A study of TSK fuzzy system and domain adaptation method in multi-label affective computing
-
摘要: 情感计算作为人机交互领域的一个重要学科分支, 是实现和谐、自然的人机交互体验的关键保障. 如何利用便于获得的生理信号进行准确的情绪识别已成为了其中的热门话题. 广泛使用的情绪模型通常从愉悦维、唤醒维、支配维等多个维度描述情绪, 但现有情绪识别方法大多将不同维度分别考虑, 忽略了维度间的相关性关系, 并且在可解释性方面存在局限. 多标签TSK模糊系统虽然能够弥补以上不足, 但仍面临高维输入下模糊规则构建困难、训练效率低下的问题. 此外, 多模态生理信号具有较大的个体差异性, 严重影响了跨用户情绪识别的准确性. 本文首先提出了规则降维的多标签TSK模糊系统(RDR-MLTSK), 以优化模糊系统结构和训练效率; 进一步提出了多标签模糊域适应算法(MLFDA)实现多源域迁移学习, 提高了RDR-MLTSK的泛化性能. 在DEAP和DECAF两个公开数据集上的实验结果表明, 所提出的方法能有效提高情绪识别的准确率, 与经典和先进的方法相比具有更好的性能.Abstract: Affective computing, as an important branch of human-computer interaction (HCI), is a key guarantee for realizing a harmonious and natural HCI experience. How to utilize easily accessible physiological signals for accurate emotion recognition has become a hot topic. The widely used emotion model usually describes emotions from multiple dimensions, such as pleasure, arousal, and dominance, etc. However, most of the existing emotion recognition methods consider different dimensions separately, ignore the correlation relationship between dimensions, and have limitations in interpretability. Although the multi-label TSK fuzzy system can compensate for the above shortcomings, it still faces the problems of difficulty in constructing fuzzy rules and low training efficiency under high-dimensional input. In addition, multimodal physiological signals have large individual variability, which seriously affects the accuracy of cross-user emotion recognition. In this paper, we firstly propose a multi-label TSK fuzzy system with rule dimensionality reduction (RDR-MLTSK) to optimize the fuzzy system structure and the training efficiency; furthermore, we propose a multi-label fuzzy domain adaptation algorithm (MLFDA) to achieve multi-source domain migration learning, which improves the generalization performance of RDR-MLTSK. The experimental results on two publicly available datasets, DEAP and DECAF, show that the proposed methods can effectively improve the accuracy of emotion recognition and has better performance compared to classical and advanced methods.
-
Key words:
- affective computing /
- multi-label learning /
- TSK fuzzy system /
- domain adaptation
-
表 1 DEAP数据集特征提取
Table 1 Feature extraction from DEAP dataset
生理信号 提取的特征 特征维数 EEG 6个频带($ \delta $: 1 ~ 4 Hz, $ \theta $: 4 ~ 8 Hz, slow $ \alpha $: 8 ~ 10 Hz, $ \alpha $: 10 ~ 12 Hz, $ \beta $: 13 ~ 30 Hz, $ \gamma $:30-48Hz)的平均功率. 32通道×6维 EMG 均值, 最大值, 最小值, 标准差, 峰度, 偏度, 平均功率(20 ~ 64 Hz). 1通道×7维 GSR 均值, 标准差, 幅值, 峰值个数, 上升时间, 平均功率(0.4 ~ 1.0 Hz, 1.0 ~ 1.6 Hz, 1.6 ~ 2.2 Hz). 1通道×8维 BVP 心率的均值、最大值、最小值、标准差、均方根值, 心率变异性(R-R间期标准差). 1通道×6维 表 2 DECAF数据集特征提取
Table 2 Feature extraction from DECAF dataset
生理信号 提取的特征 特征维数 MEG 梯度计、磁强计筛选后通道的离散余弦变换的前8个系数. 9通道×8维×2 EMG 11个频带功率谱密度的6个统计特征(均值, 标准差, 峰度, 偏度, 标准分数大于1/小于−1的值所占比例). 1通道×66维 EOG 11个频带功率谱密度的6个统计特征(均值, 标准差, 峰度, 偏度, 标准分数大于1/小于−1的值所占比例). 1通道×66维 ECG 心率、心率变异性、心跳间隔、10个频带功率谱密度的统计特征等. 1通道×92维 表 3 DEAP数据集实验对比
