2.845

2023影响因子

(CJCR)

  • 中文核心
  • EI
  • 中国科技核心
  • Scopus
  • CSCD
  • 英国科学文摘

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

重大装备集群机器人协同制造数字孪生技术综述

冯运 童翊轩 王耀南 唐永鹏 吴昊天 谭浩然 江一鸣 朴玄斌

冯运, 童翊轩, 王耀南, 唐永鹏, 吴昊天, 谭浩然, 江一鸣, 朴玄斌. 重大装备集群机器人协同制造数字孪生技术综述. 自动化学报, xxxx, xx(x): x−xx doi: 10.16383/j.aas.c240707
引用本文: 冯运, 童翊轩, 王耀南, 唐永鹏, 吴昊天, 谭浩然, 江一鸣, 朴玄斌. 重大装备集群机器人协同制造数字孪生技术综述. 自动化学报, xxxx, xx(x): x−xx doi: 10.16383/j.aas.c240707
Feng Yun, Tong Yi-Xuan, Wang Yao-Nan, Tang Yong-Peng, Wu Hao-Tian, Tan Hao-Ran, Jiang Yi-Ming, Piao Xuan-Bin. Digital twin technology for collaborative manufacturing of major equipment by cluster robots: a review. Acta Automatica Sinica, xxxx, xx(x): x−xx doi: 10.16383/j.aas.c240707
Citation: Feng Yun, Tong Yi-Xuan, Wang Yao-Nan, Tang Yong-Peng, Wu Hao-Tian, Tan Hao-Ran, Jiang Yi-Ming, Piao Xuan-Bin. Digital twin technology for collaborative manufacturing of major equipment by cluster robots: a review. Acta Automatica Sinica, xxxx, xx(x): x−xx doi: 10.16383/j.aas.c240707

重大装备集群机器人协同制造数字孪生技术综述

doi: 10.16383/j.aas.c240707 cstr: 32138.14.j.aas.c240707
基金项目: 国家自然科学基金(62293510/62293515, 62203161, 62473143), 国家重点研发计划(2023YFB4706400), 湘江实验室开放基金(23XJ03012), 湖南省自然科学基金(2024JJ5087), 广东省自然科学基金(2025A1515011482), 江西省自然科学基金(20232BAB212024), 虚拟现实技术与系统全国重点实验室(北京航空航天大学)开放课题基金(VRLAB2025B04)
详细信息
    作者简介:

    冯运:湖南大学电气与信息工程学院副教授, 机器人视觉感知与控制技术国家工程研究中心研究员. 主要研究方向为机器人数字孪生, 系统建模与运维技术. E-mail: fyrobot@hnu.edu.cn

    童翊轩:湖南大学电气与信息工程学院博士研究生. 2024年获得江南大学学士学位. 主要研究方向为机器人数字孪生, 系统建模和控制理论. E-mail: b2409z0455@hnu.edu.cn

    王耀南:中国工程院院士, 湖南大学电气与信息工程学院教授. 1995年获得湖南大学博士学位. 主要研究方向为机器人学, 智能控制和图像处理. 本文通信作者. E-mail: yaonan@hnu.edu.cn

    唐永鹏:湖南大学电气与信息工程学院博士研究生. 2018年获得湖南大学学士学位. 主要研究方向为机器人测量技术, 数字孪生. E-mail: bylh_ieee@hnu.edu.cn

    吴昊天:长沙理工大学电气与信息工程学院副教授, 湖南大学电气与信息工程学院博士后, 机器人视觉感知与控制技术国家工程研究中心研究员. 主要研究方向为三维测量, 点云配准, 三维重建和数字孪生. E-mail: wuhaotian@csust.edu.cn

    谭浩然:湖南大学电气与信息工程学院副教授, 机器人视觉感知与控制技术国家工程研究中心研究员. 主要研究方向为机器人智能控制与网络化控制系统. E-mail: tanhaoran@hnu.edu.cn

    江一鸣:湖南大学机器人学院副教授, 机器人视觉感知与控制技术国家工程研究中心副研究员. 主要研究方向为多机器人协同控制及应用. E-mail: ymjiang@hnu.edu.cn

    朴玄斌:北京科技大学智能科学与技术学院硕士研究生. 主要研究方向为集群机器人协同作业的数字孪生. E-mail: m202310575@xs.ustb.edu.cn

Digital Twin Technology for Collaborative Manufacturing of Major Equipment by Cluster Robots: A Review

Funds: Supported by National Natural Science Foundation of China (62293510/62293515, 62203161, 62473143), National Key Research and Development Program of China (2023YFB4706400), Open Project of Xiangjiang Laboratory (23XJ03012), Natural Science Foundation of Hunan Province (2024JJ5087), Natural Science Foundation of Guangdong Province (2025A1515011482), Natural Science Foundation of Jiangxi Province (20232BAB212024), Open Project Program of State Key Laboratory of Virtual Reality Technology and Systems, Beihang University (VRLAB2025B04)
More Information
    Author Bio:

    FENG Yun Associate professor at the College of Electrical and Information Engineering, Hunan University, researcher at the National Engineering Research Center of Robot Visual Perception and Control Technology. His main research interest covers robot digital twins, system modeling and operation and maintenance technology

