Optimized Design of DMPC for Trajectory Synchronization in Multi-Platoon Systems under Unidirectional Communication
-
摘要: 针对多队列系统中的车辆编队协同控制问题, 研究了在单向通信下实现高效队列协同的方法. 首先, 建立了多队列系统的车辆动力学模型, 设计了以各队列领航车为根节点的全局通信拓扑, 以支持信息在队列内和队列间的传递. 基于此拓扑结构, 提出了一种包含队列内和队列间耦合约束的分布式模型预测控制方法, 分别针对队列内跟随车辆和队列间领航车辆制定了不同的局部优化问题, 以实现车辆和队列的并行优化. 其次, 通过Lyapunov稳定性分析, 证明了所提控制方法在单向通信拓扑下的渐近稳定性, 并推导了保证系统弦稳定性的参数设计条件. 数值仿真对比分析了三种队列间通信拓扑结构(领航车-尾车跟踪、领航车-领航车跟踪、领航车与领航车-尾车结合策略)的控制效果, 结果表明领航车与领航车-尾车结合策略在响应速度和系统稳定性之间取得了最佳平衡. 此外, 研究还验证了所提方法对不同惯性滞后参数和异质车辆特性的适应能力, 为多队列车辆系统的协同控制提供了理论基础和实用方法, 对智能交通系统的实际应用具有重要参考价值.Abstract: This paper addresses the coordinated formation control problem of vehicles in multi-platoon systems and investigates methods for achieving efficient platoon coordination under unidirectional communication structures. Firstly, the paper establishes vehicle dynamics models for multi-platoon systems and designs a global communication topology in which the lead vehicles of each platoon serve as root nodes to support information transmission within and between platoons. Based on this topology, a distributed model predictive control (DMPC) method incorporating coupling constraints for intra-platoon and inter-platoon interactions is proposed. Different local optimization problems are formulated for follower vehicles within platoons and lead vehicles between platoons, enabling parallel optimization of vehicles and platoons. Secondly, through Lyapunov stability analysis, the paper proves the asymptotic stability of the proposed control method under unidirectional communication topology and derives parameter design conditions that guarantee the string stability of the system. Numerical simulations compare the control performance of three inter-platoon communication topologies: lead-tail vehicle tracking, lead-lead vehicle tracking, and a combined lead-tail-lead vehicle strategy. The results show that the combined lead-tail-lead strategy achieves the best balance between response speed and system stability. Furthermore, the research verifies the adaptability of the proposed method to different inertial lag parameters and heterogeneous vehicle characteristics, providing theoretical foundations and practical approaches for the coordinated control of multi-platoon vehicle systems, with significant reference value for practical applications in intelligent transportation systems.
-
表 1 DMPC控制器权重矩阵值
Table 1 An example table in two column
$ \mathit{Q} $ $ \mathit{R} $ $ \mathit{F} $ $ \mathit{G} $ 跟随车$ i $ (0/5)$ {{I}_{2}} $ $ {{I}_{2}} $ $ 10{{I}_{2}} $ $ 8{{I}_{2}} $ 领航车$ k $ $ 10{{I}_{2}} $ $ {{I}_{2}} $ $ 10{{I}_{2}} $ (0/1)$ 10{{I}_{2}} $ -
[1] Jia D, Lu K, Wang J. A disturbance-adaptive design for VANET-enabled vehicle platoon. IEEE Transactions on Vehicular Technology, 2014, 63(2): 527−539 doi: 10.1109/TVT.2013.2280721 [2] Firooznia A, Ploeg J, van de Wouw N, Zwart H. Co-design of controller and communication topology for vehicular platooning. IEEE Transactions on Intelligent Transportation Systems, 2017, 18(10): 2728−2739 doi: 10.1109/TITS.2017.2660544 [3] Shen Z, Liu Y, Li Z, Nabin M H. Cooperative spacing sampled control of vehicle platoon considering undirected topology and analog fading networks. IEEE Transactions on Intelligent Transportation Systems, 2022, 23(7): 10412−10423 [4] Zhang Y, Xu Z, Wang Z, Yao X, Xu Z. Impacts of communication delay on vehicle platoon string stability and its compensation strategy: A review. Journal of Traffic and Transportation Engineering (English Edition), 2023, 10(1): 1−17 doi: 10.1016/j.jtte.2021.05.006 [5] Fernandes P, Nunes U. Platooning with IVC-enabled autonomous vehicles: Strategies to mitigate communication delays, improve safety and traffic flow. IEEE Transactions on Intelligent Transportation Systems, 2012, 13(1): 91−106 doi: 10.1109/TITS.2011.2179936 [6] Li Y, Tang C, Li K, He X, Peeta S, Wang Y. Consensus-based cooperative control for multi-platoon under the connected vehicles environment. IEEE Transactions on Intelligent Transportation Systems, 2018, 20(6): 2220−2230 [7] Wang P, Deng H, Zhang J, Wang L, Zhang M, Li Y. Model predictive control for connected vehicle platoon under switching communication topology. IEEE Transactions on Intelligent Transportation Systems, 2022, 23(7): 10424−10435 [8] Wu Q, Zhang H, Li K. A swarming approach to optimize the one-hop delay in smart driving inter-platoon communications. Sensors, 2018, 18(10): 3307 doi: 10.3390/s18103307 [9] Li Y, Tang C, Peeta S, Wang Y. Nonlinear consensus-based connected vehicle platoon control incorporating car-following interactions and heterogeneous time delays. IEEE Transactions on Intelligent Transportation Systems, 2019, 20(6): 2209−2219 doi: 10.1109/TITS.2018.2865546 [10] 李永福, 何昌鹏, 朱浩, 郑太雄. 通信延时环境下异质网联车辆队列非线性纵向控制. 自动化学报, 2021, 47(12): 2841−2856Li Yong-Fu, He Chang-Peng, Zhu Hao, Zheng Tai-Xiong. Nonlinear longitudinal control for heterogeneous connected vehicle platoon in the presence of communication delays. Acta Automatica Sinica, 2021, 47(12): 2841−2856 [11] 李永福, 邬昌强, 朱浩, 唐晓铭. 考虑车辆跟驰作用和通信时延的网联车辆队列轨迹跟踪控制. 自动化学报, 2021, 47(9): 2264−2275Li Yong-Fu, Wu Chang-Qiang, Zhu Hao, Tang Xiao-Ming. Trajectory tracking control for connectedvehicle platoon considering car-following interactions and time delavs. Acta Automatica Sinica, 2021, 47(9): 2264−2275 [12] Lin X, Wang F, Zhou C, Liu W. Dynamic event-triggered consensus control for leader-following multi-agent systems with communication delay. IEEE Transactions on Circuits and Systems Ⅱ: Express Briefs, 2023, 70(1): 1−5 doi: 10.1109/TCSII.2022.3227488 [13] Wang J, Luo X, Yan J, Guan X. Distributed integrated sliding mode control for vehicle platoons based on disturbance observer and multi-power reaching law. IEEE Transactions on Intelligent Transportation Systems, 2022, 23(7): 10436−10447 [14] 朱永薪, 李永福, 朱浩, 于树友. 通信延时环境下基于观测器的智能网联车辆队列分层协同纵向控制. 自动化学报, 2023, 49(8): 1785−1798Zhu Yong-Xin, Li Yong-Fu, Zhu Hao, Yu Shu-You. Observer-based longitudinal control for connected and automated vehicles platoon subject to communication delay. Acta Automatica Sinica, 2023, 49(8): 1785−1798 [15] Hu M, Wang X, Bian Y, Cao D, Wang H. Disturbance observer-based cooperative control of vehicle platoons subject to mismatched disturbance. IEEE Transactions on Intelligent Vehicles, 2023, 8(1): 1−12 doi: 10.1109/TIV.2023.3235545 [16] SVD Hoef, Martensson J, Dimarogonas D, Johansson K. A predictive framework for dynamic heavy-duty vehicle platoon coordination. ACM Transactions on Cyber-Physical Systems, 2019, 3(1): 1−25 [17] 罗捷, 鲁良叶, 何德峰, 等. 通信拓扑切换下车辆队列分布式模型预测控制. 控制理论与应用, 2021, 38(7): 887−896Luo Jie, Lu Liang-Ye, He De-Feng, Yu Li, Du Hai-Pin. Distributed model predictive control of vehicle platoons with switching communication topologies. Control Theory and Applications, 2021, 38(7): 887−896 [18] 刘赢, 徐利伟, 采国顺, 等. 通信拓扑结构随机切换及干扰下的多车队列事件驱动控制. 