2.845

2023影响因子

(CJCR)

  • 中文核心
  • EI
  • 中国科技核心
  • Scopus
  • CSCD
  • 英国科学文摘

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

基于镜像下降的分布式弱凸优化算法研究

程松松 陈茹 樊渊 邱剑彬

程松松, 陈茹, 樊渊, 邱剑彬. 基于镜像下降的分布式弱凸优化算法研究. 自动化学报, xxxx, xx(x): x−xx doi: 10.16383/j.aas.c240784
引用本文: 程松松, 陈茹, 樊渊, 邱剑彬. 基于镜像下降的分布式弱凸优化算法研究. 自动化学报, xxxx, xx(x): x−xx doi: 10.16383/j.aas.c240784
Cheng Song-Song, Chen Ru, Fan Yuan, Qiu Jian-Bin. Distributed mirror descent algorithm design for weakly convex optimization. Acta Automatica Sinica, xxxx, xx(x): x−xx doi: 10.16383/j.aas.c240784
Citation: Cheng Song-Song, Chen Ru, Fan Yuan, Qiu Jian-Bin. Distributed mirror descent algorithm design for weakly convex optimization. Acta Automatica Sinica, xxxx, xx(x): x−xx doi: 10.16383/j.aas.c240784

基于镜像下降的分布式弱凸优化算法研究

doi: 10.16383/j.aas.c240784 cstr: 32138.14.j.aas.c240784
基金项目: 国家自然科学基金(62103003, U21B6001, 62273121), 安徽省科技创新攻坚计划(202423i08050033)资助
详细信息
    作者简介:

    程松松:安徽大学电气工程与自动化学院副教授. 2018年获得中国科学技术大学控制科学与工程专业博士学位. 主要研究方向为分布式计算、优化与博弈. E-mail: sscheng@ahu.edu.cn

    陈茹:安徽大学电气工程与自动化学院硕士研究生. 主要研究方向为基于对偶理论的分布式非凸优化与博弈. E-mail: ruchen@stu.ahu.edu.cn

    樊渊:安徽大学电气工程与自动化学院教授. 2011年获得中国科学技术大学和香港城市大学控制科学与工程专业博士学位. 主要研究方向为分布式控制与优化, 机器人导航与控制. 本文通信作者. E-mail: yuanf@ahu.edu.cn

    邱剑彬:哈尔滨工业大学智能控制与系统研究所教授. 2009年获得中国科学技术大学和香港城市大学机械电子工程专业博士学位. 主要研究方向为智能控制理论与应用, 人工智能大模型, 航天器智能自主控制, 智能机器人. E-mail: jbqiu@hit.edu.cn

Distributed Mirror Descent Algorithm Design for Weakly Convex Optimization

Funds: Supported by National Natural Science Foundation of China (62103003, U21B6001, 62273121) and Anhui Province Science and Technology Innovation Key Project (202423i08050033)
More Information
    Author Bio:

    CHENG Song-Song Associate Professor at the School of Electrical Engineering and Automation, Anhui University. He received his Ph.D. degree in control science and engineering from the University of Science and Technology of China in 2018. His current research interest covers distributed computation, optimization, and games

    CHEN Ru Master student at the School of Electrical Engineering and Automation, Anhui University. Her current research interest covers distributed nonconvex optimization and game based on duality theory

    FAN Yuan Professor at the School of Electrical Engineering and Automation, Anhui University. He received his Ph.D. degree in control science and engineering from the University of Science and Technology of China and the City University of Hong Kong in 2011. His current research interest covers distributed control and optimization, robot navigation and control. Corresponding author of this paper

    QIU Jian-Bin Professor at the Institute of Intelligent Control and System, Harbin Institute of Technology. He received his Ph.D. degree in mechatronics engineering from the University of Science and Technology of China and the City University of Hong Kong in 2009. His current research interest covers intelligent control theory and application, artificial intelligence large model, intelligent autonomous control of spacecraft, and intelligent robotics