Table 3 Experimental comparison on DEAP dataset
方法 愉悦维 唤醒维 支配维 ACC F1 ACC F1 ACC F1 LDA 0.620 0.532 0.604 0.598 0.584 0.571 SVM 0.632 0.596 0.612 0.603 0.575 0.564 LSTM 0.650 0.639 0.648 0.657 0.612 0.600 Koelstra等[10] 0.630 0.610 0.620 0.580 0.602 0.589 Lian等[62] 0.630 0.640 0.670 0.660 0.560 0.550 Kwade等[63] 0.580 0.600 0.640 0.630 0.660 0.640 MLTSK 0.605 0.585 0.632 0.622 0.610 0.590 RDR-MLTSK 0.656 0.660 0.674 0.691 0.626 0.602 表 4 DECAF数据集实验对比
Table 4 Experimental comparison on DECAF dataset
方法 愉悦维 唤醒维 支配维 ACC F1 ACC F1 ACC F1 LDA 0.649 0.631 0.624 0.617 0.609 0.588 SVM 0.597 0.524 0.627 0.586 0.621 0.604 LSTM 0.673 0.679 0.688 0.667 0.652 0.640 Koelstra等[10] 0.656 0.633 0.628 0.578 0.635 0.621 Lian等[62] 0.686 0.664 0.696 0.681 0.634 0.605 Kwade等[63] 0.645 0.620 0.684 0.673 0.658 0.647 MLTSK 0.644 0.658 0.643 0.629 0.631 0.609 RDR-MLTSK 0.690 0.706 0.680 0.689 0.671 0.659 表 5 直接迁移实验对比
Table 5 Comparison of direct transfer experiments
数据集 方法 愉悦维 唤醒维 支配维 ACC F1 ACC F1 ACC F1 DEAP LSTM 0.650 0.639 0.648 0.657 0.612 0.600 XGBoost 0.686 0.674 0.667 0.654 0.621 0.644 He等[67] 0.633 — 0.643 — — — Huang等[68] 0.681 — 0.639 — — — Shen等[69] 0.615 0.615 0.603 0.548 — — MLTSK 0.609 0.635 0.618 0.631 0.594 0.626 RDR-MLTSK 0.691 0.670 0.695 0.685 0.658 0.647 DECAF LSTM 0.673 0.679 0.688 0.677 0.652 0.640 XGBoost 0.707 0.684 0.687 0.666 0.651 0.654 Zhang等[70] 0.712 0.719 0.571 0.605 — — MLTSK 0.629 0.611 0.634 0.627 0.619 0.585 RDR-MLTSK 0.702 0.689 0.720 0.695 0.675 0.650 —: 文中未报告相应结果 表 6 不同相关性损失性能对比
Table 6 Performance comparison of different correlation loss
数据集 标签相关性 愉悦维 唤醒维 支配维 ACC F1 ACC F1 ACC F1 DEAP $ \alpha=0 $ 0.659 0.623 0.676 0.643 0.616 0.614 相关系数 0.691 0.670 0.695 0.685 0.658 0.647 互信息 0.718 0.682 0.720 0.694 0.673 0.645 DECAF $ \alpha=0 $ 0.671 0.659 0.694 0.687 0.625 0.604 相关系数 0.702 0.689 0.720 0.695 0.675 0.650 互信息 0.693 0.682 0.711 0.684 0.681 0.664 表 7 DEAP数据集迁移学习实验对比
Table 7 Comparison of Transfer Learning Experiments on DEAP Dataset
表 8 DECAF数据集迁移学习实验对比
Table 8 Comparison of Transfer Learning Experiments on DECAF Dataset
表 9 多标签学习性能对比
Table 9 Comparison of multi-label learning performance
数据集 评价指标 CC BRNN MLKNN MLFDA DEAP SA 0.41 0.43 0.37 0.45 HL 0.31 0.29 0.36 0.26 DECAF SA 0.52 0.52 0.44 0.54 HL 0.19 0.22 0.28 0.14 -
[1] Suhaimi N S, Mountstephens J, Teo J. EEG-based emotion recognition: a state-of-the-art review of current trends and opportunities. Computational Intelligence and Neuroscience, 2020, 2020(1): 8875426 [2] Cambria E, Das D, Bandyopadhyay S, Feraco A. Affective computing and sentiment analysis. A Practical Guide to Sentiment Analysis, 20171−10 [3] De Nadai S, D'Incà M, Parodi F, Benza M, Trotta A, Zero E, et al. Enhancing safety of transport by road by online monitoring of driver emotions. In: Proceedings of the 11th System of Systems Engineering Conference. IEEE, 2016. 