2023, 49(11): 2237-2256.
doi: 10.16383/j.aas.c220648
摘要:
作为一种不需要事先获得训练数据的机器学习方法, 强化学习(Reinforcement learning, RL)在智能体与环境的不断交互过程中寻找最优策略, 是解决序贯决策问题的一种重要方法. 通过与深度学习(Deep learning, DL)结合, 深度强化学习(Deep reinforcement learning, DRL)同时具备了强大的感知和决策能力, 被广泛应用于多个领域来解决复杂的决策问题. 异策略强化学习通过将交互经验进行存储和回放, 将探索和利用分离开来, 更易寻找到全局最优解. 如何对经验进行合理高效的利用是提升异策略强化学习方法效率的关键. 首先对强化学习的基本理论进行介绍; 随后对同策略和异策略强化学习算法进行简要介绍; 接着介绍经验回放(Experience replay, ER)问题的两种主流解决方案, 包括经验利用和经验增广; 最后对相关的研究工作进行总结和展望.
作为一种不需要事先获得训练数据的机器学习方法, 强化学习(Reinforcement learning, RL)在智能体与环境的不断交互过程中寻找最优策略, 是解决序贯决策问题的一种重要方法. 通过与深度学习(Deep learning, DL)结合, 深度强化学习(Deep reinforcement learning, DRL)同时具备了强大的感知和决策能力, 被广泛应用于多个领域来解决复杂的决策问题. 异策略强化学习通过将交互经验进行存储和回放, 将探索和利用分离开来, 更易寻找到全局最优解. 如何对经验进行合理高效的利用是提升异策略强化学习方法效率的关键. 首先对强化学习的基本理论进行介绍; 随后对同策略和异策略强化学习算法进行简要介绍; 接着介绍经验回放(Experience replay, ER)问题的两种主流解决方案, 包括经验利用和经验增广; 最后对相关的研究工作进行总结和展望.
2023, 49(11): 2257-2271.
doi: 10.16383/j.aas.c220969
摘要:
高炉料面视频关键帧是视频中的中心气流稳定、清晰、无炉料及粉尘遮挡且特征明显的图像序列, 对于及时获取炉内运行状态、指导炉顶布料操作具有重要的意义. 然而, 由于高炉内部恶劣的冶炼环境及布料的周期性和间歇性等特征, 料面视频存在信息冗余、图像质量参差不齐、状态多变等问题, 无法直接用于分析处理. 为了从大量高炉冶炼过程料面视频中自动准确筛选清晰稳定的料面图像, 提出基于状态识别的高炉料面视频关键帧提取方法. 首先, 基于高温工业内窥镜采集高炉冶炼过程中的料面视频, 并清晰完整给出料面反应新现象和形貌变化情况; 然后, 提取能够表征料面运动状态的显著性区域的特征点密集程度和像素位移特征, 并提出基于局部密度极大值高斯混合模型(Local density maxima-based Gaussian mixture model, LDGMM)聚类的方法识别料面状态; 最后, 基于料面状态识别结果提取每个布料周期不同状态下的关键帧. 实验结果表明, 该方法能够准确识别料面状态并剔除料面视频冗余信息, 能提取出不同状态下的料面视频关键帧, 为优化炉顶布料操作提供指导.
高炉料面视频关键帧是视频中的中心气流稳定、清晰、无炉料及粉尘遮挡且特征明显的图像序列, 对于及时获取炉内运行状态、指导炉顶布料操作具有重要的意义. 然而, 由于高炉内部恶劣的冶炼环境及布料的周期性和间歇性等特征, 料面视频存在信息冗余、图像质量参差不齐、状态多变等问题, 无法直接用于分析处理. 为了从大量高炉冶炼过程料面视频中自动准确筛选清晰稳定的料面图像, 提出基于状态识别的高炉料面视频关键帧提取方法. 首先, 基于高温工业内窥镜采集高炉冶炼过程中的料面视频, 并清晰完整给出料面反应新现象和形貌变化情况; 然后, 提取能够表征料面运动状态的显著性区域的特征点密集程度和像素位移特征, 并提出基于局部密度极大值高斯混合模型(Local density maxima-based Gaussian mixture model, LDGMM)聚类的方法识别料面状态; 最后, 基于料面状态识别结果提取每个布料周期不同状态下的关键帧. 实验结果表明, 该方法能够准确识别料面状态并剔除料面视频冗余信息, 能提取出不同状态下的料面视频关键帧, 为优化炉顶布料操作提供指导.
2023, 49(11): 2272-2285.
doi: 10.16383/j.aas.c220795
摘要:
针对存在临界点的A类被控对象及不存在临界点的B类被控对象, 分别采用其\begin{document}$-180^\circ$\end{document} 和\begin{document}$-120^\circ$\end{document} 相位点的频率和增益提出了PID (Proportional-integral-derivative) 控制器参数的优化整定方法. 基于Tchebyshev多项式和分数阶积分器求取被控对象\begin{document}$-180^\circ$\end{document} 或\begin{document}$-120^\circ$\end{document} 相位点的频率和增益, 建立其积分滞后模型. 采用负载扰动下跟踪误差平方和(Sum of squares of tracking errors, SSE)最小作为优化指标, 使闭环系统具有强的鲁棒性的最大灵敏度和最大补灵敏度为约束方程, 针对两类被控对象, 分别建立了基于\begin{document}$-180^\circ$\end{document} 和\begin{document}$-120^\circ$\end{document} 相位点频率和增益的PID控制器比例、积分与微分三个参数的优化整定规则. 通过与其他常用PID控制方法的仿真与物理对比实验, 表明所提方法的优越性.
针对存在临界点的A类被控对象及不存在临界点的B类被控对象, 分别采用其
2023, 49(11): 2286-2296.
doi: 10.16383/j.aas.c211230
摘要:
针对移动机器人视觉伺服跟踪控制问题, 提出一种基于自适应动态规划(Adaptive dynamic programming, ADP) 的控制方法. 通过移动机器人上的相机拍摄共面特征点的当前图像、期望图像以及参考图像, 利用单应性技术得到移动机器人当前的位姿信息与期望的位姿信息(即平移量与旋转角度), 从而通过当前与期望的平移旋转之间差值得到系统的开环误差模型. 进而, 针对此系统设计最优控制器, 同时做合适的控制输入变换. 在此基础上设计一个基于ADP的视觉伺服控制方法以保证移动机器人完成轨迹跟踪任务. 为求出最优控制输入, 采用一个评价神经网络近似值函数, 通过不断学习逼近哈密顿−雅可比−贝尔曼(Hamilton-Jacobi-Bellman, HJB)方程的解. 与以往不同的是, 由于系统存在时变项, 导致HJB方程也含有时变项, 因此需要设计具有时变权值结构的神经网络近似值函数. 最终证明在所设计的控制方法作用下, 闭环系统是一致最终有界的.
针对移动机器人视觉伺服跟踪控制问题, 提出一种基于自适应动态规划(Adaptive dynamic programming, ADP) 的控制方法. 通过移动机器人上的相机拍摄共面特征点的当前图像、期望图像以及参考图像, 利用单应性技术得到移动机器人当前的位姿信息与期望的位姿信息(即平移量与旋转角度), 从而通过当前与期望的平移旋转之间差值得到系统的开环误差模型. 进而, 针对此系统设计最优控制器, 同时做合适的控制输入变换. 在此基础上设计一个基于ADP的视觉伺服控制方法以保证移动机器人完成轨迹跟踪任务. 为求出最优控制输入, 采用一个评价神经网络近似值函数, 通过不断学习逼近哈密顿−雅可比−贝尔曼(Hamilton-Jacobi-Bellman, HJB)方程的解. 与以往不同的是, 由于系统存在时变项, 导致HJB方程也含有时变项, 因此需要设计具有时变权值结构的神经网络近似值函数. 最终证明在所设计的控制方法作用下, 闭环系统是一致最终有界的.
2023, 49(11): 2297-2310.
doi: 10.16383/j.aas.c220577
摘要:
时间敏感网络(Time-sensitive networking, TSN)作为一种新兴工业通信技术, 能够为工业控制业务提供高可靠及确定性时延保障. 针对时间敏感网络在工业场景中广泛采用的时间感知整形(Time-aware shaper, TAS)机制, 提出一种基于网络演算的时延上界分析模型, 对多节点组网下端到端时延上界进行定量分析, 用以评估门控 (Gate control list, GCL)设置是否满足业务服务质量(Quality of service, QoS)需求, 有助于简化多节点组网场景下门控设置复杂度. 模型仿真部分对影响端到端时延的主要因素进行了对比分析, 并通过OMNeT++ 实时仿真验证了所提出时延上界分析模型的有效性.
时间敏感网络(Time-sensitive networking, TSN)作为一种新兴工业通信技术, 能够为工业控制业务提供高可靠及确定性时延保障. 针对时间敏感网络在工业场景中广泛采用的时间感知整形(Time-aware shaper, TAS)机制, 提出一种基于网络演算的时延上界分析模型, 对多节点组网下端到端时延上界进行定量分析, 用以评估门控 (Gate control list, GCL)设置是否满足业务服务质量(Quality of service, QoS)需求, 有助于简化多节点组网场景下门控设置复杂度. 模型仿真部分对影响端到端时延的主要因素进行了对比分析, 并通过OMNeT++ 实时仿真验证了所提出时延上界分析模型的有效性.