  • 摘要: 机器学习中的诸多非凸优化问题, 如鲁棒相位恢复、低秩矩阵补全以及稀疏字典学习等, 本质上可归结为弱凸优化问题. 然而, 弱凸优化问题固有的非凸特性使得此类问题的求解极具挑战. 此外, 由于系统复杂度和问题规模的增加以及相关参数的分布式存储需求, 传统基于单个个体的集中式计算框架难以高效求解此类问题. 针对上述挑战, 设计了一种分布式镜像下降算法, 并从Bregman-Moreau包络的角度分析了其收敛性, 证明了算法的收敛速度为${O}(\ln K/{\sqrt K})$, 其中$K$为算法的迭代步数. 进一步地, 考虑目标函数梯度信息难以精确获取的情形, 采用正交随机方向矩阵法进行梯度估计. 相较于传统的基于随机向量的方法, 该方法利用多维方向信息进行估计, 从而显著提高了梯度信息的估计精度和效率. 基于高效的梯度信息估计, 提出了一种分布式零阶镜像下降算法, 并获得了与已知精确梯度信息情形下相一致的收敛速度. 最后, 通过相位恢复问题的数值仿真和实验验证了所提出的两种算法的有效性.
    1)  11 考虑非光滑凸函数$ h(\cdot):{\bf R}_{}^{m}\rightarrow {\bf R} $, $ {{\mathit{\boldsymbol{u}}}} $为其定义域$ {\rm dom} h $中一点. 若向量$ {{\mathit{\boldsymbol{g}}}}\in{\bf R}^{m} $满足$ h({{\mathit{\boldsymbol{v}}}})\ge h({{\mathit{\boldsymbol{u}}}})+ \langle {{\mathit{\boldsymbol{g}}}}, {{\mathit{\boldsymbol{v}}}}-{{\mathit{\boldsymbol{u}}}} \rangle $, $ \forall {{\mathit{\boldsymbol{v}}}}\in {\rm dom} h $, 则称$ {{\mathit{\boldsymbol{g}}}} $为函数$ h(\cdot) $在点$ {{\mathit{\boldsymbol{u}}}} $处的一个次梯度; 此外, 记$ \partial h({{\mathit{\boldsymbol{u}}}})=\{{{\mathit{\boldsymbol{g}}}}|{{\mathit{\boldsymbol{g}}}}\in{\bf R}^{m}, \;h({{\mathit{\boldsymbol{v}}}})\ge $$ h({{\mathit{\boldsymbol{u}}}})+ \langle {{\mathit{\boldsymbol{g}}}}, \;{{\mathit{\boldsymbol{v}}}}-{{\mathit{\boldsymbol{u}}}} \rangle, \forall {{\mathit{\boldsymbol{v}}}} \in {\rm dom} h\} $为函数$ h(\cdot) $在点$ {{\mathit{\boldsymbol{u}}}} $处的次梯度集合[29].
  • 图  1  网络化系统示意图

    Fig.  1  Networked system schematic

    图  2  例1中算法1与2的仿真结果

    Fig.  2  Simulation results of Algorithms 1 and 2 in Example 1

    图  3  例1中算法2与文献[21]中算法的仿真结果

    Fig.  3  Simulation results of Algorithm 2 and the algorithm from [21] in Example 1

    图  4  例2中算法1、2和文献[21]中算法的图像恢复效果

    Fig.  4  Image recovery results of Algorithms 1, 2 and the algorithm from [21] in Example 2

    图  5  例3中算法1、2和文献[21]中算法的图像恢复效果

    Fig.  5  Image recovery results of Algorithms 1, 2 and the algorithm from [21] in Example 3

  • [1] 衣鹏, 洪奕光. 分布式合作优化及其应用. 中国科学: 数学, 2016, 46(10): 1547−1564

    Yi Peng, Hong Yi-Guang. Distributed cooperative optimization and its applications. Sci Sin Math, 2016, 46(10): 1547−1564
    [2] 谢佩, 游科友, 洪奕光, 谢立华. 网络化分布式凸优化算法研究进展. 控制理论与应用, 2018, 35(07): 918−927 doi: 10.7641/CTA.2018.80205