1−4 [4] Huang H Y, Xie Q Y, Pan J H, He Y B, Wen Z F, Yu R H, et al. An EEG-based brain computer interface for emotion recognition and its application in patients with disorder of consciousness. IEEE Transactions on Affective Computing, 2021, 12(4): 832−842 doi: 10.1109/TAFFC.2019.2901456 [5] 权学良, 曾志刚, 蒋建华, 张亚倩, 吕宝粮, 伍冬睿. 基于生理信号的情感计算研究综述. 自动化学报, 2021, 47(8): 1769−1784Quan Xue-Liang, Zeng Zhi-Gang, Jiang Jian-Hua, Zhang Ya-Qian, Lv Bao-Liang, Wu Dong-Rui. Physiological signals based affective computing:a systematic review. Acta Automatica Sinica, 2021, 47(8): 1769−1784 [6] Wu D R, Lu B L, Hu B, Zeng Z G. Affective Brain-Computer Interfaces (aBCIs): A Tutorial. Proceedings of the IEEE, 2023, 111(10): 1314−1332 doi: 10.1109/JPROC.2023.3277471 [7] Zeng Z H, Pantic M, Roisman G I, Huang T S. A survey of affect recognition methods: audio, visual, and spontaneous expressions. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2009, 31(1): 39−58 doi: 10.1109/TPAMI.2008.52 [8] Arifin S, Cheung P Y K. Affective level video segmentation by utilizing the pleasure-arousal-dominance information. IEEE Transactions on Multimedia, 2008, 10(7): 1325−1341 doi: 10.1109/TMM.2008.2004911 [9] Poria S, Cambria E, Bajpai R, Hussain A. A review of affective computing: From unimodal analysis to multimodal fusion. Information fusion, 2017, 37: 98−125 doi: 10.1016/j.inffus.2017.02.003 [10] Koelstra S, Muhl C, Soleymani M, Lee J-S, Yazdani A, Ebrahimi T, et al. DEAP: A Database for Emotion Analysis Using Physiological Signals. IEEE Transactions on Affective Computing, 2012, 3(1): 18−31 doi: 10.1109/T-AFFC.2011.15 [11] Abadi M K, Subramanian R, Kia S M, Avesani P, Patras I, Sebe N. DECAF: MEG-Based Multimodal Database for Decoding Affective Physiological Responses. IEEE Transactions on Affective Computing, 2015, 6(3): 209−222 doi: 10.1109/TAFFC.2015.2392932 [12] Soleymani M, Lichtenauer J, Pun T, Pantic M. A multimodal database for affect recognition and implicit tagging. IEEE Transactions on Affective Computing, 2012, 3(1): 42−55 doi: 10.1109/T-AFFC.2011.25 [13] Katsigiannis S, Ramzan N. DREAMER: A database for emotion recognition through EEG and ECG signals from wireless low-cost off-the-shelf devices. IEEE Journal of Biomedical and Health Informatics, 2018, 22(1): 98−107 doi: 10.1109/JBHI.2017.2688239 [14] Alvarado N. Arousal and valence in the direct scaling of emotional response to film clips. Motivation and Emotion, 1997, 21: 323−348 doi: 10.1023/A:1024484306654 [15] Lewis P A, Critchley H D, Rotshtein P, Dolan R J. Neural correlates of processing valence and arousal in affective words. Cerebral Cortex, 2007, 17(3): 742−748 [16] Oliveira A M, Teixeira M P, Fonseca I B, Oliveira M. Joint Model-Parameter Validation of Self-Estimates of Valence and Arousal: Probing a Differential-Weighting Model of Affective Intensity. Proceedings of Fechner Day, 2006, 22(1): 245−250 [17] Fourati R, Ammar B, Aouiti C, Sanchez-Medina J, Alimi A M. Optimized echo state network with intrinsic plasticity for EEGbased emotion recognition. In: Proceedings of the 24th International Conference on Neural Information Processing. Guangzhou, China: Springer, 2017. 