    TONG Yi-Xuan Ph. D. candidate at the College of Electrical and Information Engineering, Hunan University. He received his bachelor degree from Jiangnan University in 2024. His main research interest covers robot digital twins, system modeling and control theory

    WANG Yao-Nan Academician at Chinese Academy of Engineering, professor at the College of Electrical and Information Engineering, Hunan University. He received his Ph. D. degree from Hunan University in 1995. His main research interest covers robotics, intelligent control, and image processing. Corresponding author of this paper

    TANG Yong-Peng Ph.D candidate at the College of Electrical and Information Engineering, Hunan University. He received the bachelor degree from Hunan University in 2018. His main research interest covers robotic measurement technology and digital twins

    WU Hao-Tian Associate professor at the School of Electrical and Information Engineering, Changsha University of Science and Technology, postdoctor at the College of Electrical and Information Engineering, Hunan University, researcher at the National Engineering Research Center of Robot Visual Perception and Control Technology. His main research interest covers 3D measurement, point cloud registration, 3D reconstruction and digital twins

    TAN Hao-Ran Associate professor at the College of Electrical and Information Engineering, Hunan University, researcher at the National Engineering Research Center of Robot Visual Perception and Control Technology. His main research interest covers robot intelligent control and networked control systems

    JIANG Yi-Ming Associate professor at the School of Robotics, Hunan University, associate researcher at the National Engineering Research Center of Robot Visual Perception and Control Technology. His main research interest covers multi-robot cooperative control and their applications

    PIAO Xuan-Bin Master student at the School of Intelligence Science and Technology, University of Science and Technology Beijing. His main research interest is digital twins for cluster robots co-operation

  • 摘要: 航空航天、海洋舰船、轨道交通等领域的重大装备制造在服务于国家重大需求、引领国民经济发展与保障国防安全中占据举足轻重的作用. 传统人工加工一致性差、效率低, 专机加工工作空间受限、柔性不足, 车间加工协同性弱、智能化程度低, 这些都难以满足大型化、多品种的柔性制造需求. 集群机器人协同制造利用生物集群的智能协作机理, 能在大型复杂场景中不断拓展并优化各类作业的执行能力, 克服传统制造模式中的不足, 实现制造过程的高效协同和智能制造. 数字孪生技术作为新兴制造技术, 为集群机器人协同制造系统的构建部署、虚拟调试、智能感知、通信协作、调度规划和协同控制等方面提供技术集成方案和工具链支撑, 能有效提升制造系统的效率, 保障制造过程安全性. 本文详细介绍数字孪生技术的研究背景与意义、国内外研究现状、关键技术及应用和发展趋势, 并以自主研发的一套面向飞机壁板装配的集群机器人数字孪生系统为例进行具体分析. 本文对于了解数字孪生在制造领域的技术方案和工具体系以及数字孪生在重大装备集群机器人协同制造方面的应用研究具有参考价值.
  • 图  1  重大装备对于国民经济和国防安全十分重要

    Fig.  1  Major equipment is important for national economy and national defense security

    图  2  国际研究机构在集群机器人协同制造开展的相关应用研究

    Fig.  2  Applied research related to collaborative manufacturing of cluster robots by international research institutes

    图  3  数字孪生结构由三维到五维模型的完善

    Fig.  3  Refinement of digital twin structures from 3D to 5D models

    图  4  亚马逊机器人公司建造数字孪生仓库

    Fig.  4  Amazon robotics builds digital twin warehouse

    图  5  BMW首家虚拟工厂在Omniverse中启用

    Fig.  5  BMW's first virtual factory in Omniverse

    图  6  海尔与Unity开发基于数字孪生技术的智能柔性产线

    Fig.  6  Haier and Unity develop intelligent flexible production line based on digital twin technology

    图  7  英伟达与西门子公司联合开发多机器人制造数字孪生系统

    Fig.  7  NVIDIA and Siemens co-develop digital twins system for muti-robot manufacturing

    图  8  多智能体数字孪生元模型[38]

    Fig.  8  A metamodel of digital twins for muti-agents[38]

    图  9  数字孪生数据的组成[80]

    Fig.  9  Components of digital twin data[80]

    图  10  集群机器人协同制造数字孪生系统框架

    Fig.  10  A framework of digital twins system for collaborative manufacturing of cluster robots

    图  11  集群机器人协同制造数字孪生系统用户界面

    Fig.  11  User interface of digital twins system for collaborative manufacturing of cluster robots

    图  12  机械臂虚实同步实验测试

    Fig.  12  Mechanical arm virtual-physical synchronization experiment test

    图  13  多机器人协同测量虚实同步实验测试

    Fig.  13  Multi-robot collaborative measurement of virtual-physical synchronization experiment test

  • [1] 谢福贵, 梅斌, 刘辛军, 张加波, 乐毅. 一种大型复杂构件加工新模式及新装备探讨. 机械工程学报, 2020, 56(19): 70−78 doi: 10.3901/JME.2020.19.070

    Xie F G, Mei B, Liu X J, Zhang J B, Yue Y. Novel mode and equipment for machining large complex components. Journal of Mechanical Engineering, 2020, 56(19): 70−78 doi: 10.3901/JME.2020.19.070
    [2] 王耀南, 江一鸣, 姜娇, 张辉, 谭浩然, 彭伟星, 等. 机器人感知与控制关键技术及其智能制造应用. 自动化学报, 2023, 49(3): 494−513