2023, 49(11): 2311-2325.
doi: 10.16383/j.aas.c210430
摘要:
对于部分可观测环境下的多智能体交流协作任务, 现有研究大多只利用了当前时刻的网络隐藏层信息, 限制了信息的来源. 研究如何使用团队奖励训练一组独立的策略以及如何提升独立策略的协同表现, 提出多智能体注意力意图交流算法(Multi-agent attentional intention and communication, MAAIC), 增加了意图信息模块来扩大交流信息的来源, 并且改善了交流模式. 将智能体历史上表现最优的网络作为意图网络, 且从中提取策略意图信息, 按时间顺序保留成一个向量, 最后结合注意力机制推断出更为有效的交流信息. 在星际争霸环境中, 通过实验对比分析, 验证了该算法的有效性.
对于部分可观测环境下的多智能体交流协作任务, 现有研究大多只利用了当前时刻的网络隐藏层信息, 限制了信息的来源. 研究如何使用团队奖励训练一组独立的策略以及如何提升独立策略的协同表现, 提出多智能体注意力意图交流算法(Multi-agent attentional intention and communication, MAAIC), 增加了意图信息模块来扩大交流信息的来源, 并且改善了交流模式. 将智能体历史上表现最优的网络作为意图网络, 且从中提取策略意图信息, 按时间顺序保留成一个向量, 最后结合注意力机制推断出更为有效的交流信息. 在星际争霸环境中, 通过实验对比分析, 验证了该算法的有效性.
2023, 49(11): 2326-2337.
doi: 10.16383/j.aas.c200255
摘要:
针对机器人摄影测量中离线规划受初始位姿标定影响的问题, 提出融合初始位姿估计的机器人摄影测量系统视点规划方法. 首先构建基于YOLO (You only look once) 的深度学习网络估计被测对象3D包围盒, 利用PNP (Perspective-N-point)算法快速求解对象姿态; 然后随机生成机器人无奇异无碰撞的视点, 基于相机成像的2D-3D正逆性映射, 根据深度原则计算每个视角下目标可见性矩阵; 最后, 引入熵权法, 以最小化重建信息熵为目标建立优化模型, 并基于旅行商问题(Travelling saleman problem, TSP)模型规划机器人路径. 结果表明, 利用深度学习估计的平移误差低于5 mm, 角度误差低于2°. 考虑熵权的视点规划方法提高了摄影测量质量, 融合深度学习初始姿态的摄影测量系统提高了重建效率. 利用本算法对典型零件进行摄影测量质量和效率的验证, 均获得优异的位姿估计和重建效果. 提出的算法适用于实际工程应用, 尤其是快速稀疏摄影重建, 促进了工业摄影测量速度与自动化程度提升.
针对机器人摄影测量中离线规划受初始位姿标定影响的问题, 提出融合初始位姿估计的机器人摄影测量系统视点规划方法. 首先构建基于YOLO (You only look once) 的深度学习网络估计被测对象3D包围盒, 利用PNP (Perspective-N-point)算法快速求解对象姿态; 然后随机生成机器人无奇异无碰撞的视点, 基于相机成像的2D-3D正逆性映射, 根据深度原则计算每个视角下目标可见性矩阵; 最后, 引入熵权法, 以最小化重建信息熵为目标建立优化模型, 并基于旅行商问题(Travelling saleman problem, TSP)模型规划机器人路径. 结果表明, 利用深度学习估计的平移误差低于5 mm, 角度误差低于2°. 考虑熵权的视点规划方法提高了摄影测量质量, 融合深度学习初始姿态的摄影测量系统提高了重建效率. 利用本算法对典型零件进行摄影测量质量和效率的验证, 均获得优异的位姿估计和重建效果. 提出的算法适用于实际工程应用, 尤其是快速稀疏摄影重建, 促进了工业摄影测量速度与自动化程度提升.
2023, 49(11): 2338-2349.
doi: 10.16383/j.aas.c210935
摘要:
在城市固体废弃物焚烧(Municipal solid waste incineration, MSWI)过程中, 烟气含氧量是影响焚烧效果的重要工艺参数. 由于固废焚烧过程的复杂性, 在实际应用过程中, 难以实现烟气含氧量的有效控制. 面向城市固废焚烧过程烟气含氧量控制的实际需求, 提出一种基于数据驱动的烟气含氧量自适应预测控制方法. 首先, 采用自适应模糊C均值(Fuzzy C-means, FCM)算法辅助确定径向基函数(Radial basis function, RBF)神经网络隐含层神经元个数及初始中心, 建立基于FCM算法的径向基函数神经网络预测模型, 并在控制过程中通过自适应更新策略在线调节预测模型参数; 然后, 利用梯度下降算法求解控制律, 并基于李雅普诺夫理论分析了所提控制方法的稳定性; 最后, 基于城市固废焚烧厂实际数据, 验证了所提控制方法的有效性.
在城市固体废弃物焚烧(Municipal solid waste incineration, MSWI)过程中, 烟气含氧量是影响焚烧效果的重要工艺参数. 由于固废焚烧过程的复杂性, 在实际应用过程中, 难以实现烟气含氧量的有效控制. 面向城市固废焚烧过程烟气含氧量控制的实际需求, 提出一种基于数据驱动的烟气含氧量自适应预测控制方法. 首先, 采用自适应模糊C均值(Fuzzy C-means, FCM)算法辅助确定径向基函数(Radial basis function, RBF)神经网络隐含层神经元个数及初始中心, 建立基于FCM算法的径向基函数神经网络预测模型, 并在控制过程中通过自适应更新策略在线调节预测模型参数; 然后, 利用梯度下降算法求解控制律, 并基于李雅普诺夫理论分析了所提控制方法的稳定性; 最后, 基于城市固废焚烧厂实际数据, 验证了所提控制方法的有效性.
2023, 49(11): 2350-2359.
doi: 10.16383/j.aas.c210532
摘要:
由于点云的非结构性和无序性, 目前已有的点云分类网络在精度上仍然需要进一步提高. 通过考虑局部结构的构建、全局特征聚合和损失函数改进三个方面, 构造一个有效的点云分类网络. 首先, 针对点云的非结构性, 通过学习中心点特征与近邻点特征之间的关系, 为不规则的近邻点分配不同的权重, 以此构建局部结构; 然后, 使用注意力思想, 提出加权平均池化(Weighted average pooling, WAP), 通过自注意力方式, 学习每个高维特征的注意力分数, 在应对点云无序性的同时, 可以有效地聚合冗余的高维特征; 最后, 利用交叉熵损失与中心损失之间的互补关系, 提出联合损失函数(Joint loss function, JL), 在增大类间距离的同时, 减小类内距离, 进一步提高了网络的分类能力. 在合成数据集ModelNet40、ShapeNetCore和真实世界数据集ScanObjectNN上进行实验, 与目前性能最好的多个网络相比较, 验证了该整体网络结构的优越性.
由于点云的非结构性和无序性, 目前已有的点云分类网络在精度上仍然需要进一步提高. 通过考虑局部结构的构建、全局特征聚合和损失函数改进三个方面, 构造一个有效的点云分类网络. 首先, 针对点云的非结构性, 通过学习中心点特征与近邻点特征之间的关系, 为不规则的近邻点分配不同的权重, 以此构建局部结构; 然后, 使用注意力思想, 提出加权平均池化(Weighted average pooling, WAP), 通过自注意力方式, 学习每个高维特征的注意力分数, 在应对点云无序性的同时, 可以有效地聚合冗余的高维特征; 最后, 利用交叉熵损失与中心损失之间的互补关系, 提出联合损失函数(Joint loss function, JL), 在增大类间距离的同时, 减小类内距离, 进一步提高了网络的分类能力. 在合成数据集ModelNet40、ShapeNetCore和真实世界数据集ScanObjectNN上进行实验, 与目前性能最好的多个网络相比较, 验证了该整体网络结构的优越性.
2023, 49(11): 2360-2373.
doi: 10.16383/j.aas.c210313
摘要:
针对黑猩猩优化算法(Chimp optimization algorithm, ChOA)存在收敛速度慢、精度低和易陷入局部最优值问题, 提出一种融合多策略的黄金正弦黑猩猩优化算法(Multi-strategy golden sine chimp optimization algorithm, IChOA). 引入Halton序列初始化种群, 提高初始化种群的多样性, 加快算法收敛, 提高收敛精度; 考虑到收敛因子和权重因子对于平衡算法勘探和开发能力的重要作用, 引入改进的非线性收敛因子和自适应权重因子, 平衡算法的搜索能力; 结合黄金正弦算法相关思想, 更新个体位置, 提高算法对局部极值的处理能力. 通过对23个基准测试函数的寻优对比分析和Wilcoxon秩和统计检验以及部分CEC2014测试函数寻优结果对比可知, 改进的算法具有更好的鲁棒性; 最后, 通过2个实际工程优化问题的实验对比分析, 进一步验证了IChOA在处理现实优化问题上的优越性.
