2.845

2023影响因子

(CJCR)

  • 中文核心
  • EI
  • 中国科技核心
  • Scopus
  • CSCD
  • 英国科学文摘

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

基于相对总变差统计线的水下图像快速增强方法

陈超洋 胡盼 何磊 易遵辉 桂卫华

陈超洋, 胡盼, 何磊, 易遵辉, 桂卫华. 基于相对总变差统计线的水下图像快速增强方法. 自动化学报, 2025, 51(8): 1−14 doi: 10.16383/j.aas.c240794
引用本文: 陈超洋, 胡盼, 何磊, 易遵辉, 桂卫华. 基于相对总变差统计线的水下图像快速增强方法. 自动化学报, 2025, 51(8): 1−14 doi: 10.16383/j.aas.c240794
Chen Chao-Yang, Hu Pan, He Lei, Yi Zun-Hui, Gui Wei-Hua. Fast enhancement method for underwater images based on relative total variation statistical line. Acta Automatica Sinica, 2025, 51(8): 1−14 doi: 10.16383/j.aas.c240794
Citation: Chen Chao-Yang, Hu Pan, He Lei, Yi Zun-Hui, Gui Wei-Hua. Fast enhancement method for underwater images based on relative total variation statistical line. Acta Automatica Sinica, 2025, 51(8): 1−14 doi: 10.16383/j.aas.c240794

基于相对总变差统计线的水下图像快速增强方法

doi: 10.16383/j.aas.c240794 cstr: 32138.14.j.aas.c240794
基金项目: 国家自然科学基金(62222306, 62403191, 62403192), 湖南省自然科学基金(2024JJ6223), 海南省自然科学基金(625QN363)资助
详细信息
    作者简介:

    陈超洋:湖南科技大学信息与电气工程学院教授. 2014年获得华中科技大学博士学位. 主要研究方向为群机器人系统智能感知与协同控制, 复杂网络研究. E-mail: ouzk@163.com

    胡盼:湖南科技大学计算机科学与工程学院博士研究生. 2017年获得湖南科技大学硕士学位. 主要研究方向为图像处理和视觉检测. E-mail: hupan0916@163.com

    何磊:湖南科技大学信息与电气工程学院讲师. 2023年获得中南大学博士学位. 主要研究方向为视觉检测, 图像处理和深度学习. 本文通信作者. E-mail: helei_xb@hnust.edu.cn

    易遵辉:湖南科技大学信息与电气工程学院讲师. 2023年获得中南大学博士学位. 主要研究方向为光学成像, 图像处理, 视觉检测. E-mail: yizunhui@hnust.edu.cn

    桂卫华:中南大学自动化学院教授. 1981年获得中南矿冶学院硕士学位. 主要研究方向为复杂工业过程检测、建模与控制. E-mail: gwh@csu.edu.cn

Fast Enhancement Method for Underwater Images Based on Relative Total Variation Statistical Line

Funds: Supported by National Natural Science Foundation of China (62222306, 62403191, 62403192), Hunan Provincial Natural Science Foundation of China (2024JJ6223) and Hainan Provincial Natural Science Foundation of China (625QN363)
More Information
    Author Bio:

    CHEN Chao-Yang Professor at the School of Information and Electrical Engineering, Hunan University of Science and Technology. He received his Ph.D. degree from Huazhong University of Science and Technology in 2014. His research interest covers intelligent sensing and cooperative control of swarm robot systems and complex network research

    HU Pan Ph.D. candidate at the School of Computer Science and Engineering, Hunan University of Science and Technology. He received his master degree from Hunan University of Science and Technology in 2017. His research interest covers image processing and vision-based measurement

    HE Lei Lecturer at the School of Information and Electrical Engineering, Hunan University of Science and Technology. He received his Ph.D. degree from Central South University in 2023. His research interest covers vision-based measurement, image processing and deep learning. Corresponding author of this paper

    YI Zun-Hui Lecturer at the School of Information and Electrical Engineering, Hunan University of Science and Technology. He received his Ph.D. degree from Central South University in 2023. His research interest covers optical imaging, image processing and vision-based measurement

    GUI Wei-Hua Professor at the School of Automation, Central South University. He received his master degree from Central South Institute of Mining and Metallurgy in 1981. His main research interest is measurement, modeling and control of complex industrial process