    Wang Y N, Jiang Y M, Jiang J, Zhang H, Tan H R, Peng W X, et al. Key technologies of robot perception and control and its intelligent manufacturing applications. Acta Automatica Sinica, 2023, 49(3): 494−513
    [3] 武文亮, 周兴社, 沈博, 赵月. 集群机器人系统特性评价研究综述. 自动化学报, 2022, 48(5): 1153−1172

    Wu W L, Zhou X S, Shen B, Zhao Y. A review of swarm robotic systems property evaluation research. Acta Automatica Sinica, 2022, 48(5): 1153−1172
    [4] Ren L, Dong J B, Liu S, Zhang L, Wang L H. Embodied intelligence toward future smart manufacturing in the era of AI foundation model IEEE/ASME Transactions on Mechatronics, DOI: 10.1109/TMECH.2024.3456250
    [5] 赵建国, 邓春利, 郭洪杰, 于思阳. 飞机装配协同测量技术应用. 航空制造技术, 2018, 61(13): 59−62

    Zhao J G, Deng C L, Guo H J, Yu S Y. Application on cooperative measure technology for aircraft assembly. Aeronautical Manufacturing Technology, 2018, 61(13): 59−62
    [6] 王耀南. 集群机器人协同制造技术应用与发展趋势. 新经济导刊, 2023(8): 14−17 doi: 10.3969/j.issn.1009-959X.2023.08.003

    Wang Y N. Application and development trend of cluster robot co-manufacturing technology. New Economy Weekly, 2023(8): 14−17 doi: 10.3969/j.issn.1009-959X.2023.08.003
    [7] 王耀南. 工业互联网推动机器人协同智能制造发展. 机器人技术与应用, 2023(5): 8−11 doi: 10.3969/j.issn.1004-6437.2023.05.008

    Wang Y N. Industrial Internet promotes collaborative smart manufacturing with robots. Robot Technique and Application, 2023(5): 8−11 doi: 10.3969/j.issn.1004-6437.2023.05.008
    [8] 周济. 智能制造——“中国制造2025”的主攻方向. 中国机械工程, 2015, 26(17): 2273−2284 doi: 10.3969/j.issn.1004-132X.2015.17.001

    Zhou J. Intelligent manufacturing——Main direction of “Made in China 2025”. China Mechanical Engineering, 2015, 26(17): 2273−2284 doi: 10.3969/j.issn.1004-132X.2015.17.001
    [9] Tao F, Qi Q L. New IT driven service-oriented smart manufacturing: framework and characteristics. IEEE Transactions on Systems, Man, and Cybernetics: Systems, 2017, 49(1): 81−91
    [10] Lv Z H, Xie S X. Artificial intelligence in the digital twins: State of the art, challenges, and future research topics. Digital Twin, 2024, 1(1): 12
    [11] Tao F, Qi Q L. Make more digital twins. Nature, 2019, 573(7775): 490−491 doi: 10.1038/d41586-019-02849-1
    [12] Hananto A L, Tirta A, Herawan S G, et al. Digital twin and 3D digital twin: concepts, applications, and challenges in industry 4.0 for digital twin. Computers, 2024, 13(4): 100 doi: 10.3390/computers13040100
    [13] Grieves M W. Product lifecycle management: the new paradigm for enterprises. International Journal of Product Development, 2005, 2(1-2): 71−84
    [14] Grieves M, Vickers J. Digital twin: Mitigating unpredictable, undesirable emergent behavior in complex systems. Transdisciplinary Perspectives on Complex Systems: New Findings and Approaches, 201785−113
    [15] Glaessgen E H, Stargel D S. The digital twin paradigm for future NASA and US Air Force vehicles. In: Proceeding of the 53rd AIAA/ASME/ASCE/AHS/ASC structures, structural dynamics and materials conference. Hawaii, USA: AIAA, 2012. 1818
    [16] Gartners. Gartners Top 10 Technology Trends 2017 [Online], available: https://www.gartner.com/smarterwithgartner/gartners-top-10-technology-trends-2017, August 4, 2024.
    [17] Gartners. Gartners Top 10 Technology Trends 2018 [Online], available: https://www.gartner.com/smarterwithgartner/gartners-top-10-technology-trends-2018, August 4, 2024.
    [18] Gartners. Gartners Top 10 Technology Trends 2019 [Online], available: https://www.gartner.com/smarterwithgartner/gartners-top-10-technology-trends-2019, August 4, 2024.
    [19] International Data Corporation. From “Egosystems” to Ecosystems: IDC Reveals the Transformative Power of Digital Twins Across All Industries [Online], available: https://www.idc.com/getdoc.jsp?containerId=prEUR252046924, August 4, 2024.
    [20] 李欣, 刘秀, 万欣欣. 数字孪生应用及安全发展综述. 系统仿真学报, 2019, 31(3): 385−392

    Li X, Liu X, Wan X X. Overview of digital twins application and safe development. Journal of System Simulation, 2019, 31(3): 385−392
    [21] 陶飞, 程颖, 程江峰, 张萌, 徐文君, 戚庆林. 数字孪生车间信息物理融合理论与技术. 计算机集成制造系统, 2017, 23(8): 1603−1611