针对黑猩猩优化算法(Chimp optimization algorithm, ChOA)存在收敛速度慢、精度低和易陷入局部最优值问题, 提出一种融合多策略的黄金正弦黑猩猩优化算法(Multi-strategy golden sine chimp optimization algorithm, IChOA). 引入Halton序列初始化种群, 提高初始化种群的多样性, 加快算法收敛, 提高收敛精度; 考虑到收敛因子和权重因子对于平衡算法勘探和开发能力的重要作用, 引入改进的非线性收敛因子和自适应权重因子, 平衡算法的搜索能力; 结合黄金正弦算法相关思想, 更新个体位置, 提高算法对局部极值的处理能力. 通过对23个基准测试函数的寻优对比分析和Wilcoxon秩和统计检验以及部分CEC2014测试函数寻优结果对比可知, 改进的算法具有更好的鲁棒性; 最后, 通过2个实际工程优化问题的实验对比分析, 进一步验证了IChOA在处理现实优化问题上的优越性.
2023, 49(11): 2374-2385.
doi: 10.16383/j.aas.c200361
摘要:
为提高多无人机(Unmanned aerial vehicles, UAV)协同轨迹规划(Cooperative trajectory planning, CTP)效率, 在解耦序列凸优化(Sequential convex programming, SCP)方法基础上, 提出一种高效求解凸优化子问题的定制内点法. 首先引入松弛变量, 构建子问题的等价描述形式, 并推导该形式下的子问题最优性条件. 然后在预测−校正原对偶内点法的框架下, 构建一套高效求解最优性条件方程组的计算流程以降低子问题计算复杂度, 并利用约束矩阵特征提出一种快速计算原对偶搜索方向的方法以提高规划效率. 仿真结果表明, 在解耦序列凸优化框架下, 定制内点法可将协同轨迹规划耗时降低一个数量级, 达到秒级.
为提高多无人机(Unmanned aerial vehicles, UAV)协同轨迹规划(Cooperative trajectory planning, CTP)效率, 在解耦序列凸优化(Sequential convex programming, SCP)方法基础上, 提出一种高效求解凸优化子问题的定制内点法. 首先引入松弛变量, 构建子问题的等价描述形式, 并推导该形式下的子问题最优性条件. 然后在预测−校正原对偶内点法的框架下, 构建一套高效求解最优性条件方程组的计算流程以降低子问题计算复杂度, 并利用约束矩阵特征提出一种快速计算原对偶搜索方向的方法以提高规划效率. 仿真结果表明, 在解耦序列凸优化框架下, 定制内点法可将协同轨迹规划耗时降低一个数量级, 达到秒级.
2023, 49(11): 2386-2395.
doi: 10.16383/j.aas.c210425
摘要:
在显著性目标检测网络的设计中, U型结构使用广泛. 但是在U型结构显著性检测方法中, 普遍存在空间位置细节丢失和边缘难以细化的问题, 针对这些问题, 提出一种基于语义信息引导特征聚合的显著性目标检测网络, 通过高效的特征聚合来获得精细的显著性图. 该网络由混合注意力模块(Mixing attention module, MAM)、增大感受野模块(Enlarged receptive field module, ERFM)和多层次聚合模块(Multi-level aggregation module, MLAM)三个部分组成. 首先, 利用增大感受野模块处理特征提取网络提取出的低层特征, 使其在保留原有边缘细节的同时增大感受野, 以获得更加丰富的空间上/下文信息; 然后, 利用混合注意力模块处理特征提取网络的最后一层特征, 以增强其表征力, 并作为解码过程中的语义指导, 不断指导特征聚合; 最后, 多层次聚合模块对来自不同层次的特征进行有效聚合, 得到最终精细的显著性图. 在6个基准数据集上进行了实验, 结果验证了该方法能够有效地定位显著特征, 并且对边缘细节的细化也很有效.
在显著性目标检测网络的设计中, U型结构使用广泛. 但是在U型结构显著性检测方法中, 普遍存在空间位置细节丢失和边缘难以细化的问题, 针对这些问题, 提出一种基于语义信息引导特征聚合的显著性目标检测网络, 通过高效的特征聚合来获得精细的显著性图. 该网络由混合注意力模块(Mixing attention module, MAM)、增大感受野模块(Enlarged receptive field module, ERFM)和多层次聚合模块(Multi-level aggregation module, MLAM)三个部分组成. 首先, 利用增大感受野模块处理特征提取网络提取出的低层特征, 使其在保留原有边缘细节的同时增大感受野, 以获得更加丰富的空间上/下文信息; 然后, 利用混合注意力模块处理特征提取网络的最后一层特征, 以增强其表征力, 并作为解码过程中的语义指导, 不断指导特征聚合; 最后, 多层次聚合模块对来自不同层次的特征进行有效聚合, 得到最终精细的显著性图. 在6个基准数据集上进行了实验, 结果验证了该方法能够有效地定位显著特征, 并且对边缘细节的细化也很有效.
2023, 49(11): 2396-2408.
doi: 10.16383/j.aas.c190761
摘要:
针对一些智能优化算法缺乏完备数学物理理论基础的现状, 利用优化问题和量子物理在概率意义上的相似性, 建立优化问题的薛定谔方程, 将优化问题转化为以目标函数为约束条件的基态波函数问题, 同时利用波函数定义了算法的能量、隧道效应和熵, 实现了以波函数为中心的优化问题量子模型. 这一纲要利用了量子物理完备的理论框架, 建立起了优化问题与量子理论广泛的内在联系. 从量子物理的角度回答了优化问题解的概率描述, 邻域采样函数的选择, 算法演化的过程设计, 多尺度过程的必要性等问题. 智能优化算法的量子理论纲要可以作为研究与构造算法的理论工具, 其有效性已得到初步验证.
针对一些智能优化算法缺乏完备数学物理理论基础的现状, 利用优化问题和量子物理在概率意义上的相似性, 建立优化问题的薛定谔方程, 将优化问题转化为以目标函数为约束条件的基态波函数问题, 同时利用波函数定义了算法的能量、隧道效应和熵, 实现了以波函数为中心的优化问题量子模型. 这一纲要利用了量子物理完备的理论框架, 建立起了优化问题与量子理论广泛的内在联系. 从量子物理的角度回答了优化问题解的概率描述, 邻域采样函数的选择, 算法演化的过程设计, 多尺度过程的必要性等问题. 智能优化算法的量子理论纲要可以作为研究与构造算法的理论工具, 其有效性已得到初步验证.
2023, 49(11): 2409-2425.
doi: 10.16383/j.aas.c220424
摘要:
相关滤波算法(Correlation filter, CF)已广泛应用于无人机目标跟踪. 然而, 受无人机 (Unmanned aerial vehicle, UAV) 平台本身计算性能的制约, 现有的无人机相关滤波跟踪算法大都仅采用手工特征来描述目标的外观, 难以获得目标的全面语义信息. 并且这些跟踪算法仅能较好地进行光照条件良好场景下的跟踪, 而在跟踪夜间场景下的目标时性能严重下降. 此外, 相关滤波跟踪器采用余弦窗口来抑制循环移位产生的边界效应, 缩小了样本提取区域, 产生了训练样本污染的问题, 这不可避免地降低了跟踪器的性能. 针对以上问题, 提出全天实时多正则化相关滤波算法(All-day and real-time multi-regularized correlation filter, AMRCF)跟踪无人机目标. 首先, 引入一个自适应图像增强模块, 在不影响图像各通道颜色比例的前提下, 对获得的图像进行增强, 以提高夜间目标跟踪性能. 其次, 引入一个轻量型的深度网络来提取目标的深度特征, 并与手工特征一起来表示目标的语义信息. 此外, 在算法框架中嵌入高斯形状掩膜, 在抑制边界效应的同时, 有效避免训练样本污染. 最后, 在5个公开的无人机基准数据集上进行充分的实验. 实验结果表明, 所提出的算法与多个先进的相关滤波跟踪器相比, 取得了有竞争力的结果, 且算法的实时速度约为25 fps, 能够胜任无人机的目标跟踪任务.
相关滤波算法(Correlation filter, CF)已广泛应用于无人机目标跟踪. 然而, 受无人机 (Unmanned aerial vehicle, UAV) 平台本身计算性能的制约, 现有的无人机相关滤波跟踪算法大都仅采用手工特征来描述目标的外观, 难以获得目标的全面语义信息. 并且这些跟踪算法仅能较好地进行光照条件良好场景下的跟踪, 而在跟踪夜间场景下的目标时性能严重下降. 此外, 相关滤波跟踪器采用余弦窗口来抑制循环移位产生的边界效应, 缩小了样本提取区域, 产生了训练样本污染的问题, 这不可避免地降低了跟踪器的性能. 针对以上问题, 提出全天实时多正则化相关滤波算法(All-day and real-time multi-regularized correlation filter, AMRCF)跟踪无人机目标. 首先, 引入一个自适应图像增强模块, 在不影响图像各通道颜色比例的前提下, 对获得的图像进行增强, 以提高夜间目标跟踪性能. 其次, 引入一个轻量型的深度网络来提取目标的深度特征, 并与手工特征一起来表示目标的语义信息. 此外, 在算法框架中嵌入高斯形状掩膜, 在抑制边界效应的同时, 有效避免训练样本污染. 最后, 在5个公开的无人机基准数据集上进行充分的实验. 实验结果表明, 所提出的算法与多个先进的相关滤波跟踪器相比, 取得了有竞争力的结果, 且算法的实时速度约为25 fps, 能够胜任无人机的目标跟踪任务.
