2.845

2023影响因子

(CJCR)

  • 中文核心
  • EI
  • 中国科技核心
  • Scopus
  • CSCD
  • 英国科学文摘

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

飞机总装的现场级工业网络系统: 架构、关键技术及应用

关新平 温晓婧 金天恺 王淑玲 陈彩莲

关新平, 温晓婧, 金天恺, 王淑玲, 陈彩莲. 飞机总装的现场级工业网络系统: 架构、关键技术及应用. 自动化学报, xxxx, xx(x): x−xx doi: 10.16383/j.aas.c250157
引用本文: 关新平, 温晓婧, 金天恺, 王淑玲, 陈彩莲. 飞机总装的现场级工业网络系统: 架构、关键技术及应用. 自动化学报, xxxx, xx(x): x−xx doi: 10.16383/j.aas.c250157
Guan Xin-Ping, Wen Xiao-Jing, Jin Tian-Kai, Wang Shu-Ling, Chen Cai-Lian. Field-level industrial network systems for aircraft final assembly: Architecture, key technologies, and applications. Acta Automatica Sinica, xxxx, xx(x): x−xx doi: 10.16383/j.aas.c250157
Citation: Guan Xin-Ping, Wen Xiao-Jing, Jin Tian-Kai, Wang Shu-Ling, Chen Cai-Lian. Field-level industrial network systems for aircraft final assembly: Architecture, key technologies, and applications. Acta Automatica Sinica, xxxx, xx(x): x−xx doi: 10.16383/j.aas.c250157

飞机总装的现场级工业网络系统: 架构、关键技术及应用

doi: 10.16383/j.aas.c250157 cstr: 32138.14.j.aas.c250157
基金项目: 国家自然科学基金(62025305, 62432009, 92167205)资助
详细信息
    作者简介:

    关新平:上海交通大学自动化系讲席教授. 主要研究方向为网络系统的感知、传输和控制一体化设计理论与应用. 本文通信作者. E-mail: xpguan@sjtu.edu.cn

    温晓婧:上海交通大学自动化系助理研究员. 主要研究方向为感知−通信−计算协同设计, 边缘计算和工业网络切片. E-mail: xiaojingwen@sjtu.edu.cn

    金天恺:上海交通大学自动化系博士研究生. 主要研究方向为基于传输调度的工业信息物理系统感知与控制联合设计. E-mail: tiankaijin@sjtu.edu.cn

    王淑玲:上海交通大学自动化系博士研究生. 主要研究方向为工业物联网系统的传输与控制设计. E-mail: shulingwang2018@163.com

    陈彩莲:上海交通大学自动化系特聘教授. 主要研究方向为工业互联网及应用. E-mail: cailianchen@sjtu.edu.cn

Field-level Industrial Network Systems for Aircraft Final Assembly: Architecture, Key Technologies, and Applications

Funds: Supported by National Natural Science Foundation of China (62025305, 62432009, 92167205)
More Information
    Author Bio:

    GUAN Xin-Ping Chair professor in the Department of Automation, Shanghai Jiao Tong University. His main research interest covers the integrated design theory and applications of sensing, communication, and control for networked systems. He is the corresponding author of this paper

    WEN Xiao-Jing Assistant Researcher in the Department of Automation, Shanghai Jiao Tong University. Her research interest covers sensing-communication-computation co-design, edge computing, and industrial network slicing

    JIN Tian-Kai Ph. D. candidate in the Department of Automation, Shanghai Jiao Tong University. His research interest covers transmission scheduling-based sensing and control co-design for industrial cyber-physical systems

    WANG Shu-Ling Ph. D. candidate in the Department of Automation, Shanghai Jiao Tong University. Her research interest covers transmission and control design of industrial internet of things systems

    CHEN Cai-Lian Distinguished professor in the Department of Automation, Shanghai Jiao Tong University. Her research interest covers industrial internet and applications

  • 摘要: 面对复杂系统装配对高精度、高时效协同的迫切需求, 飞机总装制造亟需构建具备感知−传输−控制一体化能力的现场级工业网络系统. 为此, 本文率先建立现场级网络控制系统容量模型, 提出双向融合−协同管控的工业互联网新型架构. 围绕感知、传输、计算与控制的全链条任务闭环, 系统构建多维时效性综合评价指标体系, 深入探索多域异构资源的联合调度与协同优化机制. 最后, 面向飞机总装过程中活动面动态测量与多工序协同优化, 设计并实现高保真数字孪生验证平台, 有效支撑理论模型、控制策略与实际部署之间的闭环映射.
  • 图  1  感知测度-通信容量-系统容量相互关系图

    Fig.  1  Diagram of the interrelationship among sensing measure, communication capacity and system capacity