    Xie Pei, You Ke-You, Hong Yi-Guang, Xie Li-Hua. A survey of distributed convex optimization algorithms over networks. Control Theory & Applications, 2018, 35(07): 918−927 doi: 10.7641/CTA.2018.80205
    [3] Nedić A, Liu J. Distributed optimization for control. Annual Review of Control, Robotics, and Autonomous Systems, 2018, 1(1): 77−103
    [4] Yang T, Yi X L, Wu J F, Yuan Y, Wu D, Meng Z Y, Hong Y G, Wang H, Lin Z Y, Johansson K H. A survey of distributed optimization. Annual Reviews in Control, 2019, 47: 278−305 doi: 10.1016/j.arcontrol.2019.05.006
    [5] 杨涛, 柴天佑. 分布式协同优化的研究现状与展望. 中国科学: 技术科学, 2020, 50(11): 1414−1425 doi: 10.1360/SST-2020-0040

    Yang Tao, Chai Tian-You. Research status and prospects of distributed collaborative optimization. Sci Sin Tech, 2020, 50(11): 1414−1425 doi: 10.1360/SST-2020-0040
    [6] 邓文, 李伟健, 曾宪琳, 洪奕光. 矩阵方程的分布式求解算法研究概述. 控制理论与应用, 2021, 38(11): 1695−1706 doi: 10.7641/CTA.2021.10671

    Deng Wen, Li Wei-Jian, Zeng Xian-Lin, Hong Yi-Guang. A survey of distributed algorithms for solving matrix equations. Control Theory & Applications, 2021, 38(11): 1695−1706 doi: 10.7641/CTA.2021.10671
    [7] 杨涛, 徐磊, 易新蕾, 张圣军, 陈蕊娟, 李渝哲. 基于事件触发的分布式优化算法. 自动化学报, 2022, 48(1): 133−143