机械工程学报, 2024, 60(22): 276−290Liu Ying, Xu Li-Wei, Cai Guo-Shun, Lu Yan-Bo, Yin Guo-Dong, Wang Jian-Qiang. Robust event-triggered control of vehicle platoon under stochastic communication links and disturbances. Journal of Mechanical Engineering, 2024, 60(22): 276−290 [19] 何德峰, 罗捷, 李永福. 通信拓扑切换下车辆队列分布式多目标预测控制. 中国科学: 信息科学, 2024, 54(9): 2263−2279 doi: 10.1360/SSI-2024-0027He Deng-Feng, Luo Jie, Li Yong-Fu. Distributed multi-objective predictive control of vehicle platoons with switching communication topologies (in Chinese). Sci Sin Inform, 2024, 54(9): 2263−2279 doi: 10.1360/SSI-2024-0027 [20] Zheng Y, Li S, Li K, Borrelli F, Hedrick J K. Distributed model predictive control for heterogeneous vehicle platoons under unidirectional topologies. IEEE Transactions on Control Systems Technology, 2016, 24(6): 2038−2051 [21] Chen L, Zhan J, Zhang L. Distributed model predictive control of vehicle platoons under switching communication topologies. IMA Journal of Mathematical Control and Information, 2023, 40(2): 1−20 [22] Qiang Z, Dai L, Chen B, Xia Y. Distributed model predictive control for heterogeneous vehicle platoon with inter-vehicular spacing constraints. IEEE Transactions on Intelligent Transportation Systems, 2023, 24(3): 3339−3351 doi: 10.1109/TITS.2022.3227465 [23] Chen J, Zhang H, Yin G. Distributed dynamic event-triggered secure model predictive control of vehicle platoon against DoS attacks. IEEE Transactions on Vehicular Technology, 2023, 72(12): 2863−2877 [24] Zeng H, Ye Z, Zhang D, Lu Q. Robust distributed model predictive control of connected vehicle platoon against DoS attacks. Intelligence & Robotics, 2023, 3(3): 288−305 [25] 宋秀兰, 李洋阳, 何德峰. 外部干扰和随机DoS攻击下的网联车安全H∞队列控制. 自动化学报, 2024, 50(2): 348−355Song Xiu-Lan, Li Yang-Yang, He De-Feng. Secure H. platooning control for connected vehicles subjectto external disturbance and random DoS attacks. Acta Automatica Sinica, 2024, 50(2): 348−355 [26] Guo G, Yang D, Zhang R. Distributed trajectory optimization and platooning of vehicles to guarantee smooth traffic flow. IEEE Transactions on Intelligent Vehicles, 2023, 8(1): 684−695 doi: 10.1109/TIV.2022.3179293 [27] Guo G, Zhao Z, Zhang R. Distributed trajectory optimization and fixed-time tracking control of a group of connected vehicles. IEEE Transactions on Vehicular Technology, 2023, 72(2): 1478−1487 doi: 10.1109/TVT.2022.3212023 [28] Guo G, Wang Q. Fuel-efficient en route speed planning and tracking control of truck platoons. IEEE Transactions on Intelligent Transportation Systems, 2019, 20(8): 3091−3103 doi: 10.1109/TITS.2018.2872607 [29] Guo G, Li D. PMP-based set-point optimization and sliding-mode control of vehicular platoons. IEEE Transactions on Computational Social Systems, 2018, 5(2): 553−562 doi: 10.1109/TCSS.2018.2829626 [30] Dunbar W, Caveney D. Distributed receding horizon control of vehicle platoons: Stability and string stability. IEEE Transactions on Automatic Control, 2011, 56(5): 1168−1181 [31] Ploeg J, Shukla D, WOUW N, Nijmeijer H. Controller synthesis for string stability of vehicle platoons. IEEE Transactions on Intelligent Transportation Systems, 2013, 15(2): 854−865 [32] 于树友, 冯阳阳, 曲婷, 等. 车辆队列协同控制综述. 控制与决策, 2024, 39(12): 3889−3909Yu Shu-You, Feng Yang-Yang, Qu Ting, Li Yong-Fu, Shi Shu-Ming, Yu Jian-Hua, Chen Hong. A survey of cooperative control of vehicle platoons. Control and Decision, 2024, 39(12): 3889−3909 [33] Keviczky T, Borrelli F, and Balas G. Decentralized receding horizoncontrol for large scale dynamically decoupled systems. Automatica, 2006, 42(12): 2105−2115 doi: 10.1016/j.automatica.2006.07.008 -
计量
- 文章访问数: 24
- HTML全文浏览量: 8
- 被引次数: 0