    图  2  现场级双向融合−协同管控的工业网络系统架构

    Fig.  2  Architecture of field-level industrial network systems with bidirectional fusion and coordinated control

    图  3  全路径信息年龄

    Fig.  3  Full-path age of information

    图  4  全环路信息年龄 (FL-AoI)

    Fig.  4  Full-loop age of information (FL-AoI)

    图  5  任务年龄

    Fig.  5  Age of Task

    图  6  可观性条件逼近转化与高效寻优

    Fig.  6  Approximate transformation of observability condition and efficient optimization

    图  7  系统可观性保障的主动感知机制

    Fig.  7  System observability guaranteed active sensing mechanism

    图  8  面向安全估计的干扰规避传输路径选择方法

    Fig.  8  Interference avoidance transmission path selection method for secure estimation

    图  9  基于AoT的采样−调度−控制联合设计框架

    Fig.  9  Co-design framework of sampling, scheduling and control based on AoT

    图  10  部装机翼实验平台

    Fig.  10  Assembled wing experimental platform

    图  11  测试数据监测模块

    Fig.  11  Test data monitoring module

    图  12  副翼运动动态变化

    Fig.  12  Dynamic change of aileron movement

    图  13  操纵杆、机翼虚实映射界面

    Fig.  13  Joystick and wing virtual-reality mapping interface

    图  14  测试任务按需编排

    Fig.  14  On-demand orchestration of testing tasks

    图  15  多域资源管理模块

    Fig.  15  Multi-domain resource management module

  • [1] 石丁, 赵觉珵, 涂蕾, 林森, 陈康, 柳玉鹏. C919全球商业首飞成功. 环球时报, 2023, 29(001): 1−2

    Shi Ding, Zhao Jue-Cheng, Tu Lei, Lin Sen, Chen Kang, Liu Yu-Peng. The first commercial flight of the C919 was successful. Global Times, 2023, 29(001): 1−2
    [2] Murray R M, Astrom K J, Boyd S P, Brockett R W, Stein G. Future directions in control in an information-rich world. IEEE Control Systems Magazine, 2003, 23(2): 20−33
    [3] 关新平, 陈彩莲, 杨博, 华长春, 吕玲, 朱善迎. 工业网络系统的感知−传输−控制一体化: 挑战和进展. 自动化学报, 2019, 45(1): 25−36

    Guan Xin-Ping, Chen Cai-Lian, Yang Bo, Hua Chang-Chun, Lyu Ling, Zhu Shan-Ying. Towards the Integration of Sensing, Transmission and Control for Industrial Network Systems: Challenges and Recent Developments. Acta Automatica Sinica, 2019, 45(1): 25−36
    [4] Guan X P, Yang B, Chen C L, Dai W B, Wang Y Y. A comprehensive overview of cyber-physical systems: From perspective of feedback system. IEEE/CAA Journal of Automatica Sinica, 2016, 3(1): 1−14
    [5] Yan Q, Wang H. Double-layer Q-learning-based joint decision-making of dual resource-constrained aircraft assembly scheduling and flexible preventive maintenance. IEEE Transactions on aerospace and electronic systems, 2022, 58(6): 4938−4952
    [6] Ren C, Chen C, Li P, et al. Digital twin enabled task scheduling for state monitoring in aircraft testing process. IEEE Internet of Things Journal, 2024, 11(16): 26751−26765
    [7] 黄琳, 段志生, 杨剑影, 王金枝, 杨莹, 李忠奎, 刘蕾. 控制科学发展战略研究报告−−控制科学. 中国科学院信息技术科学部, 2013

