2.845

2023影响因子

(CJCR)

  • 中文核心
  • EI
  • 中国科技核心
  • Scopus
  • CSCD
  • 英国科学文摘

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

单向通信下多队列车辆轨迹同步的DMPC控制器设计

王正武 文强 吴锯强

王正武, 文强, 吴锯强. 单向通信下多队列车辆轨迹同步的DMPC控制器设计. 自动化学报, 2025, 51(8): 1000−1020 doi: 10.16383/j.aas.c240760
引用本文: 王正武, 文强, 吴锯强. 单向通信下多队列车辆轨迹同步的DMPC控制器设计. 自动化学报, 2025, 51(8): 1000−1020 doi: 10.16383/j.aas.c240760
Wang Zheng-Wu, Wen Qiang, Wu Ju-Qiang. Optimized design of dmpc for trajectory synchronization in multi-platoon systems under unidirectional communication. Acta Automatica Sinica, 2025, 51(8): 1000−1020 doi: 10.16383/j.aas.c240760
Citation: Wang Zheng-Wu, Wen Qiang, Wu Ju-Qiang. Optimized design of dmpc for trajectory synchronization in multi-platoon systems under unidirectional communication. Acta Automatica Sinica, 2025, 51(8): 1000−1020 doi: 10.16383/j.aas.c240760

单向通信下多队列车辆轨迹同步的DMPC控制器设计

doi: 10.16383/j.aas.c240760 cstr: 32138.14.j.aas.c240760
基金项目: 国家自然科学基金(52372296), 长沙市科技重大专项项目基金(kh2301004), 湖南省自然科学基金(2023JJ30039), 湖南省研究生科研创新项目基金(CX20230856)资助
详细信息
    作者简介:

    王正武:长沙理工大学交通学院教授. 主要研究方向为智能交通系统. E-mail: zhengwu.wang@csust.edu.cn

    文强:长沙理工大学交通学院博士. 主要研究方向为网联车辆队列控制与智能交通系统. 本文通信作者. E-mail: wenqing@stu.csust.edu.cn

    吴锯强:长沙理工大学交通学院博士研究生. 2024年获得长沙理工大学交通运输硕士学位. 主要研究方向为网联车辆队列控制与智能交通系统. E-mail: 24001030026@stu.csust.edu.cn

Optimized Design of DMPC for Trajectory Synchronization in Multi-Platoon Systems under Unidirectional Communication

Funds: Supported by National Natural Science Foundation of China (52372296), Changsha Science and Technology Major Special Project (kh2301004), Natural Science Foundation project of Hunan Province (2023JJ30039) and Postgraduate Scientific Research Innovation Project of Hunan Province (CX20230856)
More Information
    Author Bio:

    WANG Zheng-Wu Professor at Changsha University of Science and Technology. His research interest covers intelligent transportation systems

    WEN Qiang Ph.D. candidate at the School of Transportation, Changsha University of Science and Technology. His research interest covers connected vehicle platoon control and intelligent transportation systems. Corresponding author of this paper

    WU Ju-Qiang PH.D. candidate at School of Transportation, Changsha University of Science and Technolegy. He recevied both his bamaster degree from Changsha University of Science and Technolegy in 2024. His research interest covers connected vehicle platoon control and intelligent transportation systems

  • 摘要: 针对多队列系统中的车辆编队协同控制问题, 研究了在单向通信下实现高效队列协同的方法. 首先, 建立了多队列系统的车辆动力学模型, 设计了以各队列领航车为根节点的全局通信拓扑, 以支持信息在队列内和队列间的传递. 基于此拓扑结构, 提出了一种包含队列内和队列间耦合约束的分布式模型预测控制方法, 分别针对队列内跟随车辆和队列间领航车辆制定了不同的局部优化问题, 以实现车辆和队列的并行优化. 其次, 通过Lyapunov稳定性分析, 证明了所提控制方法在单向通信拓扑下的渐近稳定性, 并推导了保证系统弦稳定性的参数设计条件. 数值仿真对比分析了三种队列间通信拓扑结构(领航车-尾车跟踪、领航车-领航车跟踪、领航车与领航车-尾车结合策略)的控制效果, 结果表明领航车与领航车-尾车结合策略在响应速度和系统稳定性之间取得了最佳平衡. 此外, 研究还验证了所提方法对不同惯性滞后参数和异质车辆特性的适应能力, 为多队列车辆系统的协同控制提供了理论基础和实用方法, 对智能交通系统的实际应用具有重要参考价值.
  • 图  1  多队列系统场景