  • 摘要: 针对水下采集的图像存在模糊、低对比度和颜色失真等低质量问题, 提出一种基于相对总变差统计线的水下图像快速增强方法. 首先, 采用线性拉伸的方法来校正图像的颜色信息, 消除颜色偏差并恢复图像的自然度. 其次, 基于大气散射模型, 结合图像的纹理信息构建水下图像的相对总变差统计线模型, 利用该模型准确估计图像深度图. 此外, 提出一种基于图像分块细分的水下背景光估计方法, 得到鲁棒的全局背景光估计值. 最后, 在估计的背景光和深度图基础上得到符合人眼感官视觉的水下增强图像. 实验结果表明, 所提方法不仅在主客观图像质量评价上具有明显优势, 而且在计算效率上优于现有的先进方法.
  • 图  1  示意图((a)水下成像模型; (b)水下光吸收)

    Fig.  1  Schematic diagrams ((a) Underwater imaging model; (b) Underwater light absorption)

    图  2  所提方法的算法流程框架

    Fig.  2  The algorithm flow framework of the proposed method

    图  3  原始图像与增强图像直方图比较

    Fig.  3  Comparison of histograms of raw image and color corrected image

    图  4  局部拟合相对总变差统计线示例

    Fig.  4  Example of localized fitted relative total variation statistical line

    图  5  图像块的不同分割方法((a)输入图像; (b)不同图像分割方法; (c)不同图像分割方法下的深度图; (d)比较生成的深度图; (e)平滑的深度图; (f)增强图像)

    Fig.  5  Different segmentation methods of image patches ((a) Input image; (b) Different image segmentation methods (c) Depth maps for the different image segmentation methods; (d) Comparison of generated depth maps (e) Smoothed depth map; (f) Enhanced image)

    图  6  对偏绿水下图像不同方法的视觉比较

    Fig.  6  Visual comparison of different methods on greenish underwater images

    图  7  对偏蓝水下图像不同方法的视觉比较

    Fig.  7  Visual comparison of different methods on bluish underwater images

    图  8  对具有其他颜色退化的水下图像不同方法的视觉比较

    Fig.  8  Visual comparison of different methods on underwater images with other color degenerations

    图  9  对水下图像不同方法色彩准确度结果比较

    Fig.  9  Color accuracy results comparison of different methods on underwater images

    图  10  对浑浊场景下水下图像不同方法的视觉比较

    Fig.  10  Visual comparison of different methods on underwater images in turbid scenes

    图  11  对动态光照场景下水下图像不同方法的视觉比较

    Fig.  11  Visual comparison of different methods for underwater images in dynamic lighting scenes

    图  12  去雾图像结果

    Fig.  12  Results of dehazed images

    表  1  不同方法的UCIQE值

    Table  1  UCIQE values for different methods

    序号 原图 MLLE MILHD WWPF Bayesian CCIA HLRP LANet HUPE 本文方法
    1 0.4306 0.6074 0.6569 0.6091 0.5773 0.6203 0.6613 0.5426 0.6007 0.6671
    2 0.4230 0.5790 0.6505 0.5882 0.5527 0.5681 0.6419 0.6092 0.5893 0.6518
    3 0.4136 0.6063 0.6736 0.6126 0.5962 0.6268 0.6630 0.5528 0.5849 0.6663
    4 0.2889 0.6334 0.6528 0.6102 0.6286 0.6394 0.6531 0.3468 0.3266 0.6723
    5 0.4258 0.6369 0.7027 0.6414 0.6116 0.6529 0.7037 0.5569 0.5983 0.6835
    6 0.3683 0.5707 0.6918 0.5948 0.5873 0.6428 0.6849 0.5113 0.5597 0.6919
    平均值 0.3917 0.6056 0.6714 0.6094 0.5923 0.6250 0.6680 0.5199 0.6301 0.6721
    下载: 导出CSV

    表  2  不同方法的UIQM值

    Table  2  UIQM values for different methods

    序号 原图 MLLE MILHD WWPF Bayesian CCIA HLRP LANet HUPE 本文方法
    1 0.9615 4.8606 4.6098 3.9214 4.8805 4.4507 3.0289 3.1515 2.9627 4.9770
    2 0.7860 4.4556 4.2190 4.5444 4.5228 4.1937 3.1469 4.7041 3.4857 4.7357
    3 1.0822 3.7046 4.3577 3.3216 4.0716 4.0807 3.0612 2.9985 3.0857 4.3004
    4 1.0064 4.4531 4.6104 3.8922 5.1354 4.4802 3.8992 1.8163 1.3638 4.5014
    5 2.3545 4.9188 4.7103 4.0713 4.8579 4.4756 2.5404 4.0396 3.6857 4.6359
    6 2.0476 4.9280 4.6299 4.4408 4.9191 4.5424 3.5872 3.8476 3.2337 5.4272
    平均值 1.3730 4.5535 4.5228 4.0320 4.7312 4.3706 3.2106 3.4263 2.7806 4.7629
    下载: 导出CSV

