-
摘要: 城市污水处理过程非均匀采样使数据呈现不连续性及稀疏性, 难以实现稳定控制. 为了解决该问题, 文中提出了一种非均匀采样预测控制方法. 首先, 建立了一种城市污水处理过程增广式动态线性化模型, 实现了非均匀采样城市污水处理关键过程变量的准确预测. 其次, 设计了基于控制增益优化策略的预测控制器, 实现了非均匀采样城市污水处理关键过程变量的稳定控制. 最后, 分析了非均匀采样预测控制方法的稳定性. 将所提控制方法应用于城市污水处理过程基准仿真平台, 实验结果显示该方法能够实现城市污水处理过程的稳定控制.Abstract: The non-uniform sampling phenomenon in municipal wastewater treatment processes (WWTPs) leads to discontinuous and sparse data, posing challenges for stable control of WWTPs. To address this problem, a non-uniform sampling predictive control (NUSPC) method is proposed. First, an augmented compact form dynamic linearization model (ACFLM) for WWTP is established. Then, the key process variables of non-uniform sampling WWTP can be accurately predicted. Second, a predictive controller based on the control optimization strategy is designed to obtain the optimal control law. Then, the key process variables of non-uniform sampling WWTP can be stably controlled. Ultimately, the theoretical stability of the proposed NUSPC is rigorously analyzed. The proposed NUSPC method is applied to a benchmark simulation model for WWTPs. Experimental results demonstrate that this method can achieve stable control of WWTPs.
-
Key words:
- Data-driven /
- non-uniform sampled-data /
- predictive control /
- dynamic linearization
-
图 1 城市污水处理过程非均匀采样预测控制器结构
(图中$ \hat{\phi}(t) $为$ \phi(t) $的估计值, $ \eta\in(0,\; 1] $为一阶因子, $ \mu $是惩罚因子, $ \boldsymbol{\Psi}_{N_u}(t) $为控制增益矩阵, $ {\bf{e}}(t) $为系统控制误差向量, $ \tilde{\boldsymbol{\Psi}}_{N_u}(t) $为增广式控制增益矩阵, $ {\bf{r}} $为系统的跟踪设定向量, $ \lambda_t>0 $为惩罚因子)
Fig. 1 Schematic diagram of non-uniform sampling predictive controller for WWTP
(In the figure, $ \hat{\phi}(t) $ is the estimated value of $ \phi(t) $, $ \eta\in(0,\; 1] $ is the first-order factor, $ \mu $ is the penalty factor, $ \boldsymbol{\Psi}_{N_u}(t) $ is the control gain matrix, $ {\bf{e}}(t) $ is the system control error vector, $ \tilde{\boldsymbol{\Psi}}_{N_u}(t) $ is an augmented control gain matrix, $ {\bf{r}} $ is the tracking set vector of the system, $ \lambda_t>0 $ is the penalty factor)
表 1 控制器性能指标
Table 1 Control performance of controllers
天气 性能指标 溶解氧 硝态氮 NUSPC MPC NUSPC MPC 晴天 IAE 1.20$\times10^{-2}$ 0.17 2.30$\times10^{-2}$ 0.16 ISE 3.38$\times10^{-4}$ 8.47$\times10^{-2}$ 1.01$\times10^{-3}$ 0.11 ${\rm{Dev^{max}}}$ 7.30$\times10^{-2}$ 1.30 9.01$\times10^{-2}$ 2.92 雨天 IAE 1.20$\times10^{-2}$ 0.19 2.42$\times10^{-2}$ 0.16 ISE 3.47$\times10^{-4}$ 0.11 1.08$\times10^{-3}$ 7.64$\times10^{-2}$ ${\rm{Dev^{max}}}$ 7.20$\times10^{-2}$ 2.00 9.03$\times10^{-2}$ 1.46 暴雨天 IAE 1.25$\times10^{-2}$ 0.20 2.60$\times10^{-2}$ 0.20 ISE 3.26$\times10^{-4}$ 0.17 1.22$\times10^{-3}$ 0.23 ${\rm{Dev^{max}}}$ 7.27$\times10^{-2}$ 2.67 8.59$\times10^{-2}$ 3.47 -