    Fig.  1  Multi-platoon system scenario

    图  2  队列通信拓扑结构图

    Fig.  2  Platoon communication topology diagram

    图  3  领航车-尾车通信下队列状态变化

    Fig.  3  Changes in the platoon status under the lead - tail vehicle communication

    图  4  领航车-领航车通信下队列状态变化

    Fig.  4  Changes in the platoon status under the lead - lead vehicle communication

    图  5  领航车-尾车-领航车通信下队列状态变化

    Fig.  5  Changes in the platoon status under the lead - tail - lead vehicle communication

    图  6  不同控制策略在有初始状态误差条件下的动态响应

    Fig.  6  Dynamic response of different control strategies with initial state error conditions

    图  7  不同惯性滞后对系统动态响应特性的影响

    Fig.  7  The impact of different inertia delays on the dynamic response characteristics of the system

    图  8  车辆参数异质条件下控制算法的动态响应对比

    Fig.  8  Comparative analysis of control algorithms' dynamic response under heterogeneous vehicle parameters

    表  1  DMPC控制器权重矩阵值

    Table  1  An example table in two column

    $ \mathit{Q} $ $ \mathit{R} $ $ \mathit{F} $ $ \mathit{G} $
    跟随车$ i $ (0/5)$ {{I}_{2}} $ $ {{I}_{2}} $ $ 10{{I}_{2}} $ $ 8{{I}_{2}} $
    领航车$ k $ $ 10{{I}_{2}} $ $ {{I}_{2}} $ $ 10{{I}_{2}} $ (0/1)$ 10{{I}_{2}} $
    下载: 导出CSV
  • [1] Jia D, Lu K, Wang J. A disturbance-adaptive design for VANET-enabled vehicle platoon. IEEE Transactions on Vehicular Technology, 2014, 63(2): 527−539 doi: 10.1109/TVT.2013.2280721
    [2] Firooznia A, Ploeg J, van de Wouw N, Zwart H. Co-design of controller and communication topology for vehicular platooning. IEEE Transactions on Intelligent Transportation Systems, 2017, 18(10): 2728−2739 doi: 10.1109/TITS.2017.2660544
    [3] Shen Z, Liu Y, Li Z, Nabin M H. Cooperative spacing sampled control of vehicle platoon considering undirected topology and analog fading networks. IEEE Transactions on Intelligent Transportation Systems, 2022, 23(7): 10412−10423
    [4] Zhang Y, Xu Z, Wang Z, Yao X, Xu Z. Impacts of communication delay on vehicle platoon string stability and its compensation strategy: A review. Journal of Traffic and Transportation Engineering (English Edition), 2023, 10(1): 1−17 doi: 10.1016/j.jtte.2021.05.006
    [5] Fernandes P, Nunes U. Platooning with IVC-enabled autonomous vehicles: Strategies to mitigate communication delays, improve safety and traffic flow. IEEE Transactions on Intelligent Transportation Systems, 2012, 13(1): 91−106 doi: 10.1109/TITS.2011.2179936
    [6] Li Y, Tang C, Li K, He X, Peeta S, Wang Y. Consensus-based cooperative control for multi-platoon under the connected vehicles environment. IEEE Transactions on Intelligent Transportation Systems, 2018, 20(6): 2220−2230
    [7] Wang P, Deng H, Zhang J, Wang L, Zhang M, Li Y. Model predictive control for connected vehicle platoon under switching communication topology. IEEE Transactions on Intelligent Transportation Systems, 2022, 23(7): 10424−10435
    [8] Wu Q, Zhang H, Li K. A swarming approach to optimize the one-hop delay in smart driving inter-platoon communications. Sensors, 2018, 18(10): 3307 doi: 10.3390/s18103307
    [9] Li Y, Tang C, Peeta S, Wang Y. Nonlinear consensus-based connected vehicle platoon control incorporating car-following interactions and heterogeneous time delays. IEEE Transactions on Intelligent Transportation Systems, 2019, 20(6): 2209−2219 doi: 10.1109/TITS.2018.2865546
    [10] 李永福, 何昌鹏, 朱浩, 郑太雄. 通信延时环境下异质网联车辆队列非线性纵向控制. 自动化学报, 2021, 47(12): 2841−2856

