[1]
|
衣鹏, 洪奕光. 分布式合作优化及其应用. 中国科学: 数学, 2016, 46(10): 1547−1564Yi Peng, Hong Yi-Guang. Distributed cooperative optimization and its applications. Sci Sin Math, 2016, 46(10): 1547−1564
|
[2]
|
谢佩, 游科友, 洪奕光, 谢立华. 网络化分布式凸优化算法研究进展. 控制理论与应用, 2018, 35(07): 918−927 doi: 10.7641/CTA.2018.80205Xie Pei, You Ke-You, Hong Yi-Guang, Xie Li-Hua. A survey of distributed convex optimization algorithms over networks. Control Theory & Applications, 2018, 35(07): 918−927 doi: 10.7641/CTA.2018.80205
|
[3]
|
Nedić A, Liu J. Distributed optimization for control. Annual Review of Control, Robotics, and Autonomous Systems, 2018, 1(1): 77−103
|
[4]
|
Yang T, Yi X L, Wu J F, Yuan Y, Wu D, Meng Z Y, Hong Y G, Wang H, Lin Z Y, Johansson K H. A survey of distributed optimization. Annual Reviews in Control, 2019, 47: 278−305 doi: 10.1016/j.arcontrol.2019.05.006
|
[5]
|
杨涛, 柴天佑. 分布式协同优化的研究现状与展望. 中国科学: 技术科学, 2020, 50(11): 1414−1425 doi: 10.1360/SST-2020-0040Yang Tao, Chai Tian-You. Research status and prospects of distributed collaborative optimization. Sci Sin Tech, 2020, 50(11): 1414−1425 doi: 10.1360/SST-2020-0040
|
[6]
|
邓文, 李伟健, 曾宪琳, 洪奕光. 矩阵方程的分布式求解算法研究概述. 控制理论与应用, 2021, 38(11): 1695−1706 doi: 10.7641/CTA.2021.10671Deng Wen, Li Wei-Jian, Zeng Xian-Lin, Hong Yi-Guang. A survey of distributed algorithms for solving matrix equations. Control Theory & Applications, 2021, 38(11): 1695−1706 doi: 10.7641/CTA.2021.10671
|
[7]
|
杨涛, 徐磊, 易新蕾, 张圣军, 陈蕊娟, 李渝哲. 基于事件触发的分布式优化算法. 自动化学报, 2022, 48(1): 133−143Yang Tao, Xu Lei, Yi Xin-Lei, Zhang Sheng-Jun, Chen Rui-Juan, Li Yu-Zhe. Event-triggered distributed optimization algorithms. Acta Automatica Sinica, 2022, 48(1): 133−143
|
[8]
|
Yang S F, Liu Q S, Wang J. A multi-agent system with a proportional-integral protocol for distributed constrained optimization. IEEE Transactions on Automatic Control, 2016, 62(7): 3461−3467
|
[9]
|
Zhu Y N, Yu W W, Wen G H, Chen G R. Projected primal-dual dynamics for distributed constrained nonsmooth convex optimization. IEEE Transactions on Cybernetics, 2018, 50(4): 1776−1782
|
[10]
|
Yuan K, Ling Q, Yin W T. On the convergence of decentralized gradient descent. SIAM Journal on Optimization, 2016, 26(3): 1835−1854 doi: 10.1137/130943170
|
[11]
|
Pu S, Shi W, Xu J M, Nedić A. Push-pull gradient methods for distributed optimization in networks. IEEE Transactions on Automatic Control, 2021, 66(1): 1−16 doi: 10.1109/TAC.2020.2972824
|
[12]
|
Nedić A, Ozdaglar A, Parrilo P A. Constrained consensus and optimization in multi-agent networks. IEEE Transactions on Automatic Control, 2010, 55(4): 922−938 doi: 10.1109/TAC.2010.2041686
|
[13]
|
Lei J L, Chen H F, Fang H T. Primal-dual algorithm for distributed constrained optimization. Systems & Control Letters, 2016, 96: 110−117
|
[14]
|
Cheng S S, Liang S, Fan Y, Hong Y G. Distributed gradient tracking for unbalanced optimization with different constraint sets. IEEE Transactions on Automatic Control, 2023, 68(6): 3633−3640
|
[15]
|
Beck A, Teboulle M. Mirror descent and nonlinear projected subgradient methods for convex optimization. Operations Research Letters, 2003, 31(3): 167−175 doi: 10.1016/S0167-6377(02)00231-6
|
[16]
|