[1] 韩红桂, 秦晨辉, 孙浩源, 乔俊飞. 城市污水处理过程自适应滑模控制. 自动化学报, 2023, 49(05): 1010−1018Han Hong-Gui, Qin Chen-Hui, Sun Hao-Yuan, Qiao Jun-Fei. Adaptive sliding mode control for municipal wastewater treatment process. Acta Automatica Sinica, 2023, 49(05): 1010−1018 [2] 权利敏, 杨翠丽, 乔俊飞. 数据驱动的溶解氧浓度在线自组织控制方法. 自动化学报, 2023, 49(12): 2582−2593Quan Li-Min, Yang Cui-Li, Qiao Jun-Fei. Data-driven online self-organizing control for dissolved oxygen concentration. Acta Automatica Sinica, 2023, 49(12): 2582−2593 [3] Liu H, Yoo C. Performance assessment of cascade controllers for nitrate control in a wastewater treatment process. Korean Journal of Chemical Engineering, 2011, 28(3): 667−673 doi: 10.1007/s11814-010-0442-x [4] Tejaswini E S S, Panjwani S, Gara U B B, Ambati S R. Multi-objective optimization based controller design for improved wastewater treatment plant operation. Environmental Technology & Innovation, 2021, 23: 101591 [5] Razali M C, Wahab N A, Balaguer P, Rahmat M F, Samsudin S I. Singularly perturbation method applied to multivariable PID controller design. Mathematical Problems in Engineering, 2015, 2015: 2629−2650 [6] Du S, Yan Q, Qiao J. Event-triggered PID control for wastewater treatment plants. Journal of Water Process Engineering, 2020, 38(1): 1−8 [7] 黄超, 薄翠梅, 郭伟, 滕刚. 工业污水处理溶解氧的双模糊控制系统研究. 控制工程, 2019, 26(02): 185−190Huang Chao, Bo Cui-Mei, Guo Wei, Teng Gang. Design of the double fuzzy controller system for AAO sewage treatment. Control Engineering of China, 2019, 26(02): 185−190 [8] 周红标, 李杨, 张庆宇, 苏衍, 刘帅祥. 污水处理过程多变量自适应变论域模糊控制. 仪表技术与传感器, 2023, 1(1): 107−116 doi: 10.3969/j.issn.1002-1841.2023.01.021Zhou Hong-Biao, Li Yang, Zhang Qing-Yu, Su Yan, Liu Shuai-Xiang. Multivariable adaptive variable universe fuzzy control for wastewater treatment process. Instrument Technique and Sensor, 2023, 1(1): 107−116 doi: 10.3969/j.issn.1002-1841.2023.01.021 [9] 杜胜利, 张庆达, 曹博琦, 乔俊飞. 城市污水处理过程模型预测控制研究综述. 信息与控制, 2022, 51(1): 41−53Du Sheng-Li, Zhang Qing-Da, Cao Bo-Qi, Qiao Jun-Fei. A review of model predictive control for urban wastewater treatment process. Information and Control, 2022, 51(1): 41−53 [10] Li M, Hu S, Xia J, Wang J, Song X, Shen H. Dissolved oxygen model predictive control for activated sludge process model based on the fuzzy C-means cluster algorithm. International Journal of Control, Automation and Systems, 2020, 18(9): 2435−2444 doi: 10.1007/s12555-019-0438-1 [11] Stebel K, Pospiech J, Nocon W, Czeczot J, Skupin P. Boundary-based predictive controller and its application to control of dissolved oxygen concentration in activated sludge bioreactor. IEEE Transactions on Industrial Electronics, 2022, 69(10): 10541−10551 doi: 10.1109/TIE.2021.3123629 [12] 裴力锋, 陈伟杰, 徐敬生, 吕路. 基于自注意力机制的污水处理厂精确加药模型预测控制. 环境工程, 2023, 41(11): 84−92Per Li-Feng, Chen Wei-Jie, Xu Jing-Sheng, Lv Lu. Model predictive control for accurate dosing in wastewater treatment plants based on self-attention mechanism. Environmental Engineering, 2023, 41(11): 84−92 [13] Han H, Fu S, Sun H, Wang C. Robust model free adaptive predictive control for wastewater treatment process with packet dropouts. IEEE Transactions on Cybernetics, 2024, 54(10): 6069−6080 doi: 10.1109/TCYB.2024.3408883 [14] Wang G, Yuan G, Hu Z, Chi Y, Jia Q-S, Qiao J. Complexity-based structural optimization of