /1900 sAT漏抗 0.1+j0.45 $\Omega$ 运行距离 20/40 km 大地导电率 0.1+j0.45 $\Omega$ 发车时间间隔 600 s 钢轨泄漏电阻 10-4 1/$\Omega \cdot$ cm 最大起牵引力 760 kN 接地电阻 2-5 $\Omega$ 最大牵引功率 9600 kW表 6 电力设备各节点的发热量和最高温度
Table 6 The heat generation and maximum temperature of each node in power equipment
列车1 列车2 最高温度/℃ 发热量/kWh 最高温度/℃ 发热量/kWh 定子 63.971 5.140 64.006 5.752 绕组 110.446 10.255 110.410 12.523 转子 50.829 0.884 50.980 1.205 变流器结温 111.299 0.884 119.267 0.439 高压绕组 108.209 8.607 108.209 10.464 低压绕组 129.544 18.794 129.544 22.648 铁芯 111.185 6.258 111.185 7.431 绝缘油 40.434 − 40.434 − -
[1] Erofeyev E. Calculation of optimum train control using dynamic programming method. Moscow Railway Engineering Institute: Moscow, Russia, 1967, 811: 16−30 [2] Wingelaar B, Silva G R G D, Lazar M. Model Predictive Eco-Driving Control for Heavy-Duty Trucks Using Branch and Bound Optimization. IEEE Transactions on Intelligent Transportation Systems, 2023, 24(12): 15178−15189 doi: 10.1109/TITS.2023.3309467 [3] Ying P, Zeng X, Song H, et al. Energy-efficient train operation with steep track and speed limits: A novel Pontryagin's maximum principle-based approach for adjoint variable discontinuity cases. IET Intelligent Transport Systems, 2021, 15(9): 1183−1202 doi: 10.1049/itr2.12093 [4] Wu C, Lu S, Tian Z, et al. Energy-Efficient Train Control With Onboard Energy Storage Systems Considering Stochastic Regenerative Braking Energy. IEEE Transactions on Transportation Electrification, 2025, 11(1): 257−274 doi: 10.1109/TTE.2024.3389960 [5] Lin X, Liang Z, Shen L, et al. Reinforcement learning method for the multi-objective speed trajectory optimization of a freight train. Control Engineering Practice, 2023, 138(1): 105605 [6] Xiao Z, Wang Q, Sun P, et al. Modeling and Energy-Optimal Control for High-Speed Trains. IEEE Transactions on Transportation Electrification, 2020, 6(2): 797−807 doi: 10.1109/TTE.2020.2983855 [7] Chen M, Murgovski N, Xiao Z, et al. Multi-Train Eco-Driving and Safety-Tracking Cooperative Optimization by Nonlinear Programming. IEEE Transactions on Vehicular Technology, 2025, 74(2): 2406−2417 doi: 10.1109/TVT.2024.3472074 [8] Tao X, Wang Q, Chen M, et al. Comprehensive optimization of energy consumption and network voltage stability of freight multi-train operation based on amMOPSO algorithm. IEEE Transactions on Transportation Electrification, 2024, 10(2): 4074−4094 doi: 10.1109/TTE.2023.3312275 [9] Chen M, Feng X, Guo Y, et al. Optimal Cooperative Eco-Driving of Multitrain With TLET Comprehensive System. IEEE Transactions on Transportation Electrification, 2024, 10(1): 2095−2111 doi: 10.1109/TTE.2023.3288622 [10] Claudio S, Tommaso A, Daniele R, et al. A new methodology for the assessment of the running resistance of trains without knowing the characteristics of the track: Application to full-scale experimental data. Proceedings of the Institution of Mechanical Engineers Part F Journal of Rail & Rapid Transit, 2018, 232(6): 1814−1827 [11] Peng Y, Chen F, Chen F, et al. Energy-Efficient Train Control: A Comparative Study Based on Permanent Magnet Synchronous Motor and Induction Motor. IEEE