    Huang L, Duan Z S, Yang J Y, WANG J Z, Yang Y, Li Z K, Liu L. Control science development strategy research report – Control science. Department of Information Technology and Science, Chinese Academy of Sciences, 2013
    [8] Zhu S Y, Chen C L, Ma X L, Yang B, Guan X P. Consensus based estimation over relay assisted sensor networks for situation monitoring. IEEE Journal of Selected Topics in Signal Processing, 2015, 9(2): 278−291
    [9] Wen X J, Chen C L, Guan X P, Ren C, Ma Y H, Shen X M. AOT-driven resource reservation based on associated network slice for IIoT systems. IEEE Transactions on Industrial Informatics, 2024, 21(3): 2013−2022
    [10] Lee H S, Lee J W. Adaptive transmission scheduling in wireless networks for asynchronous federated learning. IEEE Journal on Selected Areas in Communications, 2021, 39(12): 3673−3687
    [11] Gupta P, Kumar P R. The capacity of wireless networks. IEEE Transactions on information theory, 2000, 46(2): 388−404
    [12] Xue F, Xie L L, Kumar P R. The transport capacity of wireless networks over fading channels. IEEE Transactions on Information Theory, 2005, 51(3): 834−847
    [13] Rachlin Y, Negi R, Khosla P K. The sensing capacity of sensor networks. IEEE transactions on information theory, 2011, 57(3): 1675−1691
    [14] Rachlin Y, Negi R, Khosla P. Sensing capacity for markov random fields. In: Proceedings. International Symposium on Information Theory. Adelaide, SA, Australia: IEEE, 2005. 132-136
    [15] Ranade G, Sahai A. Control capacity. IEEE Transactions on Information Theory, 2018, 65(1): 235−254
    [16] Sahai A, Mitter S. The necessity and sufficiency of anytime capacity for stabilization of a linear system over a noisy communication link−Part I: Scalar systems. IEEE transactions on Information Theory, 2006, 52(8): 3369−3395
    [17] Guan X P. Network system capacity: Towards integrating sensing, communication and control. National Science Open, 2024, 3(1): 20230036
    [18] Chen C L, Zhu S Y, Guan X P, Shen X M. Wireless sensor networks: Distributed consensus estimation. Berlin, Germany: Springer, 2014
    [19] Wen X J, Chen C L, Guan X P, Ren C, Ma Y H, Fang Y G. AoIT–empowered associated network slicing: Resource orchestration for joint monitoring. IEEE Transactions on Wireless Communications, 2024, 23(11): 16805−16820
    [20] Zhang Y Z, Chen C L, Xu Q M, Wang S L, Xu L, Guan X P. Scalable scheduling for industrial time-sensitive networking: A hyper-flow graph-based scheme. IEEE/ACM Transactions on Networking, 2024, 32(6): 4810−4825
    [21] Zhang Y Z, Xu Q M, Chen C L, Wang S L, Xu L, Duan S H, et al. Scalable scheduling in industrial time-sensitive networking: A flow graphic distributed scheme. IEEE Transactions on Industrial Informatics, 2024, 21(2): 1068−1077
    [22] Zhang Y J, Xu Q M, Guan X P, Chen C L, Li M Y. Wireless/wired integrated transmission for industrial cyber-physical systems: Risk-sensitive co-design of 5G and TSN protocols. Science China Information Sciences, 2022, 65(1): 110204
    [23] Zhang Y J, Xu Q M, Chen C L, Li M Y, Guan X P, Quek T Q S. Seamless scheduling for nfv-enabled 5G-TSN network: A full-path AoI based method. IEEE Transactions on Industrial Informatics, 2024, 20(12): 13512−13525
    [24] Chen C L, Wen X J, Bai X H, Xu L, Ren C, Ye J L eta al. Control and communication coordination for industrial digital twins of sintering process. In: Broadband Communications, Computing, and Control for Ubiquitous Intelligence. Cham: Springer, 2022
    [25] Kaul S, Gruteser M, Rai V, et al. Minimizing age of information in vehicular networks. 2011 8th Annual IEEE communications society conference on sensor, mesh and ad hoc communications and networks., 2011.
    [26] Lu X Z, Xu Q M, Wang X L, Lin M H, Chen C L, Shi Z G, Guan X P. Full-loop AoI-based joint design of control and deterministic transmission for industrial CPS. IEEE Transactions on Industrial Informatics, 2023, 19(11): 10727−10738
    [27] Wen X J, Chen C L, Ren C, Ma Y H, Li M Y, Lyu L, Guan X P. Age-of-task-aware co-design of sampling, scheduling, and control for industrial IoT systems. IEEE Internet of Things Journal, 2024, 11(3): 4227−4242
    [28] Ji Z D, Chen C L, He J P, Zhu S Y, Guan X P. Edge sensing and control co-design for industrial cyber-physical systems: Observability guaranteed method. IEEE Transactions on Cybernetics, 2022, 52(12): 13350−13362
    [29] Ji Z D, Chen C L, He J P, Zhu S Y, Guan X P. Learning-based edge sensing and control co-design for industrial cyber–physical system. IEEE Transactions on Automation Science and Engineering, 2023, 20(1): 59−73