2023, 49(11): 2426-2436.
doi: 10.16383/j.aas.c180777
摘要:
针对基于Docker容器的分布式云计算下出现负载不均衡问题, 有必要将较高负载服务器中的Docker容器进程迁移到其他相对空闲的服务器上. 而传统的容器迁移算法忽视了容器本身的特征, 从而导致在迁移过程中传输效率低下. 基于此, 利用第三方管理平台和数据预存储阈值机制, 提出一种Docker容器动态迁移预存储算法PF-Docker. 首先将Docker容器内部进程运行相关文件和流动数据预存至云端存储器, 然后通过预存储阈值机制减少流动数据的无效传输, 最后在停机传输阶段将流动数据和冗余数据传输给目的服务器. 实验表明, 该方法在Docker容器迁移中能有效地降低迁移时间, 减少数据传输量, 提高容器的容错率.
针对基于Docker容器的分布式云计算下出现负载不均衡问题, 有必要将较高负载服务器中的Docker容器进程迁移到其他相对空闲的服务器上. 而传统的容器迁移算法忽视了容器本身的特征, 从而导致在迁移过程中传输效率低下. 基于此, 利用第三方管理平台和数据预存储阈值机制, 提出一种Docker容器动态迁移预存储算法PF-Docker. 首先将Docker容器内部进程运行相关文件和流动数据预存至云端存储器, 然后通过预存储阈值机制减少流动数据的无效传输, 最后在停机传输阶段将流动数据和冗余数据传输给目的服务器. 实验表明, 该方法在Docker容器迁移中能有效地降低迁移时间, 减少数据传输量, 提高容器的容错率.
本刊经同行评议拟录用的文章,目前在编校阶段,尚未确定卷期及页码,已有DOI。
显示方式:
当前状态:
, 最新更新时间: ,
doi: 10.16383/j.aas.c200399
摘要:
针对串行广义特征值分解算法实时性差的缺点, 提出基于加权矩阵的多维广义特征值分解算法. 与串行算法不同, 所提算法能够在一次迭代过程中并行地估计出多维广义特征向量. 平稳点分析表明: 当且仅当算法中状态矩阵等于所需的广义特征向量时, 算法达到收敛状态. 通过对比相邻时刻的状态矩阵模值证明了所提算法的自稳定特性. 所提算法参数选取简单, 实际实施较为容易. 数值仿真和实例应用进一步验证了算法的并行性、自稳定性和实用性.
针对串行广义特征值分解算法实时性差的缺点, 提出基于加权矩阵的多维广义特征值分解算法. 与串行算法不同, 所提算法能够在一次迭代过程中并行地估计出多维广义特征向量. 平稳点分析表明: 当且仅当算法中状态矩阵等于所需的广义特征向量时, 算法达到收敛状态. 通过对比相邻时刻的状态矩阵模值证明了所提算法的自稳定特性. 所提算法参数选取简单, 实际实施较为容易. 数值仿真和实例应用进一步验证了算法的并行性、自稳定性和实用性.
当前状态:
, 最新更新时间: ,
doi: 10.16383/j.aas.c220312
摘要:
连续学习(Continual learning, CL)多个任务的能力对于通用人工智能的发展至关重要. 现有人工神经网络(Artificial neural networks, ANNs)在单一任务上具有出色表现, 但在开放环境中依次面对不同任务时非常容易发生灾难性遗忘现象, 即联结主义模型在学习新任务时会迅速地忘记旧任务. 为了解决这个问题, 将随机权神经网络(Random weight neural networks, RWNNs)与生物大脑的相关工作机制联系起来, 提出一种新的再可塑性启发的随机化网络(Metaplasticity-inspired randomized network, MRNet)用于类增量学习(Class incremental learning, Class-IL)场景, 使得单一模型在不访问旧任务数据的情况下能够从未知的任务序列中学习与记忆融合. 首先, 以前馈方式构造具有解析解的通用连续学习框架, 用于有效兼容新任务中出现的新类别; 然后, 基于突触可塑性设计具备记忆功能的权值重要性矩阵, 自适应地调整网络参数以避免发生遗忘; 最后, 所提方法的有效性和高效性通过5个评价指标、5个基准任务序列和10个比较方法在类增量学习场景中得到验证.
连续学习(Continual learning, CL)多个任务的能力对于通用人工智能的发展至关重要. 现有人工神经网络(Artificial neural networks, ANNs)在单一任务上具有出色表现, 但在开放环境中依次面对不同任务时非常容易发生灾难性遗忘现象, 即联结主义模型在学习新任务时会迅速地忘记旧任务. 为了解决这个问题, 将随机权神经网络(Random weight neural networks, RWNNs)与生物大脑的相关工作机制联系起来, 提出一种新的再可塑性启发的随机化网络(Metaplasticity-inspired randomized network, MRNet)用于类增量学习(Class incremental learning, Class-IL)场景, 使得单一模型在不访问旧任务数据的情况下能够从未知的任务序列中学习与记忆融合. 首先, 以前馈方式构造具有解析解的通用连续学习框架, 用于有效兼容新任务中出现的新类别; 然后, 基于突触可塑性设计具备记忆功能的权值重要性矩阵, 自适应地调整网络参数以避免发生遗忘; 最后, 所提方法的有效性和高效性通过5个评价指标、5个基准任务序列和10个比较方法在类增量学习场景中得到验证.
当前状态:
, 最新更新时间: ,
doi: 10.16383/j.aas.c230117
摘要:
分类任务中含有类别型标签噪声是传统数据挖掘中的常见问题, 目前还缺少针对性方法来专门检测类别型标签噪声. 离群点检测技术能用于噪声的识别与过滤, 但由于离群点与类别型标签噪声并不具有一致性, 使得离群点检测算法无法精确检测分类数据集中的标签噪声. 针对这些问题, 提出一种基于离群点检测技术、适用于过滤类别型标签噪声的方法 —— 基于相对离群因子的集成过滤方法(Label noise ensemble filtering method based on relative outlier factor, EROF).首先, 通过相对离群因子(Relative outlier factor, ROF)对样本进行噪声概率估计; 然后, 再迭代联合多种离群点检测算法, 实现集成过滤. 实验结果表明, 该方法在大多数含有标签噪声的数据集上, 都能保持优秀的噪声识别能力, 并显著提升各种分类模型的泛化能力.
分类任务中含有类别型标签噪声是传统数据挖掘中的常见问题, 目前还缺少针对性方法来专门检测类别型标签噪声. 离群点检测技术能用于噪声的识别与过滤, 但由于离群点与类别型标签噪声并不具有一致性, 使得离群点检测算法无法精确检测分类数据集中的标签噪声. 针对这些问题, 提出一种基于离群点检测技术、适用于过滤类别型标签噪声的方法 —— 基于相对离群因子的集成过滤方法(Label noise ensemble filtering method based on relative outlier factor, EROF).首先, 通过相对离群因子(Relative outlier factor, ROF)对样本进行噪声概率估计; 然后, 再迭代联合多种离群点检测算法, 实现集成过滤. 实验结果表明, 该方法在大多数含有标签噪声的数据集上, 都能保持优秀的噪声识别能力, 并显著提升各种分类模型的泛化能力.
当前状态:
, 最新更新时间: ,
doi: 10.16383/j.aas.c220632
摘要:
现实世界中所获得的信号大部分都是非平稳和非线性的, 将此类复杂信号分解为多个简单的子信号是重要的信号处理方法. 1998年, Huang等提出希尔伯特–黄变换(Hilbert-Huang transform, HHT), 历经20余年的发展, 信号分解已经成为信号处理领域相对独立又具有创新性的重要内容. 特别是近10年, 多元/多变量/多通道信号分解理论方法方兴未艾, 在诸多领域得到了成功应用, 但目前尚未见到相关综述报道. 为了填补这个空缺, 从单变量和多变量两个方面系统综述了国内/外学者对主要信号分解方法的研究现状, 对这些方法的时频表达性能进行分析和比较, 指出这些分解方法的优势和存在的问题. 最后, 对信号分解研究进行总结和展望.
现实世界中所获得的信号大部分都是非平稳和非线性的, 将此类复杂信号分解为多个简单的子信号是重要的信号处理方法. 1998年, Huang等提出希尔伯特–黄变换(Hilbert-Huang transform, HHT), 历经20余年的发展, 信号分解已经成为信号处理领域相对独立又具有创新性的重要内容. 特别是近10年, 多元/多变量/多通道信号分解理论方法方兴未艾, 在诸多领域得到了成功应用, 但目前尚未见到相关综述报道. 为了填补这个空缺, 从单变量和多变量两个方面系统综述了国内/外学者对主要信号分解方法的研究现状, 对这些方法的时频表达性能进行分析和比较, 指出这些分解方法的优势和存在的问题. 最后, 对信号分解研究进行总结和展望.