    Tao F, Cheng Y, Cheng J F, Zhang M, Xu W J, Qi Q L. Theories and technologies for cyber-physical fusion in digital twin shop-floor. Computer Integrated Manufacturing Systems, 2017, 23(8): 1603−1611
    [22] 陶飞, 刘蔚然, 张萌, 胡天亮, 戚庆林, 张贺. 数字孪生五维模型及十大领域应用. 计算机集成制造系统, 2019, 25(1): 1−18

    Tao F, Liu W R, Zhang M, Hu T L, Qi Q L, Zhang H, et al. Five-dimension digital twin model and its ten applications. Computer Integrated Manufacturing Systems, 2019, 25(1): 1−18
    [23] Tao F, Qi Q L, Liu A. Inaugural Editorial-Digital Twin. Digital Twin, 2024, 1(1): 1
    [24] GTC March 2024 Keynote With NVIDIA CEO Jensen Huang [Online], available: https://www.youtube.com/watch?v=Y2F8yisiS6E, Mar 3. 2024.
    [25] Ullrich M, Thalappully R, Heieck F, et al. Virtual commissioning of linked cells using digital models in an industrial metaverse. Automation, 2024, 5(1): 1−12 doi: 10.3390/automation5010001
    [26] Novikov S V, Sazonov A A. Application of the open operating system ‘MindSphere’in digital transformation of high-tech enterprises. Economics Journal, 2019, 1(1): 20−26
    [27] Nath S V, Van Schalkwyk P, Isaacs D. Building industrial digital twins: Design, develop, and deploy digital twin solutions for real-world industries using azure digital twins. Birmingham: Packt Publishing Ltd, 2021.
    [28] Wang Z R, Han K, Tiwari P. Digital twin simulation of connected and automated vehicles with the unity game engine. In: Proceedings of the 2021 IEEE 1st International Conference on Digital Twins and Parallel Intelligence (DTPI). Beijing, China: IEEE, 2021. 1-4.
    [29] 吴星星. 海尔对话Unity: 作为数字转型的高阶形态, 数字孪生发展前景不可逆 [Online]. available: https://developer.unity.cn/projects/5fc8a9e0edbc2a4ff2bafe89, August 4, 2024.
    [30] Mhenni F, Vitolo F, Rega A, Plateaux R, Hehenberger P, Patalano S, et al. Heterogeneous models integration for safety critical mechatronic systems and related digital twin definition: Application to a collaborative workplace for aircraft assembly. Applied Sciences, 2022, 12(6): 2787 doi: 10.3390/app12062787
    [31] Warwick G. GE advances analytical maintenance with digital twins. Aviation week & space technology, 2015, 10.
    [32] Todorovic M H, Datta R, Stevanovic L, She X, Cioffi P, Mandrusiak G. Design and testing of a modular SiC based power block, In: Proceedings of PCIM Europe 2016; International Exhibition and Conference for Power Electronics, Intelligent Motion, Renewable Energy and Energy Management. Nuremberg, Germany: VDE, 2016. 1−4.
    [33] Wu Q C, Mao Y S, Chen J X, Wang C. Application research of digital twin-driven ship intelligent manufacturing system: Pipe machining production line. Journal of Marine Science and Engineering, 2021, 9(3): 338 doi: 10.3390/jmse9030338
    [34] Zhang C, Zhou G H, He J, Li Z, Cheng W. A data-and knowledge-driven framework for digital twin manufacturing cell. Procedia CIRP, 2019, 83: 345−350 doi: 10.1016/j.procir.2019.04.084
    [35] Leng J W, Zhang H, Yan D X, Liu Q, Chen X, Zhang D. Digital twin-driven manufacturing cyber-physical system for parallel controlling of smart workshop. Journal of Ambient Intelligence and Humanized Computing, DOI: https://doi.org/10.1007/s12652-018-0881-5
    [36] EurAsian Times Desk. Dassault (Rafale) Group’s ‘Digital Twin Technology’ To Be Used To Develop Turkey Fifth-Gen TF-X Fighter Jet [Online]. available: https://www.eurasiantimes.com/dassault-rafale-groups-digital-twin-technology-to-be-used-to-develop-turkey-fifth-gen-tf-x-fighter-jet, August 4, 2024.
    [37] Kinard D A. F-35 Production–advanced manufacturing and the digital thread. In: Proceedings of 2018 Aviation Technology, Integration, and Operations Conference. Atlanta, Georgia: AIAA, 2018. 3369
    [38] Marah H, Challenger M. Madtwin: a framework for multi-agent digital twin development: smart warehouse case study. Annals of Mathematics and Artificial Intelligence, DOI: https://doi.org/10.1007/s10472-023-09872-z
    [39] Wang L K, Wang Z, Gumma K, Turner A, Ratchev S. Multi-agent cooperative swarm learning for dynamic layout optimisation of reconfigurable robotic assembly cells based on digital twin. Journal of Intelligent Manufacturing, DOI: https://doi.org/10.1007/s10845-023-02229-7
    [40] Nguyen H, Hussein A, Garratt M A, Abbass H A. Swarm metaverse for multi-level autonomy using digital twins. Sensors, 2023, 23(10): 4892 doi: 10.3390/s23104892
    [41] Gutiérrez Cejudo J, Enguix Andrés F, Lujak M, Carrascosa Casamayor C, Fernandez A, Hernández López L. Towards agrirobot digital twins: Agri-RO5—a multi-agent architecture for dynamic fleet simulation. Electronics, 2023, 13(1): 80 doi: 10.3390/electronics13010080
    [42] Lei L, Shen G Q, Zhang L J, Li Z L. Toward intelligent cooperation of UAV swarms: When machine learning meets digital twin. IEEE Network, 2020, 35(1): 386−392
    [43] Gao Y P, Chang D F, Chen C H, Sha M. A digital twin-based decision support approach for AGV scheduling. Engineering Applications of Artificial Intelligence, 2024, 130: 107687 doi: 10.1016/j.engappai.2023.107687
    [44] Xu W J, Yang H, Ji Z R, Ba M Y. Cognitive digital twin-enabled multi-robot collaborative manufacturing: Framework and approaches. Computers & Industrial Engineering, 2024, 194: 110418
    [45] Oo K H, Koomsap P, Ayutthaya D H N. Digital twin-enabled multi-robot system for collaborative assembly of unorganized parts. Journal of Industrial Information Integration, 2024, 44: 100764
    [46] 陶飞, 刘蔚然, 刘检华, 刘晓军, 刘强, 屈挺, 等. 数字孪生及其应用探索用. 计算机集成制造系统, 2018, 24(1): 1−18