    表  3  算法的运行时间比较

    Table  3  Comparison of algorithm runtime

    算法 运行时间(s)
    MLLE 1.85
    MILHD 1.74
    WWPF 1.61
    Bayesian 1.28
    CCIA 0.80
    HLRP 1.35
    本文方法 0.65
    下载: 导出CSV
  • [1] Fu C P, Liu R S, Fan X, Chen P Y, Fu H, Yuan W Q, et al. Rethinking general underwater object detection: Datasets, challenges and solutions. Neurocomputing, 2023, 517(2023): 243−256
    [2] Zhang W D, Zhou L, Zhuang P X, Li G H, Pan X P, Zhao W Y, et al. Underwater image enhancement via weighted wavelet visual perception fusion. IEEE Transactions on Circuits Systems for Video Technology, 2023, 34(4): 2469−2483
    [3] 李庆忠, 白文秀, 牛炯. 基于改进CycleGAN的水下图像颜色校正与增强. 自动化学报, 2023, 49(4): 820−829

    Li Qing-Zhong, Bai Wen-Xiu, Niu Jiong. Underwater image color correction and enhancement based on improved cycle-consistent generative adversarial networks. Acta Automatica Sinica, 2023, 49(4): 820−829
    [4] Zhang W D, Dong L L, Zhang T, Xu W H. Enhancing underwater image via color correction and bi-interval contrast enhancement. Signal Processing: Image Communication, 2021, 90(2021): 116030−116042
    [5] Liu H M, Jin F, Zeng H, Pu H Y, Fan B. Image enhancement guided object detection in visually degraded scenes. IEEE Transactions on Neural Networks Learning Systems, 2023, 35(10): 14164−14177
    [6] Zhang W D, Wang Y D, Li C Y. Underwater image enhancement by attenuated color channel correction and detail preserved contrast enhancement. IEEE Journal of Oceanic Engineering, 2022, 47(3): 718−735 doi: 10.1109/JOE.2022.3140563
    [7] Ulutas G, Ustubioglu B. Underwater image enhancement using contrast limited adaptive histogram equalization and layered difference representation. Multimedia Tools Applications, 2021, 80(2021): 15067−15091
    [8] Hu Q, Zhong Y Z, Zhu Y Q, Zhong X K, Xiao Q, Dian S Y. Underwater image enhancement based on multichannel adaptive compensation. IEEE Transactions on Instrumentation Measurement, 2024, 73(2024): 1−10
    [9] Zhuang P X, Li C Y, Wu J M. Bayesian retinex underwater image enhancement. Engineering Applications of Artificial Intelligence, 2021, 101(2021): 104171−104195
    [10] Zhuang P X, Wu J M, Porikli F, Li C Y. Underwater image enhancement with hyper-laplacian reflectance priors. IEEE Transactions on Image Processing, 2022, 31(2022): 5442−5455
    [11] Zhou J C, Wang S Y, Lin Z F, Jiang Q P, Sohel F. A pixel distribution remapping and multi-prior retinex variational model for underwater image enhancement. IEEE Transactions on Multimedia, 2024, 26(2024): 7838−7849
    [12] Wang Y D, Guo J C, Gao H, Yue H H. UIEC2-Net: CNN-based underwater image enhancement using two color space. Signal Processing: Image Communication, 2021, 96(2021): 116250−116261
    [13] Huang Y F, Liu M Y, Yuan F. Color correction and restoration based on multi-scale recursive network for underwater optical image. Signal Processing: Image Communication, 2021, 93(2021): 116174−116184
    [14] Shen Z, Xu H Y, Luo T, Song Y, He Z Y. UDAformer: Underwater image enhancement based on dual attention transformer. Computers & Graphics, 2023, 111(2023): 77−88
    [15] Zhang H Q, Sun L Y, Wu L F, Gu K. DuGAN: An effective framework for underwater image enhancement. IET Image Processing, 2021, 15(9): 2010−2019 doi: 10.1049/ipr2.12172
    [16] Huang Z X, Li J J, Hua Z, Fan L W. Underwater image enhancement via adaptive group attention-based multiscale cascade transformer. IEEE Transactions on Instrumentation Measurement, 2022, 71(2022): 1−18
    [17] Bakht A B, Jia Z K, Din M U, Akram W, Saoud L S, Seneviratne L, et al. Mula-gan: Multi-level attention gan for enhanced underwater visibility. Ecological Informatics, 2024, 81(2024): 102631−102645
    [18] Wang Z, Cun X, Bao J, Zhou W, Liu J, Li H. Uformer: A general u-shaped transformer for image restoration. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition. Las Vegas, USA: IEEE, 2022. 17662−17672