    Li Yong-Fu, He Chang-Peng, Zhu Hao, Zheng Tai-Xiong. Nonlinear longitudinal control for heterogeneous connected vehicle platoon in the presence of communication delays. Acta Automatica Sinica, 2021, 47(12): 2841−2856
    [11] 李永福, 邬昌强, 朱浩, 唐晓铭. 考虑车辆跟驰作用和通信时延的网联车辆队列轨迹跟踪控制. 自动化学报, 2021, 47(9): 2264−2275

    Li Yong-Fu, Wu Chang-Qiang, Zhu Hao, Tang Xiao-Ming. Trajectory tracking control for connectedvehicle platoon considering car-following interactions and time delavs. Acta Automatica Sinica, 2021, 47(9): 2264−2275
    [12] Lin X, Wang F, Zhou C, Liu W. Dynamic event-triggered consensus control for leader-following multi-agent systems with communication delay. IEEE Transactions on Circuits and Systems Ⅱ: Express Briefs, 2023, 70(1): 1−5 doi: 10.1109/TCSII.2022.3227488
    [13] Wang J, Luo X, Yan J, Guan X. Distributed integrated sliding mode control for vehicle platoons based on disturbance observer and multi-power reaching law. IEEE Transactions on Intelligent Transportation Systems, 2022, 23(7): 10436−10447
    [14] 朱永薪, 李永福, 朱浩, 于树友. 通信延时环境下基于观测器的智能网联车辆队列分层协同纵向控制. 自动化学报, 2023, 49(8): 1785−1798

    Zhu Yong-Xin, Li Yong-Fu, Zhu Hao, Yu Shu-You. Observer-based longitudinal control for connected and automated vehicles platoon subject to communication delay. Acta Automatica Sinica, 2023, 49(8): 1785−1798
    [15] Hu M, Wang X, Bian Y, Cao D, Wang H. Disturbance observer-based cooperative control of vehicle platoons subject to mismatched disturbance. IEEE Transactions on Intelligent Vehicles, 2023, 8(1): 1−12 doi: 10.1109/TIV.2023.3235545
    [16] SVD Hoef, Martensson J, Dimarogonas D, Johansson K. A predictive framework for dynamic heavy-duty vehicle platoon coordination. ACM Transactions on Cyber-Physical Systems, 2019, 3(1): 1−25
    [17] 罗捷, 鲁良叶, 何德峰, 等. 通信拓扑切换下车辆队列分布式模型预测控制. 控制理论与应用, 2021, 38(7): 887−896

    Luo Jie, Lu Liang-Ye, He De-Feng, Yu Li, Du Hai-Pin. Distributed model predictive control of vehicle platoons with switching communication topologies. Control Theory and Applications, 2021, 38(7): 887−896
    [18] 刘赢, 徐利伟, 采国顺, 等. 通信拓扑结构随机切换及干扰下的多车队列事件驱动控制. 机械工程学报, 2024, 60(22): 276−290

    Liu Ying, Xu Li-Wei, Cai Guo-Shun, Lu Yan-Bo, Yin Guo-Dong, Wang Jian-Qiang. Robust event-triggered control of vehicle platoon under stochastic communication links and disturbances. Journal of Mechanical Engineering, 2024, 60(22): 276−290
    [19] 何德峰, 罗捷, 李永福. 通信拓扑切换下车辆队列分布式多目标预测控制. 中国科学: 信息科学, 2024, 54(9): 2263−2279 doi: 10.1360/SSI-2024-0027