718−727 [18] Ren F J, Dong Y D, Wang W. Emotion recognition based on physiological signals using brain asymmetry index and echo state network. Neural Computing and Applications, 2019, 31(9): 4491−4501 doi: 10.1007/s00521-018-3664-1 [19] Liu Y, Ding Y F, Li C, Cheng J, Song R C, Wan F, et al. Multi-channel EEG-based emotion recognition via a multi-level features guided capsule network. Computers in Biology and Medicine, 2020, 123: Article No. 103927 doi: 10.1016/j.compbiomed.2020.103927 [20] Hou K, Zhang X W, Yang Y K, Zhao Q Q, Yuan W J, Zhou Z Y, et al. Emotion recognition from multimodal physiological signals via discriminative correlation fusion with a temporal alignment mechanism. IEEE Transactions on Cybernetics, 2024, 54(5): 3079−3092 doi: 10.1109/TCYB.2023.3320107 [21] Zhang Z, Zhong S H, Liu Y. Beyond mimicking under-represented emotions: Deep data augmentation with emotional subspace constraints for EEG-based emotion recognition. Proceedings of the AAAI Conference on Artificial Intelligence, 2024, 38(9): 10252−10260 doi: 10.1609/aaai.v38i9.28891 [22] Nicolaou M A, Gunes H, Pantic M. Continuous prediction of spontaneous affect from multiple cues and modalities in valence-arousal space. IEEE Transactions on Affective Computing, 2011, 2(2): 92−105 doi: 10.1109/T-AFFC.2011.9 [23] Rivas J J, del Carmen Lara M, Castrejon L, Hernández-Franco J, Orihuela-Espina F, Palafox L, et al. Multi-Label and Multimodal Classifier for Affective States Recognition in Virtual Rehabilitation. IEEE Transactions on Affective Computing, 2022, 13(3): 1183−1194 doi: 10.1109/TAFFC.2021.3055790 [24] Wu D R, Huang J. Affect Estimation in 3D Space Using Multi-Task Active Learning for Regression. IEEE Transactions on Affective Computing, 2022, 13(1): 16−27 doi: 10.1109/TAFFC.2019.2916040 [25] Zheng W J, Yu J F, Xia R. A Unimodal Valence-Arousal Driven Contrastive Learning Framework for Multimodal Multi-Label Emotion Recognition. In: Proceedings of the ACM Multimedia. Melbourne, Australia: ACM, 2024. 1−10 [26] Li X Y, Liu J, Xie Y R, Gong P Z, Zhang X L, He H H. MAGDRA: A Multi-modal Attention Graph Network with Dynamic Routing-By-Agreement for multi-label emotion recognition. Knowledge-Based Systems, 2024, 283: 111126 doi: 10.1016/j.knosys.2023.111126 [27] Cui Y Q, Xu Y F, Wu D R. EEG-Based Driver Drowsiness Estimation Using Feature Weighted Episodic Training. IEEE Transactions on Neural Systems and Rehabilitation Engineering, 2019, 27(11): 2263−2273 doi: 10.1109/TNSRE.2019.2945794 [28] Kar S, Das S, Ghosh P K. Applications of neuro fuzzy systems: A brief review and future outline. Applied Soft Computing, 2014, 15: 243−259 doi: 10.1016/j.asoc.2013.10.014 [29] Lotte F, Bougrain L, Cichocki A, Clerc M, Congedo M, Rakotomamonjy A, et al. A review of classification