2.845

2023影响因子

(CJCR)

  • 中文核心
  • EI
  • 中国科技核心
  • Scopus
  • CSCD
  • 英国科学文摘

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

基于电量的USVs-UAV系统编队与避障分布式模型预测控制

李志明 朱亚锟 李垚森 袁超 郭戈

李志明, 朱亚锟, 李垚森, 袁超, 郭戈. 基于电量的USVs-UAV系统编队与避障分布式模型预测控制. 自动化学报, xxxx, xx(x): x−xx doi: 10.16383/j.aas.c250047
引用本文: 李志明, 朱亚锟, 李垚森, 袁超, 郭戈. 基于电量的USVs-UAV系统编队与避障分布式模型预测控制. 自动化学报, xxxx, xx(x): x−xx doi: 10.16383/j.aas.c250047
Li Zhi-Ming, Zhu Ya-Kun, Li Yao-Sen, Yuan Chao, Guo Ge. Distributed model predictive control for battery level-based formation and obstacle avoidance in USVs-UAV system. Acta Automatica Sinica, xxxx, xx(x): x−xx doi: 10.16383/j.aas.c250047
Citation: Li Zhi-Ming, Zhu Ya-Kun, Li Yao-Sen, Yuan Chao, Guo Ge. Distributed model predictive control for battery level-based formation and obstacle avoidance in USVs-UAV system. Acta Automatica Sinica, xxxx, xx(x): x−xx doi: 10.16383/j.aas.c250047

基于电量的USVs-UAV系统编队与避障分布式模型预测控制

doi: 10.16383/j.aas.c250047 cstr: 32138.14.j.aas.c250047
基金项目: 河北省自然科学基金(F2025501027), 国家自然科学基金(62173079, U1808205)资助
详细信息
    作者简介:

    李志明:东北大学硕士研究生. 2024年获得华北理工大学学士学位. 主要研究方向为多无人载具系统的协同控制. E-mail: 15932568153@163.com

    朱亚锟:东北大学副教授. 2013年获得燕山大学博士学位. 主要研究方向为智能交通系统中的分布式协同控制与优化. 本文通信作者. E-mail: fozyking@163.com

    李垚森:东北大学硕士研究生. 2024年获得青岛理工大学学士学位. 主要研究方向为智能交通系统的分布式控制与优化. E-mail: flysen2002@163.com

    袁超:东北大学硕士研究生. 2024年获得大连大学学士学位. 主要研究方向为分布式自适应编队跟踪控制. E-mail: 15261980166@163.com

    郭戈:东北大学教授. 1998年获得东北大学控制理论与控制工程专业博士学位. 主要研究方向为智能交通系统, 共享出行系统和信息物理融合系统. E-mail: geguo@yeah.net

Distributed Model Predictive Control for Battery Level-based Formation and Obstacle Avoidance in USVs-UAV System

Funds: Supported by Natural Science Foundation of Hebei Province (F2025501027) and National Natural Science Foundation of China (62173079, U1808205)
More Information
    Author Bio:

    LI Zhi-Ming Master student at Northeastern University. He received his bachelor degree from North China University of Science and Technology in 2024. His main research interest is cooperative control of multi-unmanned vehicle systems

    ZHU Ya-Kun Associate professor at Northeastern University. He received his Ph.D. degree from Yanshan University in 2013. His research interest covers distributed cooperative control and optimization in intelligent transportation systems. Corresponding author of this paper

    LI Yao-Sen Master student at Northeastern University. He received his bachelor degree from Qingdao University of Technology in 2024. His research interest covers distributed control and optimization of intelligent transportation systems

    YUAN Chao Master student at Northeastern University. He received his bachelor degree from Dalian University in 2024. His main research interest is distributed adaptive formation tracking control

    GUO Ge Professor at Northeast ern University. He received his Ph.D. degree in control theory and control engineering from Northeastern University in 1998. His research interest covers intelligent transportation systems, mobility on-demand systems, and cyber-physical systems

  • 摘要: 研究无人水面舰艇−无人机(USVs-UAV)系统中基于电量状态的编队控制、避障与轨迹跟踪问题, 提出一种分布式模型预测控制方法以实现多无人载具协同. 第一, 基于USV电量设计编队模型, 实时调整编队构型. 第二, 设计空海协同避障机制, 利用UAV空中高度优势构建障碍物监测网络, 实时更新水面障碍物信息至USV群. 第三, 优化控制框架将编队控制、避障与轨迹跟踪问题统一转化为带约束的优化问题, 通过求解最优控制输入实现多无人载具协同.
  • 图  1  USVs-UAV系统