    He Deng-Feng, Luo Jie, Li Yong-Fu. Distributed multi-objective predictive control of vehicle platoons with switching communication topologies (in Chinese). Sci Sin Inform, 2024, 54(9): 2263−2279 doi: 10.1360/SSI-2024-0027
    [20] Zheng Y, Li S, Li K, Borrelli F, Hedrick J K. Distributed model predictive control for heterogeneous vehicle platoons under unidirectional topologies. IEEE Transactions on Control Systems Technology, 2016, 24(6): 2038−2051
    [21] Chen L, Zhan J, Zhang L. Distributed model predictive control of vehicle platoons under switching communication topologies. IMA Journal of Mathematical Control and Information, 2023, 40(2): 1−20
    [22] Qiang Z, Dai L, Chen B, Xia Y. Distributed model predictive control for heterogeneous vehicle platoon with inter-vehicular spacing constraints. IEEE Transactions on Intelligent Transportation Systems, 2023, 24(3): 3339−3351 doi: 10.1109/TITS.2022.3227465
    [23] Chen J, Zhang H, Yin G. Distributed dynamic event-triggered secure model predictive control of vehicle platoon against DoS attacks. IEEE Transactions on Vehicular Technology, 2023, 72(12): 2863−2877
    [24] Zeng H, Ye Z, Zhang D, Lu Q. Robust distributed model predictive control of connected vehicle platoon against DoS attacks. Intelligence & Robotics, 2023, 3(3): 288−305
    [25] 宋秀兰, 李洋阳, 何德峰. 外部干扰和随机DoS攻击下的网联车安全H∞队列控制. 自动化学报, 2024, 50(2): 348−355

    Song Xiu-Lan, Li Yang-Yang, He De-Feng. Secure H. platooning control for connected vehicles subjectto external disturbance and random DoS attacks. Acta Automatica Sinica, 2024, 50(2): 348−355
    [26] Guo G, Yang D, Zhang R. Distributed trajectory optimization and platooning of vehicles to guarantee smooth traffic flow. IEEE Transactions on Intelligent Vehicles, 2023, 8(1): 684−695 doi: 10.1109/TIV.2022.3179293
    [27] Guo G, Zhao Z, Zhang R. Distributed trajectory optimization and fixed-time tracking control of a group of connected vehicles. IEEE Transactions on Vehicular Technology, 2023, 72(2): 1478−1487 doi: 10.1109/TVT.2022.3212023
    [28] Guo G, Wang Q. Fuel-efficient en route speed planning and tracking control of truck platoons. IEEE Transactions on Intelligent Transportation Systems, 2019, 20(8): 3091−3103 doi: 10.1109/TITS.2018.2872607
    [29] Guo G, Li D. PMP-based set-point optimization and sliding-mode control of vehicular platoons. IEEE Transactions on Computational Social Systems, 2018, 5(2): 553−562 doi: 10.1109/TCSS.2018.2829626
    [30] Dunbar W, Caveney D. Distributed receding horizon control of vehicle platoons: Stability and string stability. IEEE Transactions on Automatic Control, 2011, 56(5): 1168−1181
    [31] Ploeg J, Shukla D, WOUW N, Nijmeijer H. Controller synthesis for string stability of vehicle platoons. IEEE Transactions on Intelligent Transportation Systems, 2013, 15(2): 854−865
    [32] 于树友, 冯阳阳, 曲婷, 等. 车辆队列协同控制综述. 控制与决策, 2024, 39(12): 3889−3909

    Yu Shu-You, Feng Yang-Yang, Qu Ting, Li Yong-Fu, Shi Shu-Ming, Yu Jian-Hua, Chen Hong. A survey of cooperative control of vehicle platoons. Control and Decision, 2024, 39(12): 3889−3909
    [33] Keviczky T, Borrelli F, and Balas G. Decentralized receding horizoncontrol for large scale dynamically decoupled systems. Automatica, 2006, 42(12): 2105−2115 doi: 10.1016/j.automatica.2006.07.008
  • 加载中
计量
  • 文章访问数:  24
  • HTML全文浏览量:  8
  • 被引次数: 0
出版历程
  • 收稿日期:  2024-11-27
  • 录用日期:  2025-05-29
  • 网络出版日期:  2025-07-14

目录

    /

    返回文章
    返回