    [19] Wang B, Xu H Y, Jiang G Y, Yu M, Ren T D, Luo T, et al. UIE-Convformer: Underwater image enhancement based on convolution and feature fusion transformer. IEEE Transactions on Emerging Topics in Computational Intelligence, 2024, 8(2): 1952−1968 doi: 10.1109/TETCI.2024.3359061
    [20] Qing Y H, Wang Y Y, Yan H C, Xie X P, Wu Z G. Unformer: A transformer-based approach for adaptive multi-scale feature aggregation in underwater image enhancement. IEEE Transactions on Artificial Intelligence, 2024, 6(4): 1024−1037
    [21] He K M, Sun J, Tang X O. Single image haze removal using dark channel prior. IEEE transactions on pattern analysis machine intelligence, 2010, 33(12): 2341−2353
    [22] Zhang W B, Liu W D, Li L, Li J Y, Zhang M J, Li Y L. An adaptive color correction method for underwater single image haze removal. Signal Image Video Processing, 2022, 16(2022): 1003−1010
    [23] Wu Q, Guo Y J, Hou J C, Yuan J J, Kong F, Lyu W H, et al. Underwater optical image processing based on double threshold judgements and optimized red dark channel prior method. Multimedia Tools Applications, 2021, 80(2021): 29985−30002
    [24] Ding X Y, Liang Z, Wang Y F, Fu X P. Depth-aware total variation regularization for underwater image dehazing. Signal Processing: Image Communication, 2021, 98(2021): 116408−116418
    [25] Zhang T, Su H B, Fan B, Yang N, Zhong S, Yin J J. Underwater image enhancement based on red channel correction and improved multiscale fusion. IEEE Transactions on Geoscience Remote Sensing, 2024, 62(2024): 1−20
    [26] Zhou Y, Wu Q, Yan K M, Feng L Y, Xiang W. Underwater image restoration using color-line model. IEEE Transactions on Circuits Systems for Video Technology, 2018, 29(3): 907−911
    [27] Xu L, Yan Q, Xia Y, Jia J Y. Structure extraction from texture via relative total variation. ACM Transactions on Graphics, 2012, 31(6): 1−10
    [28] Zhang W D, Zhuang P X, Sun H H, Li G H, Kwong S, Li C Y. Underwater image enhancement via minimal color loss and locally adaptive contrast enhancement. IEEE Transactions on Image Processing, 2022, 31(2022): 3997−4010
    [29] Li C Y, Guo J C, Cong R M, Pang Y W, Wang B. Underwater image enhancement by dehazing with minimum information loss and histogram distribution prior. IEEE Transactions on Image Processing, 2016, 25(12): 5664−5677 doi: 10.1109/TIP.2016.2612882
    [30] Zhang W H, Li G, Ying Z Q. A new underwater image enhancing method via color correction and illumination adjustment. In: Proceedings of the IEEE Conference on Visual Communications and Image Processing. St. Petersburg, FL: USA: IEEE, 2017. 1−4
    [31] Liu S B, Fan H J, Lin S, Wang Q, Ding N D, Tang Y D. Adaptive learning attention network for underwater image enhancement. IEEE Robotics Automation Letters, 2022, 7(2): 5326−5333 doi: 10.1109/LRA.2022.3156176
    [32] Zhang Z X, Jiang Z Y, Ma L, Liu J Y, Fan X, Liu R S. HUPE: Heuristic underwater perceptual enhancement with semantic collaborative learning. International Journal of Computer Vision, 2025, 133(2025): 1−19
    [33] Li C Y, Guo C L, Ren W Q, Cong R M, Hou J H, Kwong S, et al. An underwater image enhancement benchmark dataset and beyond. IEEE transactions on image processing, 2019, 29(2019): 4376−4389
    [34] Panetta K, Gao C, Agaian S. Human-visual-system-inspired underwater image quality measures. IEEE Journal of Oceanic Engineering, 2015, 41(3): 541−551
    [35] Imamoglu N, Lin W S, Fang Y M. A saliency detection model using low-level features based on wavelet transform. IEEE Transactions on Multimedia, 2012, 15(1): 96−105
  • 加载中
计量
  • 文章访问数:  46
  • HTML全文浏览量:  37
  • 被引次数: 0
出版历程
  • 收稿日期:  2024-12-13
  • 录用日期:  2025-05-14
  • 网络出版日期:  2025-06-19

目录

    /

    返回文章
    返回