当前状态:
, 最新更新时间: ,
doi: 10.16383/j.aas.c200890
摘要:
针对实际中某种工况滚动轴承带标签振动数据获取困难, 健康指标难以构建及寿命预测误差大的问题, 提出一种基于无监督深度模型迁移的滚动轴承剩余使用寿命(Remaining useful life, RUL)预测方法. 该方法首先对滚动轴承全寿命周期振动数据提取均方根(Root mean square, RMS)特征, 并引入新的自下而上(Bottom-up, BUP)时间序列分割算法将特征序列分割为正常期、退化期和衰退期3种状态; 对振动信号经快速傅里叶(Fast Fourier transform, FFT)变换后的幅值序列进行状态信息标记, 并将其输入到新增卷积层的全卷积神经网络(Full convolutional neural network, FCN)中, 提取深层特征, 得到预训练模型; 提出将预训练模型的梯度作为一种“特征”与传统预训练模型特征一起参与目标域网络训练过程, 从而得到状态识别模型; 利用状态概率估计法结合状态识别模型建立滚动轴承寿命预测模型. 实验验证所提方法无需构建健康指标, 可实现无监督条件下不同工况滚动轴承剩余寿命预测, 并获得较好的效果.
针对实际中某种工况滚动轴承带标签振动数据获取困难, 健康指标难以构建及寿命预测误差大的问题, 提出一种基于无监督深度模型迁移的滚动轴承剩余使用寿命(Remaining useful life, RUL)预测方法. 该方法首先对滚动轴承全寿命周期振动数据提取均方根(Root mean square, RMS)特征, 并引入新的自下而上(Bottom-up, BUP)时间序列分割算法将特征序列分割为正常期、退化期和衰退期3种状态; 对振动信号经快速傅里叶(Fast Fourier transform, FFT)变换后的幅值序列进行状态信息标记, 并将其输入到新增卷积层的全卷积神经网络(Full convolutional neural network, FCN)中, 提取深层特征, 得到预训练模型; 提出将预训练模型的梯度作为一种“特征”与传统预训练模型特征一起参与目标域网络训练过程, 从而得到状态识别模型; 利用状态概率估计法结合状态识别模型建立滚动轴承寿命预测模型. 实验验证所提方法无需构建健康指标, 可实现无监督条件下不同工况滚动轴承剩余寿命预测, 并获得较好的效果.
当前状态:
, 最新更新时间: ,
doi: 10.16383/j.aas.c230074
摘要:
同许多复杂系统一样, 动车组(Electric multiple unit, EMU) 运行过程也具有多变量、强耦合以及非线性等特性, 这严重影响着列控系统的性能. 针对包含外部扰动的动车组自动驾驶系统, 提出一种新型的多输入多输出(Multi-input-multi-output, MIMO) 数据驱动积分滑模预测控制(Integral sliding mode predictive control, ISMPC)算法. 首先, 该算法基于与动车组运行过程等效的全格式动态线性化(Full format dynamic linearization, FFDL)数据模型, 设计一种离散积分滑模控制(Integral sliding mode control, ISMC) 律. 为了使系统能够获得更高的输出跟踪误差精度, 利用模型预测控制(Model predictive control, MPC) 代替ISMC的切换控制, 进一步推导出ISMPC算法. 同时, 通过对FFDL 数据模型的未知扰动、参数误差等不确定项进行延时估计, 提升了算法的控制性能和对系统的等价描述程度. 在提供两种算法的稳定性证明分析之后, 以实验室配备的 CRH380A 型动车组仿真实验台对提出的ISMC和ISMPC算法进行仿真测试, 并与其他方法进行对比, 仿真结果表明ISMPC算法控制性能较好, 动车组各动力单元速度跟踪误差均在 ±0.132 km/h 以内, 满足列车的跟踪精度需求. 控制力和加速度分别在[−52 kN, 42 kN] 和 ±0.9249 m/s2 以内且变化平稳.
同许多复杂系统一样, 动车组(Electric multiple unit, EMU) 运行过程也具有多变量、强耦合以及非线性等特性, 这严重影响着列控系统的性能. 针对包含外部扰动的动车组自动驾驶系统, 提出一种新型的多输入多输出(Multi-input-multi-output, MIMO) 数据驱动积分滑模预测控制(Integral sliding mode predictive control, ISMPC)算法. 首先, 该算法基于与动车组运行过程等效的全格式动态线性化(Full format dynamic linearization, FFDL)数据模型, 设计一种离散积分滑模控制(Integral sliding mode control, ISMC) 律. 为了使系统能够获得更高的输出跟踪误差精度, 利用模型预测控制(Model predictive control, MPC) 代替ISMC的切换控制, 进一步推导出ISMPC算法. 同时, 通过对FFDL 数据模型的未知扰动、参数误差等不确定项进行延时估计, 提升了算法的控制性能和对系统的等价描述程度. 在提供两种算法的稳定性证明分析之后, 以实验室配备的 CRH380A 型动车组仿真实验台对提出的ISMC和ISMPC算法进行仿真测试, 并与其他方法进行对比, 仿真结果表明ISMPC算法控制性能较好, 动车组各动力单元速度跟踪误差均在 ±0.132 km/h 以内, 满足列车的跟踪精度需求. 控制力和加速度分别在[−52 kN, 42 kN] 和 ±0.9249 m/s2 以内且变化平稳.
当前状态:
, 最新更新时间: ,
doi: 10.16383/j.aas.c210041
摘要:
针对城市污水处理过程的非线性、不确定性以及非高斯等特点, 提出一种数据驱动的溶解氧(Dissolved oxygen, DO)浓度在线自组织控制方法. 首先, 设计了一种基于相关熵的自组织模糊神经网络控制器(Correntropy-based self-organizing fuzzy neural network, CSOFNN), 采用相关熵与规则贡献度指标实现控制器结构与参数的自动构建或修剪. 其次, 设计了基于相关熵诱导准则的补偿控制器及参数自适应律, 充分利用了相关熵抑制非高斯噪声的能力, 能够有效地降低系统中的不确定性. 然后, 分析了所提出的控制方法的稳定性, 从而保证其在实际应用中的可靠性. 最后, 基于基准仿真1号模型的实验验证了所提方法的有效性.
针对城市污水处理过程的非线性、不确定性以及非高斯等特点, 提出一种数据驱动的溶解氧(Dissolved oxygen, DO)浓度在线自组织控制方法. 首先, 设计了一种基于相关熵的自组织模糊神经网络控制器(Correntropy-based self-organizing fuzzy neural network, CSOFNN), 采用相关熵与规则贡献度指标实现控制器结构与参数的自动构建或修剪. 其次, 设计了基于相关熵诱导准则的补偿控制器及参数自适应律, 充分利用了相关熵抑制非高斯噪声的能力, 能够有效地降低系统中的不确定性. 然后, 分析了所提出的控制方法的稳定性, 从而保证其在实际应用中的可靠性. 最后, 基于基准仿真1号模型的实验验证了所提方法的有效性.
当前状态:
, 最新更新时间: ,
doi: 10.16383/j.aas.c220371
摘要:
药物相互作用(Drug-drug interaction, DDI)是指不同药物存在抑制或促进等作用. 现有DDI预测方法往往直接利用药物分子特征表示预测DDI, 而忽略药物分子中不同原子对DDI的影响. 为此, 提出基于多层次注意力机制和消息传递神经网络的DDI预测方法. 该方法将DDI建模为通过学习基于序列表示的药物分子特征实现DDI预测的链接预测问题. 首先, 建立基于注意力机制和消息传递神经网络的原子特征网络, 结合提出的基于分子质心的位置编码, 学习不同原子及其相关联化学键的特征, 构建基于图结构的药物分子特征表示; 然后, 设计基于注意力机制的分子特征网络, 并通过监督和对比损失学习, 实现DDI预测; 最后, 通过实验证明该方法的有效性和优越性.
药物相互作用(Drug-drug interaction, DDI)是指不同药物存在抑制或促进等作用. 现有DDI预测方法往往直接利用药物分子特征表示预测DDI, 而忽略药物分子中不同原子对DDI的影响. 为此, 提出基于多层次注意力机制和消息传递神经网络的DDI预测方法. 该方法将DDI建模为通过学习基于序列表示的药物分子特征实现DDI预测的链接预测问题. 首先, 建立基于注意力机制和消息传递神经网络的原子特征网络, 结合提出的基于分子质心的位置编码, 学习不同原子及其相关联化学键的特征, 构建基于图结构的药物分子特征表示; 然后, 设计基于注意力机制的分子特征网络, 并通过监督和对比损失学习, 实现DDI预测; 最后, 通过实验证明该方法的有效性和优越性.
当前状态:
, 最新更新时间: ,
doi: 10.16383/j.aas.c220819
摘要:
提升纯电动汽车整车能效、降低百公里耗电量, 是我国新能源汽车产业发展的重大需求. 智能网联背景下, V2X (Vehicle to everything)网联信息以及激光雷达、毫米波雷达、摄像头、定位及导航装置等各类车载传感器, 为智能网联电动汽车(Connected automated electric vehicle, CAEV)提供了全方位的信息交互、共享和状态感知能力, 赋予了其巨大的节能优化潜力. 针对CAEV节能优化控制问题, 首先从动力电池、电机控制器、驱动电机、传动机构、轮胎和驾驶决策六个环节分析电动汽车的典型损耗特性, 从决策、控制和执行三个层面分析CAEV的能量转换过程及耦合关系, 以及网联信息对CAEV 的节能影响; 然后, 从决策层车速优化、控制层驱动/制动转矩优化控制和执行层电流矢量优化控制三个方面, 对各层的节能优化问题进行阐述, 并重点对国内外研究现状进行归纳分析; 最后, 对决策层、控制层和执行层CAEV节能优化控制的难点以及现有研究工作进行总结, 并对下一步发展趋势进行展望.