    Tao F, Liu W R, Liu J H, Liu X J, Liu Q, Qu T, et al. Digital twin and its potential application exploration. Computer Integrated Manufacturing Systems, 2018, 24(1): 1−18
    [47] Tao F, Xiao B, Qi Q L, Cheng J F, Ji P. Digital twin modeling. Journal of Manufacturing Systems, 2022, 64: 372−389 doi: 10.1016/j.jmsy.2022.06.015
    [48] Echeverria G, Lassabe N, Degroote A, Lemaignan S. Modular open robots simulation engine: Morse. In: Proceedings of the 2011 IEEE International Conference on Robotics and Automation. Shanghai, China: IEEE, 2011. 46-51
    [49] Li X, Huang Z F, Li H T. Geometric and kinematics modeling of tele-operated virtual construction robot. J. Softw., 2013, 8(10): 2517−2521
    [50] Li Z, Xiang H Y, Li Z Q, Han B A, Huang J J. The research of reverse engineering based on geomagic studio. Applied Mechanics and Materials, 2013, 365: 133−136
    [51] Changming Z, Hui Z. Points cloud data processing based on IMAGEWARE & mold design and rapid prototyping manufacturing. In: Proceedings of the 2010 2nd International Conference on Computer Engineering and Technology. Chengdu, China: IEEE, 2010. V3-477-V3-479
    [52] Channa G S. Reverse Engineering to Create High Quality Polymer Parts Using Additive Manufacturing. Arlington: The University of Texas at Arlington, 2021.
    [53] Li Z S, Müller T, Evans A, Taylor R H, Unberath M, Liu M Y, et al. Neuralangelo: High-fidelity neural surface reconstruction. In: Proceedings of the 2023 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR). Vancouver, BC, Canada: IEEE, 2023. 8456-8465
    [54] Cox M G. The numerical evaluation of B-splines. IMA Journal of Applied mathematics, 1972, 10(2): 134−149 doi: 10.1093/imamat/10.2.134
    [55] Bazilevs Y, Calo V M, Cottrell J A, John A, Evans J A, Hughes T J R, et al. Isogeometric analysis using T-splines. Computer methods in applied mechanics and engineering, 2010, 199(5-8): 229−263 doi: 10.1016/j.cma.2009.02.036
    [56] Li M L, Nan L L. Feature-preserving 3D mesh simplification for urban buildings. ISPRS Journal of Photogrammetry and Remote Sensing, 2021, 173: 135−150 doi: 10.1016/j.isprsjprs.2021.01.006
    [57] 杜莹莹, 罗映, 彭义兵, 刘璇, 吴竟宁. 基于数字孪生的工业机器人三维可视化监控. 计算机集成制造系统, 2023, 29(6): 2130−2138