Transactions on Vehicular Technology, 2024, 73(11): 16148−16159 doi: 10.1109/TVT.2024.3412941 [12] Kishore S, Bharti S K, Anand P, et al. Temperature Prediction for Electric Vehicles Using Machine Learning Algorithms. IEEE Transactions on Industry Applications, 2024, 60(6): 9251−9259 doi: 10.1109/TIA.2024.3456753 [13] Yang H, Fu Y, Zhang K, et al. Speed tracking control using an ANFIS model for high-speed electric multiple unit. Control Engineering Practice, 2014, 23(1): 57−65 [14] Yang H, Zhang K P, Liu H E. Online Regulation of High Speed Train Trajectory Control Based on T-S Fuzzy Bilinear Model. IEEE Transactions on Intelligent Transportation Systems, 2016, 17(6): 1496−1508 doi: 10.1109/TITS.2015.2497320 [15] Davies R, Haitao H, Fang H. A Multiscale Framework for Capturing Oscillation Dynamics of Autonomous Vehicles in Data-Driven Car-Following Models. IEEE Transactions on Intelligent Transportation Systems, 2024, 25(11): 18224−18235 doi: 10.1109/TITS.2024.3433563 [16] 李中奇, 金柏, 杨辉, 等. 高速动车组强耦合模型的分布式滑模控制策略. 自动化学报, 2020, 46(03): 495−508Li Z, Jin B, Yang H, et al. Distributed sliding mode control strategy for high-speed EMU strong coupling model. Acta Automatica Sinica, 2020, 46(03): 495−508 [17] Tao X, Sun P, Xiao Z, et al. Modeling and Energy-Optimal Control for Freight Trains based on Data-Driven Approaches. Future Generation Computer Systems, 2024, 152: 346−360 doi: 10.1016/j.future.2023.11.012 [18] 李天梅, 司小胜, 刘翔, 等. 大数据下数模联动的随机退化设备剩余寿命预测技术. 自动化学报, 2022, 48(09): 2119−2141Li T, Si X, Liu X, et al. Data-model interactive remaining useful life prediction technologies for stochastic degrading devices with big data. Acta Automatica Sinica, 2022, 48(09): 2119−2141 [19] 江昌旭, 周龙灿, 庄鹏威, 等. 基于数据-模型混合驱动方法的多类型移动应急资源优化调度策略. 电网技术, 2025, 01(04): 1−21Jiang C, Zhou L, Zhuang P, et al. scheduling optimization strategy for multi-type mobile emergeney resources based on a data-Model hybrid driven approach. Power System Technology, 2025, 01(04): 1−21 [20] Xu N, Li S, Xu K, et al. Research on methane Hazard interval prediction method based on hybrid "model-data"driven strategy. Applied Energy, 2025, 377: 124613 doi: 10.1016/j.apenergy.2024.124613 [21] 周利军, 王健, 王路伽, 等.数据驱动下高速铁路牵引变压器热点温度预测[J]. 中国电机工程学报, 2019, 39(18): 5547-5554, 5603.Zhou L, Wang J, Wang L, et al. Data Driven Prediction for Traction Transformer Hot-spot Temperature in High Speed Railway[J]. Proceedings of the CSEE, 2019, 39(18): 5547-5554, 5603. [22] Ahn H, Oh Y, Kim J, et al. Experimental Verification and Finite Element Analysis of Short-Circuit Electromagnetic Force for Dry-Type Transformer. IEEE Transactions on Magnetics, 2012, 48(2): 819−822 doi: 10.1109/TMAG.2011.2174212 [23] Martinez A. Resistance-capacitance thermal models as alternatives to finite-element numerical models in the simulation of thermoelectric modules for electric power generation. Energy Conversion and Management, 2023, 292: 117419 doi: 10.1016/j.enconman.2023.117419 [24] Bian X, Liang Y. Circuit Network Model of Stator Transposition Bar in Large Generators and Calculation of Circulating Current. IEEE Transactions on Industrial