提升纯电动汽车整车能效、降低百公里耗电量, 是我国新能源汽车产业发展的重大需求. 智能网联背景下, V2X (Vehicle to everything)网联信息以及激光雷达、毫米波雷达、摄像头、定位及导航装置等各类车载传感器, 为智能网联电动汽车(Connected automated electric vehicle, CAEV)提供了全方位的信息交互、共享和状态感知能力, 赋予了其巨大的节能优化潜力. 针对CAEV节能优化控制问题, 首先从动力电池、电机控制器、驱动电机、传动机构、轮胎和驾驶决策六个环节分析电动汽车的典型损耗特性, 从决策、控制和执行三个层面分析CAEV的能量转换过程及耦合关系, 以及网联信息对CAEV 的节能影响; 然后, 从决策层车速优化、控制层驱动/制动转矩优化控制和执行层电流矢量优化控制三个方面, 对各层的节能优化问题进行阐述, 并重点对国内外研究现状进行归纳分析; 最后, 对决策层、控制层和执行层CAEV节能优化控制的难点以及现有研究工作进行总结, 并对下一步发展趋势进行展望.
当前状态:
, 最新更新时间: ,
doi: 10.16383/j.aas.c201036
摘要:
正电子发射断层成像(Positron emission tomography, PET)是一种强大的核医学功能成像模式, 广泛应用于临床诊断, 但PET图像的空间分辨率低且含有噪声, 有必要对PET图像进行去噪以提升PET图像的质量. 随着PET/MR (Magnetic resonance)等一体化成像设备的出现, 磁共振成像(Magnetic resonance imaging, MRI)的先验信息可用于PET图像去噪, 提高PET图像质量. 针对动态PET图像, 提出了一种融合MRI先验信息的PET图像图小波去噪新方法. 首先构建PET合成图像; 再将PET合成图像与MRI信息通过硬阈值方法进行融合; 接着在融合图像上构造图拉普拉斯矩阵; 最后通过图小波变换(Graph wavelet transfrom, GWT)对动态PET图像去噪. 仿真实验结果表明, 与单独的图滤波、图小波去噪方法以及其他结合MRI的PET图像去噪方法相比, 本文方法有更高的信噪比, 更好地保留了病灶信息; 本文方法的去噪性能与VGG (Visual Geometry Group)深度神经网络等基于学习的方法相当, 但不需要大量数据的训练, 计算复杂度低.
正电子发射断层成像(Positron emission tomography, PET)是一种强大的核医学功能成像模式, 广泛应用于临床诊断, 但PET图像的空间分辨率低且含有噪声, 有必要对PET图像进行去噪以提升PET图像的质量. 随着PET/MR (Magnetic resonance)等一体化成像设备的出现, 磁共振成像(Magnetic resonance imaging, MRI)的先验信息可用于PET图像去噪, 提高PET图像质量. 针对动态PET图像, 提出了一种融合MRI先验信息的PET图像图小波去噪新方法. 首先构建PET合成图像; 再将PET合成图像与MRI信息通过硬阈值方法进行融合; 接着在融合图像上构造图拉普拉斯矩阵; 最后通过图小波变换(Graph wavelet transfrom, GWT)对动态PET图像去噪. 仿真实验结果表明, 与单独的图滤波、图小波去噪方法以及其他结合MRI的PET图像去噪方法相比, 本文方法有更高的信噪比, 更好地保留了病灶信息; 本文方法的去噪性能与VGG (Visual Geometry Group)深度神经网络等基于学习的方法相当, 但不需要大量数据的训练, 计算复杂度低.
当前状态:
, 最新更新时间: ,
doi: 10.16383/j.aas.c210368
摘要:
在多无人机 (Multi-unmanned aerial vehicles, Multi-UAVs) 协同执行高层消防救援任务的场景中, 室内复杂火场环境下路径规划是亟待解决难题之一. 针对快速搜索随机树算法 (Rapidly-exploring random tree, RRT) 搜索区域受限、耗时较长、结果可行性差等问题, 提出RRT森林算法. 通过随机选取根节点、生成随机树、连接合并随机树, 使高层消防多无人机在复杂室内环境下协同路径规划效率显著提高. 此外, 采用两次动态规划以及改进障碍物接近检测方法, 进一步提高路径的可行性. 最终, 通过仿真验证算法的有效性.
在多无人机 (Multi-unmanned aerial vehicles, Multi-UAVs) 协同执行高层消防救援任务的场景中, 室内复杂火场环境下路径规划是亟待解决难题之一. 针对快速搜索随机树算法 (Rapidly-exploring random tree, RRT) 搜索区域受限、耗时较长、结果可行性差等问题, 提出RRT森林算法. 通过随机选取根节点、生成随机树、连接合并随机树, 使高层消防多无人机在复杂室内环境下协同路径规划效率显著提高. 此外, 采用两次动态规划以及改进障碍物接近检测方法, 进一步提高路径的可行性. 最终, 通过仿真验证算法的有效性.
当前状态:
, 最新更新时间: ,
doi: 10.16383/j.aas.c230692
摘要:
本文对2023年度国家自然科学基金委员会自动化领域(申请代码F03)下的面上项目、青年科学基金项目、地区科学基金项目、重点项目、优秀青年科学基金项目和国家杰出青年科学基金项目的申请与资助情况进行了统计分析, 并对面上项目和青年科学基金的项目申请与资助依托单位、申请代码分布等情况进行详细分析, 介绍了本领域按科学问题属性分类的评审试点和“负责任、讲信誉、计贡献”评审机制试点工作, 最后进行了总结和展望.
本文对2023年度国家自然科学基金委员会自动化领域(申请代码F03)下的面上项目、青年科学基金项目、地区科学基金项目、重点项目、优秀青年科学基金项目和国家杰出青年科学基金项目的申请与资助情况进行了统计分析, 并对面上项目和青年科学基金的项目申请与资助依托单位、申请代码分布等情况进行详细分析, 介绍了本领域按科学问题属性分类的评审试点和“负责任、讲信誉、计贡献”评审机制试点工作, 最后进行了总结和展望.
当前状态:
, 最新更新时间: ,
doi: 10.16383/j.aas.c230395
摘要:
目前, 深度卷积神经网络(Convolutional neural network, CNN)已主导了单图像超分辨率(Single image super-resolution, SISR)技术的研究, 并取得了很大的进展. 但是, SISR仍是一个开放性问题, 重建的超分辨率(Super-resolution, SR)图像往往会出现模糊、纹理细节丢失和失真等问题. 提出一个新的逐像素对比损失, 在一个局部区域中, 使SR图像的像素尽可能靠近对应的原高分辨率(High-resolution, HR)图像的像素并远离局部区域中的其他像素, 可改进SR图像的保真度和视觉质量. 提出一个组合对比损失的渐进残差特征融合网络(Progressive residual feature fusion network, PRFFN), 主要贡献包括: 1)提出一个通用的基于对比学习(Contrastive learning, CL)的逐像素损失函数, 能够改进SR图像的保真度和视觉质量; 2)提出一个轻量的多尺度残差通道注意力块(Multi-scale residual channel attention block, MRCAB), 可以更好地提取和利用多尺度特征信息; 3)提出一个空间注意力融合块(Spatial attention fuse block, SAFB), 可以更好地利用邻近空间特征的相关性. 实验结果表明, PRFFN显著优于其他代表性的方法.
目前, 深度卷积神经网络(Convolutional neural network, CNN)已主导了单图像超分辨率(Single image super-resolution, SISR)技术的研究, 并取得了很大的进展. 但是, SISR仍是一个开放性问题, 重建的超分辨率(Super-resolution, SR)图像往往会出现模糊、纹理细节丢失和失真等问题. 提出一个新的逐像素对比损失, 在一个局部区域中, 使SR图像的像素尽可能靠近对应的原高分辨率(High-resolution, HR)图像的像素并远离局部区域中的其他像素, 可改进SR图像的保真度和视觉质量. 提出一个组合对比损失的渐进残差特征融合网络(Progressive residual feature fusion network, PRFFN), 主要贡献包括: 1)提出一个通用的基于对比学习(Contrastive learning, CL)的逐像素损失函数, 能够改进SR图像的保真度和视觉质量; 2)提出一个轻量的多尺度残差通道注意力块(Multi-scale residual channel attention block, MRCAB), 可以更好地提取和利用多尺度特征信息; 3)提出一个空间注意力融合块(Spatial attention fuse block, SAFB), 可以更好地利用邻近空间特征的相关性. 实验结果表明, PRFFN显著优于其他代表性的方法.