    Fig.  1  USVs-UAV system

    图  2  编队模型

    Fig.  2  Formation model

    图  3  通讯拓扑$ {\cal{G}}$

    Fig.  3  Communication topology $ {\cal{G}}$

    图  4  线形编队

    Fig.  4  Linear formation

    图  5  轨迹——轨迹追踪放大图

    Fig.  5  Trajectory——Enlarged diagram of trajectory tracking

    图  6  避障

    Fig.  6  Obstacle avoidance

    图  7  电量(引入电量约束)

    Fig.  7  Battery level (with battery level constraints)

    图  8  矩形编队(引入电量约束)

    Fig.  8  Rectangular formation (with battery level constraints)

    图  9  矩形编队(未引入电量约束)

    Fig.  9  Rectangular formation (without battery level constraints)

    图  10  电量(未引入电量约束)

    Fig.  10  Battery level (without battery level constraints)

    表  1  UAV的参数

    Table  1  Parameters of UAV

    参数
    $m_{a}$ $ 2.000\;\mathrm{kg} $
    $ d $ $ 0.200\;\mathrm{N{\cdot} s/m} $
    $ \alpha_{d} $ $ 0.010\;\mathrm{N{\cdot} s/m} $
    $ I_{xx} $ $ 0.120\;\mathrm{kg{\cdot} m^{2}} $
    $ I_{yy} $ $ 0.120\;\mathrm{kg{\cdot} m^{2}} $
    $ I_{zz} $ $ 0.250\;\mathrm{kg{\cdot} m^{2}} $
    $ k_{tx_{\alpha}} $ $ 0.010\;\mathrm{N{\cdot} s/m} $
    $ k_{ty_{\alpha}} $ $ 0.010\;\mathrm{N{\cdot} s/m} $
    $ k_{t\theta_{\alpha}} $ $ 0.001\;\mathrm{N{\cdot} s/m} $
    $ k_{t\phi_{\alpha}} $ $ 0.001\;\mathrm{N{\cdot} s/m} $
    $ k_{t\psi_{\alpha}} $ $ 0.001\;\mathrm{N{\cdot} s/m} $
    下载: 导出CSV

    表  2  USV的参数

    Table  2  Parameters of USV

    参数
    $m$ $ 23.800\;\mathrm{kg} $
    $ X_{\dot{u}} $ $ -2.000\;\mathrm{kg} $
    $ Y_{\dot{v}} $ $ -10.000\;\mathrm{kg} $
    $ N_{\dot{v}} $ $ 0\;\mathrm{kg {\cdot}t m} $
    $ Y_{\dot{r}} $ $ 0\;\mathrm{kg {\cdot}t m} $
    $ N_{\dot{r}} $ $ -1.000\;\mathrm{kg {\cdot}t m^{2}} $
    $ x_{g} $ $0.046\;\mathrm{m}$
    $ d_{11}(\nu_{s}) $ $ (12+2.5|u_{s}|)\;\mathrm{N{\cdot}t s/m} $
    $ d_{23}(v_{s}) $ $ 0.200\;\mathrm{N{\cdot}t s/m} $
    $ d_{22}(\nu_{s}) $ $ (17+4.5|v_{s}|)\;\mathrm{N{\cdot}t s/m} $
    $ d_{32}(v_{s}) $ $ 0.500\;\mathrm{N{\cdot}t s/m} $
    $ d_{33}(\nu_{s}) $ $ (0.5+0.1|r_{s}|\;)\mathrm{N{\cdot}t s/m} $
    下载: 导出CSV

    表  3  初始位置和电量

    Table  3  Initial positions and initial battery levels

    载具 电量 初始位置(m)
    $ USV_{0} $ $90\%\;(Q_{(4)})$ $ [6,\; 10.5,\; 0] $
    $ USV_{1} $ $70\%\;(Q_{(2)})$ $ [10.5,\; 0,\; 0] $
    $ USV_{2} $ $65\%\;(Q_{(1)})$ $ [5.5,\; -9,\; 0] $
    $ USV_{3} $ $80\%\;(Q_{(3)})$ $ [-4.3,\; 9.5,\; 0] $
    下载: 导出CSV
  • [1] 张卫东, 刘笑成, 韩鹏. 水上无人系统研究进展及其面临的挑战. 自动化学报, 2020, 46(5): 847−857

    Zhang Wei-Dong, Liu Xiao-Cheng, Han Peng. Progress and challenges of overwater unmanned systems. Acta Automatica Sinica, 2020, 46(5): 847−857
    [2] 闫敬, 关新平. 海上无人系统跨域集群发展现状及其关键技术. 自动化学报, 2025, 51(4): 744−761