Electronics, 2015, 62(3): 1392−1399 doi: 10.1109/TIE.2014.2347264 [25] Yan X, Li Y, Cheng Z, et al. Prediction of temperature rise for ventilated dry-type transformer by 3-D coupled magneto-fluid-thermal model. International Journal of Applied Electromagnetics and Mechanics, 2020, 62(4): 725−735 doi: 10.3233/JAE-190054 [26] Rodriguez G R, Garelli L, Storti M, et al. Numerical and Experimental Thermo-Fluid Dynamic Analysis of a Power Transformer working in ONAN mode. Applied Thermal Engineering, 2017, 112: 1271−1280 doi: 10.1016/j.applthermaleng.2016.08.171 [27] Shell K. Applications of Pontryagin's Maximum Principle to Economics[J]. Working papers, 1968. DOI: 10.1007/978-3-642-46196-5_12. [28] Ichikawa, Kunihiko. Application of Optimization Theory for Bounded State Variable Problems to the Operation of Train. Bulletin of Jsme, 1968, 11(47): 857−865 doi: 10.1299/jsme1958.11.857 [29] 朱金陵, 李会超, 王青元, 等. 列车节能控制的优化分析. 中国铁道科学, 2008(02): 104−108 doi: 10.3321/j.issn:1001-4632.2008.02.020Zhu J, Li H, Wang Q, et al. Optimization analysis on the energy saving control for trains. (China Academy of Railway Sciences), 2008(02): 104−108 doi: 10.3321/j.issn:1001-4632.2008.02.020 [30] 王青元. 高速列车准点节能优化操纵研究[Ph.D. dissertation], 西南交通大学, 中国, 2017.Wang Q. Energy-efficient control of high-speed trainsconsidering punctuality constraint[Ph.D. dissertation], Southwest Jiaotong University, China, 2017. [31] Xiao Z, Murgovski N, Wang P, et al. Energy-efficient predictive control for trams incorporating disjunctive time constraints from traffic lights[J]. Transportation Research Part C: Emerging Technologies, 2023, 151. [32] 赖晴鹰, 刘军, 赵若愚, 等. 基于变间距动态规划的中高速磁悬浮列车速度曲线优化. 吉林大学学报(工学版), 2019, 49(03): 749−756Lai Q, Liu J, Zhao R, et al. Optimal trajectory planning for middle-to-high speed maglev based on dynamic programming with mutative spacing. Journal of Jilin University(Engineering and Technology Edition), 2019, 49(03): 749−756 [33] Cao Y, Zhang Z, Cheng F, et al. Trajectory Optimization for High-Speed Trains via a Mixed Integer Linear Programming Approach. IEEE Transactions on Intelligent Transportation Systems, 2022, 23(10): 17666−17676 doi: 10.1109/TITS.2022.3155628 [34] Zhong W, Li S, Xu H, et al. On-Line Train Speed Profile Generation of High-Speed Railway With Energy-Saving: A Model Predictive Control Method. IEEE Transactions on Intelligent Transportation Systems, 2022, 23(5): 4063−4074 doi: 10.1109/TITS.2020.3040730 [35] Fernández-Rodríguez A, Su S, Fernández-Cardador A, et al. A multi-objective algorithm for train driving energy reduction with multiple time targets. Engineering Optimization, 2020, 53(4): 719−734 [36] Aredah A, Fadhloun K, Rakha H A. Energy optimization in freight train operations: Algorithmic development and testing. Applied Energy, 2024, 364: 123111 doi: 10.1016/j.apenergy.2024.123111 [37] Xing Z, Zhang Z, Guo J, et al. Rail train operation energy-saving optimization based on improved brute-force search. Applied Energy, 2023, 330: 120345 doi: 10.1016/j.apenergy.2022.120345 [38] 乔俊飞, 李霏, 杨翠丽. 一种基于均匀分布策略的NSGAⅡ 算法. 