当前状态:
, 最新更新时间: ,
doi: 10.16383/j.aas.c230409
摘要:
提出一种考虑航天器姿态约束的协同势函数设计方法, 在姿态全局收敛的同时, 保证姿态在机动过程中始终满足姿态约束. 首先, 建立航天器姿态指向约束模型, 并针对每一个指向约束设计软约束区域; 然后, 基于“角度扰动”方法设计协同势函数族; 接着, 通过设计协同势函数族内函数切换规律, 在软约束区域内构建满足姿态约束的势函数, 并给出区域内势函数临界点分布的调整方法; 最后, 将所得的势函数用于航天器的避障控制中, 以比例−微分(Proportional-derivative, PD)控制为例, 通过数值仿真验证所提出方法的有效性.
提出一种考虑航天器姿态约束的协同势函数设计方法, 在姿态全局收敛的同时, 保证姿态在机动过程中始终满足姿态约束. 首先, 建立航天器姿态指向约束模型, 并针对每一个指向约束设计软约束区域; 然后, 基于“角度扰动”方法设计协同势函数族; 接着, 通过设计协同势函数族内函数切换规律, 在软约束区域内构建满足姿态约束的势函数, 并给出区域内势函数临界点分布的调整方法; 最后, 将所得的势函数用于航天器的避障控制中, 以比例−微分(Proportional-derivative, PD)控制为例, 通过数值仿真验证所提出方法的有效性.
当前状态:
, 最新更新时间: ,
doi: 10.16383/j.aas.c230042
摘要:
针对城市固体废物(Municipal solid waste, MSW)焚烧过程数据具有异常值和特征变量维度高时炉温预测模型的准确性和泛化能力欠缺的挑战性问题, 提出一种鲁棒加权异构特征集成建模方法, 用于建立城市固体废物焚烧过程炉温预测模型. 首先, 依据焚烧过程机理将高维特征变量划分为异构特征集合, 并采用互信息和相关系数综合评估每组异构特征集合的贡献度; 其次, 采用基于混合t分布的鲁棒随机配置网络(Stochastic configuration network, SCN)构建基模型, 同时确定训练样本的惩罚权重; 最后, 设计一种鲁棒加权负相关学习(Negative correlation learning, NCL)策略, 实现基模型的鲁棒同步训练. 使用国内某城市固体废物焚烧厂的炉温历史数据对该方法进行了测试, 结果表明, 该方法建立的炉温预测模型, 在准确性和泛化能力方面具有优势.
针对城市固体废物(Municipal solid waste, MSW)焚烧过程数据具有异常值和特征变量维度高时炉温预测模型的准确性和泛化能力欠缺的挑战性问题, 提出一种鲁棒加权异构特征集成建模方法, 用于建立城市固体废物焚烧过程炉温预测模型. 首先, 依据焚烧过程机理将高维特征变量划分为异构特征集合, 并采用互信息和相关系数综合评估每组异构特征集合的贡献度; 其次, 采用基于混合t分布的鲁棒随机配置网络(Stochastic configuration network, SCN)构建基模型, 同时确定训练样本的惩罚权重; 最后, 设计一种鲁棒加权负相关学习(Negative correlation learning, NCL)策略, 实现基模型的鲁棒同步训练. 使用国内某城市固体废物焚烧厂的炉温历史数据对该方法进行了测试, 结果表明, 该方法建立的炉温预测模型, 在准确性和泛化能力方面具有优势.
当前状态:
, 最新更新时间: ,
doi: 10.16383/j.aas.c230344
摘要:
身份证认证场景多采用文本识别模型对身份证图片的字段进行提取、识别和身份认证, 存在很大的隐私泄露隐患. 并且, 当前基于文本识别模型的对抗攻击算法大多只考虑了简单背景的数据(如印刷体)和白盒条件, 很难在物理世界达到理想的攻击效果, 不适用于复杂背景、数据及黑盒条件. 为了缓解上述问题, 本文提出了针对身份证文本识别模型的黑盒攻击算法, 考虑了较为复杂的图像背景、更严苛的黑盒条件以及物理世界的攻击效果. 本算法在基于迁移的黑盒攻击算法的基础上引入了二值化掩码和空间变换, 在保证攻击成功率的前提下提升了对抗样本的视觉效果和物理世界中的鲁棒性. 通过探索不同范数限制下基于迁移的黑盒攻击算法的性能上限和关键超参数的影响, 本算法在百度身份证识别模型上实现了100%的攻击成功率. 身份证数据集后续将开源.
身份证认证场景多采用文本识别模型对身份证图片的字段进行提取、识别和身份认证, 存在很大的隐私泄露隐患. 并且, 当前基于文本识别模型的对抗攻击算法大多只考虑了简单背景的数据(如印刷体)和白盒条件, 很难在物理世界达到理想的攻击效果, 不适用于复杂背景、数据及黑盒条件. 为了缓解上述问题, 本文提出了针对身份证文本识别模型的黑盒攻击算法, 考虑了较为复杂的图像背景、更严苛的黑盒条件以及物理世界的攻击效果. 本算法在基于迁移的黑盒攻击算法的基础上引入了二值化掩码和空间变换, 在保证攻击成功率的前提下提升了对抗样本的视觉效果和物理世界中的鲁棒性. 通过探索不同范数限制下基于迁移的黑盒攻击算法的性能上限和关键超参数的影响, 本算法在百度身份证识别模型上实现了100%的攻击成功率. 身份证数据集后续将开源.
当前状态:
, 最新更新时间: ,
doi: 10.16383/j.aas.c210555
摘要:
针对智能车辆的高精度侧向控制问题, 提出一种基于滚动时域强化学习(Receding horizon reinforcement learning, RHRL)的侧向控制方法. 车辆的侧向控制量由前馈和反馈两部分构成, 前馈控制量由参考路径的曲率以及动力学模型直接计算得出; 而反馈控制量通过采用滚动时域强化学习算法求解最优跟踪控制问题得到. 提出的方法结合滚动时域优化机制, 将无限时域最优控制问题转化为若干有限时域控制问题进行求解. 与已有的有限时域执行器−评价器学习不同, 在每个预测时域采用时间独立型执行器−评价器网络结构学习最优值函数和控制策略. 与模型预测控制(Model predictive control, MPC)方法求解开环控制序列不同, RHRL控制器的输出是一个显式状态反馈控制律, 兼具直接离线部署和在线学习部署的能力. 此外, 从理论上证明了RHRL算法在每个预测时域的收敛性, 并分析了闭环系统的稳定性. 在仿真环境中完成了结构化道路下的车辆侧向控制测试. 仿真结果表明, 提出的RHRL方法在控制性能方面优于现有算法, 最后, 以红旗E-HS3电动汽车作为实车平台, 在封闭结构化城市测试道路和乡村起伏砂石道路下进行了侧向控制实验. 实验结果显示, RHRL在结构化城市道路中的侧向控制性能优于预瞄控制, 在乡村道路中具有较强的路面适应能力和较好的控制性能.
针对智能车辆的高精度侧向控制问题, 提出一种基于滚动时域强化学习(Receding horizon reinforcement learning, RHRL)的侧向控制方法. 车辆的侧向控制量由前馈和反馈两部分构成, 前馈控制量由参考路径的曲率以及动力学模型直接计算得出; 而反馈控制量通过采用滚动时域强化学习算法求解最优跟踪控制问题得到. 提出的方法结合滚动时域优化机制, 将无限时域最优控制问题转化为若干有限时域控制问题进行求解. 与已有的有限时域执行器−评价器学习不同, 在每个预测时域采用时间独立型执行器−评价器网络结构学习最优值函数和控制策略. 与模型预测控制(Model predictive control, MPC)方法求解开环控制序列不同, RHRL控制器的输出是一个显式状态反馈控制律, 兼具直接离线部署和在线学习部署的能力. 此外, 从理论上证明了RHRL算法在每个预测时域的收敛性, 并分析了闭环系统的稳定性. 在仿真环境中完成了结构化道路下的车辆侧向控制测试. 仿真结果表明, 提出的RHRL方法在控制性能方面优于现有算法, 最后, 以红旗E-HS3电动汽车作为实车平台, 在封闭结构化城市测试道路和乡村起伏砂石道路下进行了侧向控制实验. 实验结果显示, RHRL在结构化城市道路中的侧向控制性能优于预瞄控制, 在乡村道路中具有较强的路面适应能力和较好的控制性能.
当前状态:
, 最新更新时间: ,
doi: 10.16383/j.aas.c221006
摘要:
用于复杂工业过程难测运行指标和异常故障建模的样本具有量少稀缺、分布不均衡以及内涵机理知识匮乏等特性. 虚拟样本生成(Virtual sample generation, VSG)作为扩充建模样本数量及其涵盖空间的技术, 已成为解决上述问题的主要手段之一, 但已有研究还存在缺乏理论支撑、分类准则与应用边界模糊等问题. 本文在描述复杂工业过程难测运行指标和异常故障建模所存在问题的基础上, 梳理虚拟样本定义及其内涵, 给出面向工业过程回归与分类问题的VSG实现流程; 接着, 从样本覆盖区域、实现流程与推广应用等方向进行综述; 然后, 分析讨论VSG的下一步研究方向; 最后, 对全文进行总结并给出未来挑战.