    Du Y Y, Luo Y, Peng Y B, Liu X, Wu J N. 3D visual monitoring system of industrial robot based on digital twin. Computer Integrated Manufacturing System, 2023, 29(6): 2130−2138
    [58] Szabó B, Babuška I. Finite element analysis: Method, verification and validation. Hoboken: John Wiley & Sons, 2021.
    [59] Liao C Y, Wang Y R, Ding X D, Ren Y, Duan X M, He J P. Performance comparison of typical physics engines using robot models with multiple joints. IEEE Robotics and Automation Letters, 2023, 8(11): 7520−7526 doi: 10.1109/LRA.2023.3320019
    [60] Erez T, Tassa Y, Todorov E. Simulation tools for model-based robotics: Comparison of bullet, havok, mujoco, ode and physx. In: Proceedings of the 2015 IEEE International Conference on Robotics and Automation (ICRA). Seattle, WA, USA: IEEE, 2015. 4397−4404.
    [61] Wei Y L, Hu T L, Zhou T T, Ye Y X, Luo W C. Consistency retention method for CNC machine tool digital twin model. Journal of Manufacturing Systems, 2021, 58: 313−322 doi: 10.1016/j.jmsy.2020.06.002
    [62] Zhi J N, Cao Y L, Li T K, Nabil A, Liu F, Jiang X Q, et al. A digital twin-based analysis method to assess geometric variations for parts in batch production. Digital Twin, 2023, 3: 7 doi: 10.12688/digitaltwin.17863.2
    [63] Boulfani F, Gendre X, Ruiz-Gazen A, Salvignol M. Anomaly detection for aircraft electrical generator using machine learning in a functional data framework. In: Proceedings of 2020 Global Congress on Electrical Engineering (GC-ElecEng). Valencia, Spain: IEEE, 2020. 27−32
    [64] Luo W C, Hu T L, Ye Y X, Zhang C R, Wei Y L. A hybrid predictive maintenance approach for CNC machine tool driven by digital twin. Robotics and Computer-Integrated Manufacturing, 2020, 65: 101974 doi: 10.1016/j.rcim.2020.101974
    [65] Abele E, Weigold M, Rothenbücher S. Modeling and identification of an industrial robot for machining applications. CIRP Annals, 2007, 56(1): 387−390 doi: 10.1016/j.cirp.2007.05.090
    [66] Hayat A A, Chittawadigi R G, Udai A D, et al. Identification of denavit-hartenberg parameters of an industrial robot. In: Proceedings of Conference on Advances in Robotics. Pune India: ACM, 2013. 1−6.
    [67] 唐苏妍, 朱一凡, 李群, 雷永林. 多Agent系统任务分配方法综述. 系统工程与电子技术, 2010, 32(10): 2155−2161 doi: 10.3969/j.issn.1001-506X.2010.10.30

    Tang S Y, Zhu Y F, Li Q, Lei Y L. Survey of task allocation in multi agent systems. Systems Engineering and Electronics, 2010, 32(10): 2155−2161 doi: 10.3969/j.issn.1001-506X.2010.10.30
    [68] 原魁, 李园, 房立新. 多移动机器人系统研究发展近况. 自动化学报, 2007, 33(8): 785−794

    Yuan K, Li Y, Fang L X. Multiple mobile robot systems: A survey of recent work. Acta Automatica Sinica, 2007, 33(8): 785−794
    [69] Hong Q, Sun Y F, Liu T Y, Fu L, Xie Y F. TAD-Net: An approach for real-time action detection based on temporal convolution network and graph convolution network in digital twin shop-floor. Digital Twin, 2024, 1(2): 10
    [70] Liu T Y, Xia M M, Hong Q, Sun Y F, Zhang P, Fu L, et al. Modeling of cross-scale human activity for digital twin workshop. Digital Twin, 2024, 1(2): 11
    [71] Pronost G, Mayer F, Camargo M, Dupont L. Digital twins along the product lifecycle: A systematic literature review of applications in manufacturing. Digital Twin, 2024, 1(2): 3
    [72] Ritto T G, Rochinha F A. Digital twin, physics-based model, and machine learning applied to damage detection in structures. Mechanical Systems and Signal Processing, 2021, 155: 107614 doi: 10.1016/j.ymssp.2021.107614
    [73] Wagg D J, Worden K, Barthorpe R J, Gardner P. Digital twins: state-of-the-art and future directions for modeling and simulation in engineering dynamics applications. ASCE-ASME Journal of Risk and Uncertainty in Engineering Systems, Part B: Mechanical Engineering, 2020, 6(3): 030901 doi: 10.1115/1.4046739
    [74] Li X M, Liu H, Wang W X, Zheng Y, Lv H B, Lv Z H. Big data analysis of the internet of things in the digital twins of smart city based on deep learning. Future Generation Computer Systems, 2022, 128: 167−177 doi: 10.1016/j.future.2021.10.006
    [75] Lv Z H, Li Y X, Feng H L, Lv H B. Deep learning for security in digital twins of cooperative intelligent transportation systems. IEEE Transactions on Intelligent Transportation Systems, 2021, 23(9): 16666−16675
    [76] Lermer M, Reich C. Creation of digital twins by combining fuzzy rules with artificial neural networks. In: Proceedings of IECON 2019-45th Annual Conference of the IEEE Industrial Electronics Society. Lisbon, Portugal: IEEE, 2019. 5849−5854.
    [77] Scheffel, Roberto M, Antônio A F, Marco S. Automated fault detection for additive manufacturing using vibration sensors. International Journal of Computer Integrated Manufacturing, 2021, 34(5): 500−514 doi: 10.1080/0951192X.2021.1901316
    [78] Tao F, Zhang M, Liu Y S, Nee A Y C. Digital twin driven prognostics and health management for complex equipment. CIRP Annals, 2018, 67(1): 169−172 doi: 10.1016/j.cirp.2018.04.055
    [79] Booyse W, Wilke D N, Heyns S. Deep digital twins for detection, diagnostics and prognostics. Mechanical Systems and Signal Processing, 2020, 140: 106612 doi: 10.1016/j.ymssp.2019.106612
    [80] Zhang M, Tao F, Huang B Q, Liu A, Wang L H, Anwer N, et al. Digital twin data: methods and key technologies. Digital Twin, 2024, 1(1): 2
    [81] Codd E F. A relational model of data for large shared data banks. Communications of the ACM, 1970, 13(6): 377−387 doi: 10.1145/362384.362685
    [82] Kashyap N K, Pandey B K, Mandoria H L, Kumar A. A review of leading databases: Relational & non-relational database. i-Manager's Journal on Information Technology, 2016, 5(2): 34 doi: 10.26634/JIT.5.2.6002
    [83] Last M, Klein Y, Kandel A. Knowledge discovery in time series databases. IEEE Transactions on Systems, Man, and Cybernetics, 2001, 31(1): 160−169 doi: 10.1109/3477.907576
    [84] 郑孟蕾, 田凌. 基于时序数据库的产品数字孪生模型海量动态数据建模方法. 清华大学学报(自然科学版), 2021, 61(11): 1281−1288