algorithms for EEG-based brain-computer interfaces: A 10 year update. Journal of Neural Engineering, 2018, 15(3): 1005−1033 [30] Lu W, Chen Y Q, Wang J D, Qin X. Cross-domain activity recognition via substructural optimal transport. Neurocomputing, 2021, 454(1): 65−75 [31] Chai X, Wang Q S, Zhao Y P, Li Y Q, Liu D, Liu X, et al. A fast, efficient domain adaptation technique for cross-domain electroencephalography(EEG)-based emotion recognition. Sensors, 2017, 17(5): 1014−1034 doi: 10.3390/s17051014 [32] Zhang W, Deng L F, Zhang L, Wu D R. A Survey on Negative Transfer. IEEE/CAA Journal of Automatica Sinica, 2023, 10(2): 305−329 doi: 10.1109/JAS.2022.106004 [33] Li J P, Qiu S, Shen Y Y, Liu C L, He H G. Multisource transfer learning for cross-subject EEG emotion recognition. IEEE Transactions on Cybernetics, 2019, 50(7): 3281−3293 [34] Lin Y P, Jung T P. Improving EEG-based emotion classification using conditional transfer learning. Frontiers in Human Neuroscience, 2017, 11(1): 334−344 [35] Lou Q D, Deng Z H, Xiao Z Y, Choi K S, Wang S T. Multilabel Takagi-Sugeno-Kang Fuzzy System. IEEE Transactions on Fuzzy Systems, 2022, 30(9): 3410−3425 doi: 10.1109/TFUZZ.2021.3115967 [36] Bian Z W, Chang Q, Wang J, Pedrycz W, Pal N R. Takagi-Sugeno-Kang Fuzzy Systems for High-Dimensional Multilabel Classification. IEEE Transactions on Fuzzy Systems, 2024, 32(6): 3790−3804 doi: 10.1109/TFUZZ.2024.3382981 [37] Krinidis S, Chatzis V. A robust fuzzy local information C-means clustering algorithm. IEEE transactions on image processing, 2010, 19(5): 1328−1337 doi: 10.1109/TIP.2010.2040763 [38] Cui Y Q, Wu D R, Xu Y F. Curse of Dimensionality for TSK Fuzzy Neural Networks: Explanation and Solutions. In: 2021 International Joint Conference on Neural Networks. Shenzhen, China: IEEE, 2021. 1−8 [39] Houle M E, Kriegel H P, Kröger P, Schubert E, Zimek A. Can shared-neighbor distances defeat the curse of dimensionality?. In: Scientific and Statistical Database Management: 22nd International Conference. Heidelberg, Germany: Springer, 2010. 482−500 [40] Winkler R, Klawonn F, Kruse R. Fuzzy c-means in high dimensional spaces. International Journal of Fuzzy System Applications, 2011, 1(1): 1−16 doi: 10.4018/ijfsa.2011010101 [41] Urbanowicz R J, Meeker M, La Cava W, Olson R S, Moore J H. Relief-based feature selection: Introduction and review. Journal of Biomedical Informatics, 2018, 85: 189−203 doi: 10.1016/j.jbi.2018.07.014 [42] Gu X M, Cheng X. Distilling a deep neural network into a TakagiSugeno-Kang fuzzy inference system. arxiv: 2010.04974, 2020 [43] Du G L, Wang Z, Li C, Liu P X. A TSK-type convolutional recurrent fuzzy network for predicting driving fatigue. IEEE Transactions on Fuzzy Systems, 2020, 29(8): 2100−2111 [44] Lin K P. A Novel Evolutionary Kernel Intuitionistic Fuzzy C-means Clustering Algorithm. IEEE Transactions on Fuzzy Systems, 2014, 22(5): 1074−1087 doi: 10.1109/TFUZZ.2013.2280141 [45] Li Y X, Fu Z Z, He X R, Huang J. An optimized multi-label TSK fuzzy system for emotion recognition of multimodal physiological signals. In: 2022 IEEE International Conference on Cyborg and Bionic Systems. Wuhan, China: IEEE, 2023. 