    [30] Ji Z D, Chen C L, Zhu S Y, Ma Y H, Guan X P. Intelligent edge sensing and control co-design for industrial cyber-physical system. IEEE Transactions on Signal and Information Processing over Networks, 2023, 9: 175−189
    [31] Ji Z D, Chen C L, Guan X P. Observability guaranteed distributed intelligent sensing for industrial cyber-physical system. IEEE Transactions on Signal Processing, 2024, 72: 5198−5212
    [32] Chen C L, Yan J, Lu N, Wang Y Y, Yang X, Guan X P. Ubiquitous monitoring for industrial cyber-physical systems over relay-assisted wireless sensor networks. IEEE Transactions on Emerging Topics in Computing, 2015, 3(3): 352−362
    [33] Zhu S Y, Xie L H, Chen C L, Guan X P. Collective behavior of mobile agents with statedependent interactions. Automatica, 2015, 51: 394−401
    [34] Jin T K, Chen C L, Ma Y H, Guan X P. Deep reinforcement learning based transmission scheduling for sensing aware control. IEEE Transactions on Automation Science and Engineering, 2025, 22: 10905−10919
    [35] Du R, Chen C L, Yang B, Lu N, Gu an, X P, Shen X M. Effective urban traffic monitoring by vehicular sensor networks. IEEE Transactions on Vehicular Technology, 2015, 64(1): 273−286
    [36] Yang Z W, Chen C L, Zhu S Y, Guan X P, Feng G. Distributed entrapping control of multiagent systems using bearing measurements. IEEE Transactions on Automatic Control, 2021, 66(12): 5696−5710
    [37] Yang Z W, Zhu S Y, Chen C L, Feng G, Guan X P. Entrapping a target in an arbitrarily shaped orbit by a single robot using bearing measurements. Automatica, 2020, 113: 108805
    [38] Yan J, Chen C L, Luo X Y, Yang X, Hua C C, Guan X P. Distributed formation control for tele-operating cyber-physical systems under time delay and actuator saturation constraints. Information Sciences, 2016, 370-371: 680−694
    [39] Stenumgaard P, Chilo J, Ferrer-Coll J, Angskog P. Challenges and conditions for wireless machine-to-machine communications in industrial environments. IEEE Communications Magazine, 2013, 51(6): 187−192
    [40] Lyu L, Chen C L, Zhu S Y, Cheng N, Yang B, Guan X P. Control performance aware cooperative transmission in multiloop wireless control systems for industrial IoT applications. IEEE Internet of Things Journal, 2018, 5(5): 3954−3966
    [41] Chen C L, Lyu L, Zhu S Y, Guan X P. On-demand transmission for edge-assisted remote control in industrial network systems. IEEE Transactions on Industrial Informatics, 2020, 16(7): 4842−4854
    [42] He J S, Chen C L, Zhu S Y, Yang B, Guan X P. Antijamming game framework for secure state estimation in power systems. IEEE Transactions on Industrial Informatics, 2019, 15(5): 2628−2637
    [43] Wang X L, Chen C L, He J P, Zhu S Y, Guan X P. Learning-based online transmission path selection for secure estimation in edge computing systems. IEEE Transactions on Industrial Informatics, 2021, 17(5): 3577−3587
    [44] Li Y, Zhu S Y, Chen C L, Guan X P. Energy-efficient optimal sensor scheduling for state estimation over multihop sensor networks. IEEE Transactions on Cybernetics, 2023, 53(1): 197−210
    [45] Lyu L, Chen C L, Zhu S Y, Cheng N, Tang Y J, Guan X P. Dynamics-aware and beamforming-assisted transmission for wireless control scheduling. IEEE Transactions on Wireless Communications, 2018, 17(11): 7677−7690
    [46] Ahlén A, Åkerberg J, Eriksson M, Isaksson A J, Iwaki T, Johansson K H, et al. Toward wireless control in industrial process automation: A case study at a paper mill. IEEE Control Systems Magazine, 2019, 39(5): 36−57
    [47] Gatsis K, Ribeiro A, Pappas G J. Optimal power management in wireless control systems. IEEE Transactions on Automatic Control, 2014, 59(6): 1495−1510
    [48] Wang S L, Zhu S Y, Chen C L, Shen F, Zhang W H, Guan X P. Communication and control co-design for heterogeneous industrial IoT: A logic-based stochastic switched system approach. IEEE Journal on Selected Areas in Communications, DOI: 10.1109/JSAC.2025.3574614
    [49] Park P, Ergen S C, Fischione C, Lu C, Johansson K H. Wireless network design for control systems: A survey. IEEE Communications Surveys & Tutorials, 2017, 20(2): 978−1013
    [50] Wang X L, Chen C L, He J P, Zhu S Y, Guan X P. AoI-aware control and communication co-design for industrial IoT systems. IEEE Internet of Things Journal, 2021, 8(10): 8464−8473
    [51] Wang X L, Zhang J L, Chen C L, He J P, Ma Y H, Guan X P. Trust-AoI-aware codesign of scheduling and control for edge-enabled IIoT systems. IEEE Transactions on Industrial Informatics, 2024, 20(2): 2833−2842
  • 加载中
计量
  • 文章访问数:  25
  • HTML全文浏览量:  20
  • 被引次数: 0
出版历程
  • 收稿日期:  2025-04-15
  • 录用日期:  2025-06-03
  • 网络出版日期:  2025-07-14

目录

    /

    返回文章
    返回