    Zheng M L, Tian L. Digital product twin modeling of massive dynamic data based on a time-series database. Journal of Tsinghua University (Science and Technology), 2021, 61(11): 1281−1288
    [85] 孙云, 江海凡, 丁国富. 面向生产过程管控的数据建模、集成与存储技术. 中国机械工程, 2022, 33(3): 356−365 doi: 10.3969/j.issn.1004-132X.2022.03.012

    Sun Y, Jiang H F, Ding G F. Data modeling, integration and storage technology for production process management and control. China Mechanical Engineering, 2022, 33(3): 356−365 doi: 10.3969/j.issn.1004-132X.2022.03.012
    [86] Li Y J, Liu W, Zhang Y, Zhang W L, Gao C Y, Chen Q H, et al. Interactive real-time monitoring and information traceability for complex aircraft assembly field based on digital twin. IEEE Transactions on Industrial Informatics, 2023, 19(9): 9745−9756 doi: 10.1109/TII.2023.3234618
    [87] Correia J B, Abel M, Becker K. Data management in digital twins: a systematic literature review. Knowledge and Information Systems, 2023, 65(8): 3165−3196 doi: 10.1007/s10115-023-01870-1
    [88] Hansen O H, Jaiswal V, Stang J. A system for continuous assurance and certifications of data quality for digital twins. In: Proceedings of the ASME 2024 43rd International Conference on Ocean, Offshore and Arctic Engineering. Singapore, Singapore: ASME, 2024. V001T01A044
    [89] Barimah A K, Niculita O, McGlinchey D, Cowell A. Data-quality assessment for digital twins targeting multi-component degradation in industrial internet of things (IIoT)-enabled smart infrastructure systems. Applied Sciences, 2023, 13(24): 13076 doi: 10.3390/app132413076
    [90] Rodríguez F, Chicaiza W D, Sánchez A, Escaño J M. Updating digital twins: Methodology for data accuracy quality control using machine learning techniques. Computers in Industry, 2023, 151: 103958 doi: 10.1016/j.compind.2023.103958
    [91] He X, Ai Q, Pan B, Tang L, Qiu R. Spatial-temporal data analysis of digital twin. Digital Twin, 2022, 2: 7 doi: 10.12688/digitaltwin.17446.1
    [92] Zhang K, Cao J, Zhang Y. Adaptive digital twin and multiagent deep reinforcement learning for vehicular edge computing and networks. IEEE Transactions on Industrial Informatics, 2021, 18(2): 1405−1413
    [93] Xiong K, Wang Z H, Leng S P, He J H. A digital-twin-empowered lightweight model-sharing scheme for multirobot systems. IEEE Internet of Things Journal, 2023, 10(19): 17231−17242 doi: 10.1109/JIOT.2023.3273402
    [94] Li H, Liu G, Wang H Q, Wen X Y, Xie G Z, Luo G F, et al. Mechanical movement data acquisition method based on the multilayer neural networks and machine vision in a digital twin environment. Digital Twin, 2024, 1(4): 6
    [95] Bruno G, Aliev K. Digital twin application for dynamic task allocation. In: Proceedings of the 2nd International Symposium on Industrial Engineering and Automation ISIEA 2023. Cham: Springer Nature Switzerland, 2023. 145−154
    [96] Li Y B, Tao Z Y, Wang L, Du B G, Guo J, Pang S B. Digital twin-based job shop anomaly detection and dynamic scheduling. Robotics and Computer-Integrated Manufacturing, 2023, 79: 102443 doi: 10.1016/j.rcim.2022.102443
    [97] Lv Z, Cheng C, Lv H. Multi-robot distributed communication in heterogeneous robotic systems on 5G networking. IEEE Wireless Communications, 2023, 30(2): 98−104 doi: 10.1109/MWC.001.2200315
    [98] Ding G, Guo S, Wu X. Dynamic scheduling optimization of production workshops based on digital twin. Applied Sciences, 2022, 12(20): 10451 doi: 10.3390/app122010451
    [99] Pérez L, Rodríguez-Jiménez S, Rodríguez N, Usamentiaga R, García D F. Digital twin and virtual reality based methodology for multi-robot manufacturing cell commissioning. Applied Sciences, 2020, 10(10): 3633 doi: 10.3390/app10103633
    [100] Ren L, Dong J B, Huang D, Lv J H. Digital twin robotic system with continuous learning for grasp detection in variable scenes. IEEE Transactions on Industrial Electronics, 2023, 71(7): 7653−7663
    [101] 罗瑞平, 盛步云, 黄宇哲, 菅宇超, 宋堃, 陆应康, 等. 基于数字孪生的生产系统仿真软件关键技术与发展趋势. 计算机集成制造系统, 2023, 29(6): 1965−1982