Yuan D M, Hong Y G, Ho D W, Jiang G P. Optimal distributed stochastic mirror descent for strongly convex optimization. Automatica, 2018, 90: 196−203 doi: 10.1016/j.automatica.2017.12.053
|
[17]
|
Yang Y, Jia Q S, Xu Z B, Guan X H, Spanos C J. Proximal ADMM for nonconvex and nonsmooth optimization. Automatica, 2022, 146: 110551
|
[18]
|
Hou J, Zeng X L, Wang G, Sun J, Chen J. Distributed momentum-based Frank-Wolfe algorithm for stochastic optimization. IEEE/CAA Journal of Automatica Sinica, 2022, 10(3): 685−699
|
[19]
|
Chen S X, Garcia A, Shahrampour S. On distributed nonconvex optimization: Projected subgradient method for weakly convex problems in networks. IEEE Transactions on Automatic Control, 2021, 67(2): 662−675
|
[20]
|
Wei M L, Yu W W, Liu H Z, Xu Q. Distributed weakly convex optimization under random time-delay interference. IEEE Transactions on Network Science and Engineering, 2024, 11(1): 212−224 doi: 10.1109/TNSE.2023.3294414
|
[21]
|
Wang Y H, Zhao W X, Hong Y G, Zamani M. Distributed subgradient-free stochastic optimization algorithm for nonsmooth convex functions over time-varying networks. SIAM Journal on Control and Optimization, 2019, 57(4): 2821−2842 doi: 10.1137/18M119046X
|
[22]
|
Pang Y P, Hu G Q. Randomized gradient-free distributed optimization methods for a multiagent system with unknown cost function. IEEE Transactions on Automatic Control, 2019, 65(1): 333−340
|
[23]
|
Pang Y P, Hu G Q. Gradient-free distributed optimization with exact convergence. Automatica, 2022, 144: 110474
|
[24]
|
Yi X L, Zhang S J, Yang T, Johansson K H. Zeroth-order algorithms for stochastic distributed nonconvex optimization. Automatica, 2022, 142: 110353 doi: 10.1016/j.automatica.2022.110353
|
[25]
|
Xu L, Yi X L, Deng C, Shi Y, Chai T Y, Yang T. Quantized zeroth-order gradient tracking algorithm for distributed nonconvex optimization under Polyak-Łojasiewicz condition. IEEE Transactions on Cybernetics, 2024, 54(10): 5746−5758 doi: 10.1109/TCYB.2024.3384924
|
[26]
|
Wang R Y, Fan Y, Cheng S S. Zeroth-order algorithm design with orthogonal direction for distributed weakly convex optimization, the 63rd IEEE Conference on Decision and Control (CDC2024), 2024, Milan, Italy.
|
[27]
|
Juditsky A, Kwon J, Moulines É. Unifying mirror descent and dual averaging. Mathematical Programming, 2023, 199: 793−830
|
[28]
|
Moreau J J. Proximitè et dualitè dans un espace hilbertien. Bull. De La Sociètè Mathèmatique De France, 1965, 93: 273−299
|
[29]
|
刘浩洋, 户将, 李勇锋, 文再文. 最优化: 建模、算法与理论. 北京: 高等教育出版社, 2020.Liu Hao-Yang, Hu Jiang, Li Yong-Feng, Wen Zai-Wen. Optimization: Modeling, Algorithm and Theory. Beijing: Higher Education Press, 2020.
|
[30]
|
Ram S S, Nedić A, Veeravalli V V. Distributed stochastic subgradient projection algorithms for convex optimization. Journal of Optimization Theory and Applications, 2010, 147: 516−545 doi: 10.1007/s10957-010-9737-7
|
[31]
|
Zhou W X, Zhou Y, Chen X L, Ning T T, Chen H Y, Guo Q, Zhang Y W, Liu P X, Zhang Y J, Li C, Chu Y C, Sun T, Jiang C. Pancreatic cancer-targeting exosomes for enhancing immunotherapy and reprogramming tumor microenvironment. Biomaterials, 2021, 268: 120546 doi: 10.1016/j.biomaterials.2020.120546
|