deep belief network and application in wastewater treatment process. IEEE Transactions on Industrial Informatics, 2024, 20(4): 6974−6982 doi: 10.1109/TII.2024.3354334 [15] Han H, Xu Y, Liu Z, Sun H, Qiao J. Knowledge-data-driven robust fault-tolerant control for sludge bulking in wastewater treatment process. IEEE Transactions on Industrial Informatics, 2024, early access. [16] Han H, Wang Y, Liu Z, Sun H, Qiao J. Knowledge-data driven optimal control for nonlinear systems and its application to wastewater treatment process. IEEE Transactions on Cybernetics, 2024, early access. [17] Fu S, Sun H, Han H. Data-driven model predictive control for aperiodic sampled-data nonlinear systems. IEEE Transactions on Systems, Man, and Cybernetics: Systems, 2024, 54(3): 1960−1971 doi: 10.1109/TSMC.2023.3331231 [18] Han H, Fu S, Sun H, Liu Z. Stochastic sampled-data model predictive control for T-S fuzzy systems with unknown stochastic sampling probability. IEEE Transactions on Fuzzy Systems, 2024, 32(10): 5613−5624 doi: 10.1109/TFUZZ.2024.3423009 [19] Han H, Fu S, Sun H, Qiao J. Data-driven model-predictive control for nonlinear systems with stochastic sampling interval. IEEE Transactions on Systems, Man, and Cybernetics: Systems, 2023, 53(5): 3019−3030 doi: 10.1109/TSMC.2022.3220550 [20] Hou Z, Jin S. Data-driven model-free adaptive control for a class of MIMO nonlinear discrete-time systems. IEEE Transactions on Neural Networks, 2011, 22(12): 2173−2188 doi: 10.1109/TNN.2011.2176141 [21] Xu D Z, Jiang B, Shi P. A novel model-free adaptive control design for multivariable industrial processes. IEEE Transactions on Industrial Electronics, 2014, 61(11): 6391−6398 doi: 10.1109/TIE.2014.2308161 [22] Hou Z S, Wang Z. From model-based control to data-driven control: Survey, classification and perspective. Information Sciences, 2013, 235: 3−35 doi: 10.1016/j.ins.2012.07.014 [23] Hou Z S, Zhu Y M. Controller-dynamic-linearization based model free adaptive control for discrete-time nonlinear systems. IEEE Transactions on Industrial Informatics, 2013, 9(4): 2301−2309 doi: 10.1109/TII.2013.2257806 [24] Zhu Y M, Hou Z S. Data driven MFAC for a class of discrete time nonlinear systems with RBFNN. IEEE Transactions on Neural Networks & Learning Systems, 2014, 25(5): 1013−1020 [25] Alex J, Benedetti L, Copp J, Gernaey K V, Jeppsson U, Nopens I, Pons M N, Steyer J P, Vanrolleghem P. Benchmark Simulation Model no. 1 (BSM1) [M]. Lund University Sweden, 2018. [26] Fu X, Lu S, Fairbank M, Wunsch D C, Alonso E. Training recurrent neural networks with the levenberg-marquardt algorithm for optimal control of a grid-connected converter. IEEE Transactions on Neural Networks & Learning Systems, 2015, 26(9): 1900−1912 [27] Bashir M B, Bin Abd Latiff M S, Coulibaly Y, Yousif A. A survey of grid-based searching techniques for large scale distributed data. Journal of Network And Computer Applications, 2016, 60: 170−179 doi: 10.1016/j.jnca.2015.10.010 -
计量
- 文章访问数: 22
- HTML全文浏览量: 14
- 被引次数: 0