    Luo R P, Sheng B Y, Huang Y Z, Jian Y C, Song K, Lu Y K, et al. Key technologies and development trends of digital twin-based production system simulation software. Computer Integrated Manufacturing Systems, 2023, 29(6): 1965−1982
    [102] Garg G, Kuts V, Anbarjafari G. Digital twin for fanuc robots: Industrial robot programming and simulation using virtual reality. Sustainability, 2021, 13(18): 10336 doi: 10.3390/su131810336
    [103] Lei Z C, Zhou H, Hu W S, Liu G P. Web-based digital twin online laboratories: Methodologies and implementation. Digital Twin, 2024, 1(4): 3
    [104] Stark J. Product lifecycle management (PLM). Product lifecycle management (volume 1) 21st Century paradigm for product realisation. Cham: Springer, 2022: 1−32.
    [105] Komninos I. Product life cycle management. Thessaloniki: Aristotle University of Thessaloniki, 20021−26
    [106] Sun X W, Zhou C, Duan X D, Sun T. A digital twin network solution for end-to-end network service level agreement (SLA) assurance. Digital Twin, 2021, 1: 5 doi: 10.12688/digitaltwin.17448.1
    [107] Hu Y, Miao X W, Si Y, Pan E, Zio E. Prognostics and health management: A review from the perspectives of design, development and decision. Reliability Engineering & System Safety, 2022, 217: 108063
    [108] Zio E. Prognostics and health management (PHM): Where are we and where do we (need to) go in theory and practice. Reliability Engineering & System Safety, 2022, 218: 108119
    [109] Xia J Y, Huang R Y, Li J P, Chen Z Y, Li W H. Digital twin-assisted fault diagnosis of rotating machinery without measured fault data. IEEE Transactions on Instrumentation and Measurement, DOI: 10.1109/TIM.2024.3417592
    [110] Xu C Y, Gui X C, Zhao Y. Digital twin assisted multi-view reconstruction enhanced domain adaptation graph networks for aero-engine gas path fault diagnosis. IEEE Sensors Journal, 2024, 24(13): 21694−21705 doi: 10.1109/JSEN.2024.3400249
    [111] Siatras V, Bakopoulos E, Mavrothalassitis P, Nikolakis N, Alexopoulos K. Production scheduling based on a multi-agent system and digital twin: a bicycle industry case. Information, 2024, 15(6): 337 doi: 10.3390/info15060337
    [112] Li Y L, Tsang Y P, Wu C H, Lee C K M. A multi-agent digital twin–enabled decision support system for sustainable and resilient supplier management. Computers & Industrial Engineering, 2024, 187: 109838
    [113] Gutiérrez Á. Recent advances in swarm robotics coordination: Communication and memory challenges. Applied Sciences, 2022, 12(21): 11116 doi: 10.3390/app122111116
    [114] Nedjah N, Ribeiro L M, de Macedo Mourelle L. Communication optimization for efficient dynamic task allocation in swarm robotics. Applied Soft Computing, 2021, 105: 107297 doi: 10.1016/j.asoc.2021.107297
    [115] Li Z Y, Mei X S, Zhang D W, Sun Z, Xu J. A quick response data collection and management system for digital twin production line based on cloud-fog-edge computing collaboration. Digital Twin, 2025, 4(7): 7
    [116] Achiam J, Adler S, Agarwal S, Ahmad L, Akkaya I, Aleman F L, et al. Gpt-4 technical report. arXiv preprint arXiv: 2303.08774, 2023.
    [117] Putra R V W, Marchisio A, Zayer F, Dias J, Shafique M. Embodied neuromorphic artificial intelligence for robotics: Perspectives, challenges, and research development stack. In: Proceedings of the 2024 18th International Conference on Control, Automation, Robotics and Vision (ICARCV). Dubai, United Arab Emirates: IEEE, 2024. 612−619
    [118] Rudin N, Hoeller D, Reist P, Hutter M. Learning to walk in minutes using massively parallel deep reinforcement learning. In: Proceedings of the 5th Conference on Robot Learning. London, UK: PMLR, 2022. 91−100
    [119] Dai T Y, Wong J, Jiang Y F, Wang C, Gokmen C, Zhang R H, et al. ACDC: Automated Creation of Digital Cousins for Robust Policy Learning. arXiv e-prints arXiv: 2410.07408, 2024.
    [120] 秦龙, 武万森, 刘丹, 胡越, 尹全军, 阳东升, 等. 基于大语言模型的复杂任务自主规划处理框架. 自动化学报, 2024, 50(4): 862−872

    Qin L, Wu W S, Liu D, Hu Y, Yin Q J, Yang D S, et al. Autonomous planning and processing framework for complex tasks based on large language models. Acta Automatica Sinica, 2024, 50(4): 862−872
    [121] 刘华平, 郭迪, 孙富春, 张新钰. 基于形态的具身智能研究: 历史回顾与前沿进展. 自动化学报, 2023, 49(6): 1131−1154

    Liu H P, Guo D, Sun F C, Zhang X Y. Morphology-based embodied intelligence: Historical retrospect and research progress. Acta Automatica Sinica, 2023, 49(6): 1131−1154
  • 加载中
计量
  • 文章访问数:  63
  • HTML全文浏览量:  36
  • 被引次数: 0
出版历程
  • 收稿日期:  2024-11-01
  • 录用日期:  2025-03-23
  • 网络出版日期:  2025-05-27

目录

    /

    返回文章
    返回