362−367 [46] Jang J S R. ANFIS: adaptive-network-based fuzzy inference system. IEEE Transactions on Systems, Man, and Cybernetics, 1993, 23(3): 665−685 doi: 10.1109/21.256541 [47] Wu D R, Yuan Y, Huang J, Tan Y H. Optimize TSK Fuzzy Systems for Regression Problems: Minibatch Gradient Descent With Regularization, DropRule, and AdaBound (MBGD-RDA). IEEE Transactions on Fuzzy Systems, 2019, 28(5): 1003−1015 [48] 汪雷, 黄剑, 段涛, 伍冬睿, 熊蔡华, 崔雨琦. 基于气压肌动图和改进神经模糊推理系统的手势识别研究. 自动化学报, 2022, 48(5): 1220−1233Wang Lei, Huang Jian, Duan Tao, Wu Dong-Rui, Xiong Cai-Hua, Cui Yu-Qi. Research on Gesture Recognition Based on Pressure-based Mechanomyogram and Improved Neural Fuzzy Inference System. Acta Automatica Sinica, 2022, 48(5): 1220−1233 [49] Wang J D, Chen Y Q, Feng W J, Yu H, Huang M Y, Yang Y. Transfer learning with dynamic distribution adaptation. ACM Transactions on intelligent Systems and Technology, 2020, 11(1): 1−25 [50] Fu Z Z, Zhang B N, He X R, Li Y X, Wang H Y, Huang J. Emotion recognition based on multi-modal physiological signals and transfer learning. Frontiers in Neuroscience, 2022, 16(1): 716−730 [51] Zhang W, Wu D R. Discriminative joint probability maximum mean discrepancy(DJP-MMD) for domain adaptation. In: 2020 International Joint Conference on Neural Networks. Glasgow, United Kindom: IEEE, 2020. 1−8 [52] Pan S J, Tsang I W, Kwok J T, Yang Q. Domain adaptation via transfer component analysis. IEEE Transactions on Neural Networks, 2010, 22(2): 199−210 [53] Ling M S, Wang J M, Ding G G, Sun J G, Yu P S. Transfer feature learning with joint distribution adaptation. In: Proceedings of the IEEE International Conference on Computer Vision. Sydney, Australia: IEEE, 2013. 2200–2207 [54] Pan S J, Yang Q. A survey on transfer learning. IEEE Transactions on Knowledge and Data Engineering, 2009, 22(10): 1345−1359 [55] Khan M A A H, Roy N, Misra A. Scaling human activity recognition via deep learning-based domain adaptation. In: 2018 IEEE International Conference on Pervasive Computing and Communications. Athens, Greece: IEEE, 2018. 1−9 [56] Lu J, Zuo H, Zhang G Q. Fuzzy Multiple-source Transfer Learning. IEEE Transactions on Fuzzy Systems, 2020, 28(12): 3418−3431 doi: 10.1109/TFUZZ.2019.2952792 [57] Li C H, Zhang R, Li J, Petre S. Bayesian Information Criterion for Signed Measurements with Application to Sinusoidal Signals. IEEE Signal Processing Letters, 2018, 25(8): 1251−1255 doi: 10.1109/LSP.2018.2847559 [58] Read J, Pfahringer B, Holmes G, Frank E. Classifier chains for multi-label classification. Machine learning, 2011, 85(3): 333−359 doi: 10.1007/s10994-011-5256-5 [59] Zhang M L, Zhou Z H. ML-KNN: A lazy learning approach to multi-label learning. Pattern Recognition, 2007, 40(7): 2038−2048 doi: 10.1016/j.patcog.2006.12.019 [60] Spyromitros E, Tsoumakas G, Vlahavas I. An empirical study of lazy multilabel classification algorithms. In: Artificial Intelligence: Theories, Models and Applications: 5th Hellenic Conference on AI. Syros, Greece: Springer, 2008. 