    Yan Jing, Guan Xin-Ping. Development status and key techniques for cross-domain swarm of maritime unmanned systems. Acta Automatica Sinica, 2025, 51(4): 744−761
    [3] Cheng W, Zhang K, Jiang B. Continuous fixed-time fault-tolerant formation control for heterogeneous multiagent systems under fixed and switching topologies. IEEE Transactions on Vehicular Technology, 2023, 72(2): 1545−1558 doi: 10.1109/TVT.2022.3211609
    [4] Xu X, Liu L, Feng G. Consensus of heterogeneous linear multiagent systems with communication time-delays. IEEE Transactions on Cybernetics, 2017, 47(8): 1820−1829 doi: 10.1109/TCYB.2017.2702635
    [5] Meng M, Liu L, Feng G. Adaptive output regulation of heterogeneous multiagent systems under markovian switching topologies. IEEE Transactions on Cybernetics, 2018, 48(10): 2962−2971 doi: 10.1109/TCYB.2017.2753382
    [6] Zuo S, Song Y, Lewis F, Davoudi A. Time-varying output formation containment of general linear homogeneous and heterogeneous multiagent systems. IEEE Transactions on Control of Network Systems, 2019, 6(2): 537−548 doi: 10.1109/TCNS.2018.2847039
    [7] Huang D, Li H, Li X. Formation of generic UAVs-USVs system under distributed model predictive control scheme. IEEE Transactions on Circuits and Systems II: Express Briefs, 2020, 67(12): 3123−3127
    [8] Huang D, Li H, Li X. Adaptive neural formation control for underactuated unmanned surface vehicles with collision and connectivity constraints. Ocean Engineering, 2021, 226(15): Article No. 108834
    [9] 高振宇, 郭戈. 基于扰动观测器的AUVs固定时间编队控制. 自动化学报, 2019, 45(6): 1094−1102

    Gao Zhen-Yu, Guo Ge. Fixed-time formation control of AUVs based on a disturbance observer. Acta Automatica Sinica, 2019, 45(6): 1094−1102
    [10] Li Y, Wu D, Wang H, Lu J. Dynamic collision avoidance for maritime autonomous surface ships based on deep Q-network with velocity obstacle method. Ocean Engineering, 2025, 320: Article No. 120335 doi: 10.1016/j.oceaneng.2025.120335
    [11] Xiong Z, Hu Z, Lei X. Multi-robot formation with obstacle avoidance: An improved velocity obstacle-based approach. In: Proceedings of the IEEE International Conference on Unmanned Systems (ICUS). Hefei, China: IEEE, 2000. 829−834
    [12] 温广辉, 余星火, 黄廷文, 周艳. 模型参数不确定下多无人艇系统固定时间二分编队跟踪控制. 自动化学报, 2025, 51(3): 669−677

    Wen Guang-Hui, Yu Xing-Huo, Huang Ting-Wen, Zhou Yan. Fixed-time bipartite formation tracking control for multi-USV systems with uncertain model parameters. Acta Automatica Sinica, 2025, 51(3): 669−677
    [13] Zhu Y, Li S, Guo G, Bai J, Yuan P. Formation control of UAV-USV based on distributed event-triggered adaptive MPC with virtual trajectory restriction. Ocean Engineering, 2024, 294: Article No. 116850 doi: 10.1016/j.oceaneng.2024.116850
    [14] Dong Z, Liang Z, Liu D, Yu C, Li W. Dynamic formation optimisation for energy saving of a fleet of unmanned surface vehicles based on robust optimisation over time strategy. Ocean Engineering, 2024, 301(12): Article No. 117382
    [15] Dong Z, Liang X, Guan X, Li W. Formation optimization of various spacing configurations for a fleet of unmanned surface vehicles based on a hydrodynamic energy-saving strategy. Ocean Engineering, 2022, 266: Article No. 112824 doi: 10.1016/j.oceaneng.2022.112824
    [16] Skjetne R, Smogeli O, Fossen T I. Modeling, identification, and adaptive maneuvering of CyberShip II: A complete design with experiments. IFAC Proceedings Volumes, 2004, 37(10): 203−208 doi: 10.1016/S1474-6670(17)31732-9
    [17] Roger S, Thor I, Petar V. Adaptive maneuvering, with experiments, for a model ship in a marine control laboratory. Automatica, 2024, 41(2): 289−298
    [18] Li S, Zhu Y, Guo G, Yuan P, Bai J. A separation and rendezvous control method for the UAV-USV system based on distributed NMPC. IEEE Transactions on Intelligent Vehicles, DOI: 10.1109/TIV.2024.3395639
    [19] Touzout W, Benmoussa Y, Benazzouz D, Moreac E, Diguet J. Unmanned surface vehicle energy consumption modelling under various realistic disturbances integrated into simulation environment. Ocean Engineering, 2021, 222: Article No. 108560 doi: 10.1016/j.oceaneng.2020.108560
  • 加载中
计量
  • 文章访问数:  4
  • HTML全文浏览量:  2
  • 被引次数: 0
出版历程
  • 收稿日期:  2025-02-07
  • 录用日期:  2025-05-29
  • 网络出版日期:  2025-07-18

目录

    /

    返回文章
    返回