    Yang Tao, Xu Lei, Yi Xin-Lei, Zhang Sheng-Jun, Chen Rui-Juan, Li Yu-Zhe. Event-triggered distributed optimization algorithms. Acta Automatica Sinica, 2022, 48(1): 133−143
    [8] Yang S F, Liu Q S, Wang J. A multi-agent system with a proportional-integral protocol for distributed constrained optimization. IEEE Transactions on Automatic Control, 2016, 62(7): 3461−3467
    [9] Zhu Y N, Yu W W, Wen G H, Chen G R. Projected primal-dual dynamics for distributed constrained nonsmooth convex optimization. IEEE Transactions on Cybernetics, 2018, 50(4): 1776−1782
    [10] Yuan K, Ling Q, Yin W T. On the convergence of decentralized gradient descent. SIAM Journal on Optimization, 2016, 26(3): 1835−1854 doi: 10.1137/130943170
    [11] Pu S, Shi W, Xu J M, Nedić A. Push-pull gradient methods for distributed optimization in networks. IEEE Transactions on Automatic Control, 2021, 66(1): 1−16 doi: 10.1109/TAC.2020.2972824
    [12] Nedić A, Ozdaglar A, Parrilo P A. Constrained consensus and optimization in multi-agent networks. IEEE Transactions on Automatic Control, 2010, 55(4): 922−938 doi: 10.1109/TAC.2010.2041686
    [13] Lei J L, Chen H F, Fang H T. Primal-dual algorithm for distributed constrained optimization. Systems & Control Letters, 2016, 96: 110−117
    [14] Cheng S S, Liang S, Fan Y, Hong Y G. Distributed gradient tracking for unbalanced optimization with different constraint sets. IEEE Transactions on Automatic Control, 2023, 68(6): 3633−3640
    [15] Beck A, Teboulle M. Mirror descent and nonlinear projected subgradient methods for convex optimization. Operations Research Letters, 2003, 31(3): 167−175 doi: 10.1016/S0167-6377(02)00231-6
    [16] Yuan D M, Hong Y G, Ho D W, Jiang G P. Optimal distributed stochastic mirror descent for strongly convex optimization. Automatica, 2018, 90: 196−203 doi: 10.1016/j.automatica.2017.12.053
    [17] Yang Y, Jia Q S, Xu Z B, Guan X H, Spanos C J. Proximal ADMM for nonconvex and nonsmooth optimization. Automatica, 2022, 146: 110551
    [18] Hou J, Zeng X L, Wang G, Sun J, Chen J. Distributed momentum-based Frank-Wolfe algorithm for stochastic optimization. IEEE/CAA Journal of Automatica Sinica, 2022, 10(3): 685−699
    [19] Chen S X, Garcia A, Shahrampour S. On distributed nonconvex optimization: Projected subgradient method for weakly convex problems in networks. IEEE Transactions on Automatic Control, 2021, 67(2): 662−675
    [20] Wei M L, Yu W W, Liu H Z, Xu Q. Distributed weakly convex optimization under random time-delay interference. IEEE Transactions on Network Science and Engineering, 2024, 11(1): 212−224 doi: 10.1109/TNSE.2023.3294414
    [21] Wang Y H, Zhao W X, Hong Y G, Zamani M. Distributed subgradient-free stochastic optimization algorithm for nonsmooth convex functions over time-varying networks. SIAM Journal on Control and Optimization, 2019, 57(4): 2821−2842 doi: 10.1137/18M119046X
    [22] Pang Y P, Hu G Q. Randomized gradient-free distributed optimization methods for a multiagent system with unknown cost function. IEEE Transactions on Automatic Control, 2019, 65(1): 333−340
    [23] Pang Y P, Hu G Q. Gradient-free distributed optimization with exact convergence. Automatica, 2022, 144: 110474
    [24] Yi X L, Zhang S J, Yang T, Johansson K H. Zeroth-order algorithms for stochastic distributed nonconvex optimization. Automatica, 2022, 142: 110353 doi: 10.1016/j.automatica.2022.110353
    [25] Xu L, Yi X L, Deng C, Shi Y, Chai T Y, Yang T. Quantized zeroth-order gradient tracking algorithm for distributed nonconvex optimization under Polyak-Łojasiewicz condition. IEEE Transactions on Cybernetics, 2024, 54(10): 5746−5758 doi: 10.1109/TCYB.2024.3384924
    [26] Wang R Y, Fan Y, Cheng S S. Zeroth-order algorithm design with orthogonal direction for distributed weakly convex optimization, the 63rd IEEE Conference on Decision and Control (CDC2024), 2024, Milan, Italy.
    [27] Juditsky A, Kwon J, Moulines É. Unifying mirror descent and dual averaging. Mathematical Programming, 2023, 199: 793−830
    [28] Moreau J J. Proximitè et dualitè dans un espace hilbertien. Bull. De La Sociètè Mathèmatique De France, 1965, 93: 273−299
    [29] 刘浩洋, 户将, 李勇锋, 文再文. 最优化: 建模、算法与理论. 北京: 高等教育出版社, 2020.

    Liu Hao-Yang, Hu Jiang, Li Yong-Feng, Wen Zai-Wen. Optimization: Modeling, Algorithm and Theory. Beijing: Higher Education Press, 2020.
    [30] Ram S S, Nedić A, Veeravalli V V. Distributed stochastic subgradient projection algorithms for convex optimization. Journal of Optimization Theory and Applications, 2010, 147: 516−545 doi: 10.1007/s10957-010-9737-7
    [31] Zhou W X, Zhou Y, Chen X L, Ning T T, Chen H Y, Guo Q, Zhang Y W, Liu P X, Zhang Y J, Li C, Chu Y C, Sun T, Jiang C. Pancreatic cancer-targeting exosomes for enhancing immunotherapy and reprogramming tumor microenvironment. Biomaterials, 2021, 268: 120546 doi: 10.1016/j.biomaterials.2020.120546
  • 加载中
计量
  • 文章访问数:  19
  • HTML全文浏览量:  6
  • 被引次数: 0
出版历程
  • 收稿日期:  2024-12-09
  • 录用日期:  2025-05-13
  • 网络出版日期:  2025-07-14

目录

    /

    返回文章
    返回