401−406 [61] He H H, Xia R. Joint binary neural network for multi-label learning with applications to emotion classification. In: Natural Language Processing and Chinese Computing. Hohhot, China: Springer, 2018. 250−259 [62] 连卫芳, 晁浩, 刘永利. 基于SDAE和RELM的EEG情感识别方法. 计算机工程, 2021, 47(9): 75−83Lian Wei-Fang, Chao Hao, Liu Yong-Li. EEG Emotion Recognition Method Based on SDAE and RELM. Computer Engineering, 2021, 47(9): 75−83 [63] Kawde P, Verma G K. Deep belief network based affect recognition from physiological signals. In: 2017 4th IEEE Uttar Pradesh Section International Conference on Electrical, Computer and Electronics. Mathura, India: IEEE, 2017. 587−592 [64] Pereira E T, Gomes H M, Veloso L R, Mota M R A. Empirical Evidence Relating EEG Signal Duration to Emotion Classification Performance. IEEE Transactions on Affective Computing, 2021, 12(1): 154−164 doi: 10.1109/TAFFC.2018.2854168 [65] Fu Z Z, He X R, Wang E K, Huo J, Huang J, Wu D R. Personalized human activity recognition based on integrated wearable sensor and transfer learning. Sensors, 2021, 21(3): 885−908 doi: 10.3390/s21030885 [66] Elalamy R, Fanourakis M, G. Chanel. Multi-modal emotion recognition using recurrence plots and transfer learning on physiological signals. In: 2021 9th International Conference on Affective Computing and Intelligent Interaction. Nara, Japan: IEEE, 2021. 1−7 [67] He Z P, Zhong Y S, Pan J H. An adversarial discriminative temporal convolutional network for EEG-based cross-domain emotion recognition. Computers in Biology and Medicine, 2022, 141: 105048 doi: 10.1016/j.compbiomed.2021.105048 [68] Huang D M, Chen S T, Liu C, Zheng L, Tian Z H, Jiang D Z. Differences first in asymmetric brain: A bi-hemisphere discrepancy convolutional neural network for EEG emotion recognition. Neurocomputing, 2021, 448: 140−151 doi: 10.1016/j.neucom.2021.03.105 [69] Shen J, Zhu K X, Liu H K, Wu J W, Wang K, Dong Q X. Tensor Correlation Fusion for Multimodal Physiological Signal Emotion Recognition. IEEE Transactions on Computational Social Systems, 2024, early access [70] Zhang X W, Liu J Y, Shen J, Li S J, Hou K C, Hu B, et al. Emotion Recognition From Multimodal Physiological Signals Using a Regularized Deep Fusion of Kernel Machine. IEEE Transactions on Cybernetics, 2021, 51(9): 4386−4399 doi: 10.1109/TCYB.2020.2987575 [71] Angelov P, Filev D P, Kasabov N. Evolving intelligent systems: methodology and applications. John Wiley & Sons, 2010 [72] Zhou J, Chen L, Chen C P, Zhang Y, Li H X. Fuzzy clustering with the entropy of attribute weights. Neurocomputing, 2016, 198: 125−134 doi: 10.1016/j.neucom.2015.09.127 -
计量
- 文章访问数: 34
- HTML全文浏览量: 24
- 被引次数: 0