自动化学报, 2019, 45(007): 1325−1334Qiao J, Li F, Yang C. An NSGAⅡ algorithm based on uniform distribution strategy. Acta Automatica Sinica, 2019, 45(007): 1325−1334 [39] Zhang X, Zheng X, Cheng R, et al. A competitive mechanism based multi-objective particle swarm optimizer with fast convergence. Information Sciences, 2018, 427: 63−76 doi: 10.1016/j.ins.2017.10.037 [40] Pan Z, Chen M, Lu S, et al. Integrated Timetable Optimization for Minimum Total Energy Consumption of an AC Railway System. IEEE Transactions on Vehicular Technology, 2020, 69(4): 3641−3653 doi: 10.1109/TVT.2020.2975603 [41] Chen H, Wang K, Yan W, et al. Temperature Analysis of Switched Reluctance Motor Based on Equivalent Heat Circuit Method. IEEE Transactions on Applied Superconductivity, 2021, 31(8): 1−4 [42] Williamson S S, Emadi A, Rajashekara K. Comprehensive Efficiency Modeling of Electric Traction Motor Drives for Hybrid Electric Vehicle Propulsion Applications. IEEE Transactions on Vehicular Technology, 2007, 56(4): 1561−1572 doi: 10.1109/TVT.2007.896967 [43] Wang J, Chen W, Wang L, et al. A Transient 3-D Thermal Modeling Method for IGBT Modules Considering Uneven Power Losses and Cooling Conditions. IEEE Journal of Emerging and Selected Topics in Power Electronics, 2021, 9(4): 3959−3970 doi: 10.1109/JESTPE.2020.3021679 [44] Dong H, Zhang Q, Yang X, et al. Sensitivity analysis and reasonable matching of key operating parameters of flow and heat transfer in liquid-cooling plate used for IGBT module of high-speed train traction inverters. Case Studies in Thermal Engineering, 2024, 61: 105056 doi: 10.1016/j.csite.2024.105056 [45] Zhao S, Zhang X, Liu Q, et al. Investigation of Liquid Temperatures and Velocities at Winding Inlet in Natural Cooled Transformers Through Complete-Cooling-Loop Based CFD Simulations and Experiments. IEEE Transactions on Power Delivery, 2025, 40(1): 343−352 doi: 10.1109/TPWRD.2024.3495229 [46] Coello C a C, Lechuga M S. MOPSO: a proposal for multiple objective particle swarm optimization[C]. Proceedings of the 2002 Congress on Evolutionary Computation. CEC'02 (Cat. No.02TH8600), 2002, 2: 1051−1056. [47] Deb K, Pratap A, Agarwal S, et al. A fast and elitist multiobjective genetic algorithm: NSGA-Ⅱ. IEEE Transactions on Evolutionary Computation, 2002, 6(2): 182−197 doi: 10.1109/4235.996017 [48] Huang W, Ding H, Qiao J. Adaptive multi-objective competitive swarm optimization algorithm based on kinematic analysis for municipal solid waste incineration. Applied Soft Computing, 2023, 149: 110925 doi: 10.1016/j.asoc.2023.110925 [49] Raquel C R, Jr P C N. An effective use of crowding distance in multiobjective particle swarm optimization[C]. Genetic and Evolutionary Computation Conference, GECCO 2005, Proceedings, Washington DC, USA, June 25−29, 2005, 2005. [50] Problems[C]. Evolutionary Computation, 2002. CEC '02. Proceedings of the 2002 Congress on, 2002. [51] Huband S, Hingston P, Barone L, et al. A review of multiobjective test problems and a scalable test problem toolkit. IEEE Transactions on Evolutionary Computation, 2006, 10(5): 477−506 doi: 10.1109/TEVC.2005.861417 -
计量
- 文章访问数: 49
- HTML全文浏览量: 57
- 被引次数: 0