用于复杂工业过程难测运行指标和异常故障建模的样本具有量少稀缺、分布不均衡以及内涵机理知识匮乏等特性. 虚拟样本生成(Virtual sample generation, VSG)作为扩充建模样本数量及其涵盖空间的技术, 已成为解决上述问题的主要手段之一, 但已有研究还存在缺乏理论支撑、分类准则与应用边界模糊等问题. 本文在描述复杂工业过程难测运行指标和异常故障建模所存在问题的基础上, 梳理虚拟样本定义及其内涵, 给出面向工业过程回归与分类问题的VSG实现流程; 接着, 从样本覆盖区域、实现流程与推广应用等方向进行综述; 然后, 分析讨论VSG的下一步研究方向; 最后, 对全文进行总结并给出未来挑战.
当前状态:
, 最新更新时间: ,
doi: 10.16383/j.aas.c200936
摘要:
针对轧机机电液垂扭耦合系统存在耦合振动问题, 提出一种基于耦合反步法的轧机垂扭耦合振动抑制控制策略. 首先考虑了轧机传动系统、液压系统与辊系机械间的相互影响, 根据动力学定理, 建立了轧机机电液垂扭耦合振动数学模型. 其次考虑到轧机耦合垂振系统和耦合扭振系统间存在状态耦合关系, 利用耦合反步法, 解决了振动控制器设计中存在的相互嵌套问题. 针对耦合系统输出性能受限问题, 借助于障碍李雅普诺夫函数方法, 同时利用神经网络来逼近未知非线性函数, 设计了自适应神经网络振动抑制控制策略. 基于李雅普诺夫稳定理论严格证明了本文设计的控制方法能够保证系统输出满足所要求的暂稳态性能指标. 最后, 根据650 mm轧机的实际数据进行仿真, 验证了本文设计控制策略的有效性与优越性.
针对轧机机电液垂扭耦合系统存在耦合振动问题, 提出一种基于耦合反步法的轧机垂扭耦合振动抑制控制策略. 首先考虑了轧机传动系统、液压系统与辊系机械间的相互影响, 根据动力学定理, 建立了轧机机电液垂扭耦合振动数学模型. 其次考虑到轧机耦合垂振系统和耦合扭振系统间存在状态耦合关系, 利用耦合反步法, 解决了振动控制器设计中存在的相互嵌套问题. 针对耦合系统输出性能受限问题, 借助于障碍李雅普诺夫函数方法, 同时利用神经网络来逼近未知非线性函数, 设计了自适应神经网络振动抑制控制策略. 基于李雅普诺夫稳定理论严格证明了本文设计的控制方法能够保证系统输出满足所要求的暂稳态性能指标. 最后, 根据650 mm轧机的实际数据进行仿真, 验证了本文设计控制策略的有效性与优越性.
当前状态:
, 最新更新时间: ,
doi: 10.16383/j.aas.c230070
摘要:
内窥镜是诊断人体器官疾病的重要医疗设备, 然而受人体内腔环境影响, 内窥镜图像分辨率一般较低, 需对其进行超分辨处理. 目前多数基于深度学习的超分辨算法直接使用双三次插值下采样从高质量图像中获取低分辨率图像以进行配对训练, 此种方式会导致纹理细节丢失, 不适用于医学图像. 为了解决该问题, 针对医学内窥镜图像开发了一种新颖的退化框架, 首先从真实低质量内窥镜图像中提取丰富多样的真实模糊核与噪声模式, 之后提出一种退化注入算法, 利用提取的真实模糊核与噪声将高分辨率内窥镜图像退化为符合真实域的低分辨率图像. 同时, 提出了一种高频引导的残差密集超分辨网络, 采用基于双频率信息交互的频率分离策略, 并设计多层级融合机制, 将提取的多级高频信息逐层嵌入残差密集模块的多层特征, 以充分恢复内窥镜图像的高频细节和低频内容. 在合成与真实数据集上的大量实验表明, 我们的方法优于对比方法, 具有更好的主客观质量评价.
内窥镜是诊断人体器官疾病的重要医疗设备, 然而受人体内腔环境影响, 内窥镜图像分辨率一般较低, 需对其进行超分辨处理. 目前多数基于深度学习的超分辨算法直接使用双三次插值下采样从高质量图像中获取低分辨率图像以进行配对训练, 此种方式会导致纹理细节丢失, 不适用于医学图像. 为了解决该问题, 针对医学内窥镜图像开发了一种新颖的退化框架, 首先从真实低质量内窥镜图像中提取丰富多样的真实模糊核与噪声模式, 之后提出一种退化注入算法, 利用提取的真实模糊核与噪声将高分辨率内窥镜图像退化为符合真实域的低分辨率图像. 同时, 提出了一种高频引导的残差密集超分辨网络, 采用基于双频率信息交互的频率分离策略, 并设计多层级融合机制, 将提取的多级高频信息逐层嵌入残差密集模块的多层特征, 以充分恢复内窥镜图像的高频细节和低频内容. 在合成与真实数据集上的大量实验表明, 我们的方法优于对比方法, 具有更好的主客观质量评价.
当前状态:
, 最新更新时间: ,
doi: 10.16383/j.aas.c210646
摘要:
微型扑翼飞行器(Flapping wing micro aerial vehicle, FWMAV)因飞行效率高、质量轻、耗能低、机动性强等显著优点, 在飞行器研究和应用中占据重要地位. 目前, FWMAV姿态控制成为飞行器控制研究领域的研究热点. 针对FWMAV姿态控制问题, 基于平行智能理论框架提出了一种FWMAV抗扰动姿态控制器. 通过建立人工系统(Artificial systems, A)、计算实验(Computational experiments, C)、平行执行(Parallel execution, P)三个过程, 得到一个能够有效解决FWMAV姿态控制过程中扰动问题的控制器, 并通过理论分析和数值仿真证明了该控制器的有效性.
微型扑翼飞行器(Flapping wing micro aerial vehicle, FWMAV)因飞行效率高、质量轻、耗能低、机动性强等显著优点, 在飞行器研究和应用中占据重要地位. 目前, FWMAV姿态控制成为飞行器控制研究领域的研究热点. 针对FWMAV姿态控制问题, 基于平行智能理论框架提出了一种FWMAV抗扰动姿态控制器. 通过建立人工系统(Artificial systems, A)、计算实验(Computational experiments, C)、平行执行(Parallel execution, P)三个过程, 得到一个能够有效解决FWMAV姿态控制过程中扰动问题的控制器, 并通过理论分析和数值仿真证明了该控制器的有效性.
当前状态:
, 最新更新时间: ,
doi: 10.16383/j.aas.c201031
摘要:
针对经验模态分解(Empirical mode decomposition, EMD)系列方法存在的模态分裂(Mode splitting, MS)问题, 提出中值互补集合经验模态分解(Median complementary ensemble EMD, MCEEMD)算法. 通过概率模型量化互补集合经验模态分解(Complementary ensemble EMD, CEEMD)的MS问题, 证明了使用中值算子替代算术平均算子对抑制MS的有效性. 为了兼具抑制MS和残留噪声的性能, MCEEMD算法首次在集合过程中结合了中值和平均算子. 具体地, 所提方法算法首先添加N对互补的白噪声至原信号中, 并经过EMD分解得到2N组固有模态函数(Intrinsic mode functions, IMFs), 然后分别对其中互补相关的IMFs两两取平均得到N组IMFs, 最后使用中值算子处理上述N组IMFs得到输出结果. 对仿真信号与实测信号的分析结果表明, 本文提出的MCEEMD方法不仅有效抑制了CEEMD的MS问题, 而且避免了单一使用中值算子的两个缺点: 分解完备性差和IMFs中存在的毛刺现象.
针对经验模态分解(Empirical mode decomposition, EMD)系列方法存在的模态分裂(Mode splitting, MS)问题, 提出中值互补集合经验模态分解(Median complementary ensemble EMD, MCEEMD)算法. 通过概率模型量化互补集合经验模态分解(Complementary ensemble EMD, CEEMD)的MS问题, 证明了使用中值算子替代算术平均算子对抑制MS的有效性. 为了兼具抑制MS和残留噪声的性能, MCEEMD算法首次在集合过程中结合了中值和平均算子. 具体地, 所提方法算法首先添加N对互补的白噪声至原信号中, 并经过EMD分解得到2N组固有模态函数(Intrinsic mode functions, IMFs), 然后分别对其中互补相关的IMFs两两取平均得到N组IMFs, 最后使用中值算子处理上述N组IMFs得到输出结果. 对仿真信号与实测信号的分析结果表明, 本文提出的MCEEMD方法不仅有效抑制了CEEMD的MS问题, 而且避免了单一使用中值算子的两个缺点: 分解完备性差和IMFs中存在的毛刺现象.
当前状态:
, 最新更新时间: ,
doi: 10.16383/j.aas.c200614
摘要:
针对传统动态水印检测方法无法适用模型不确定系统的攻击检测问题, 首先分析模型不确定项导致的传统动态水印检测失效原因, 然后考虑模型不确定项和过程噪声的统计规律, 将其影响转化为对方差变化特性进行分析, 提出两个具有鲁棒性的攻击检测式以及检测式中关键时变方差阈值的确定方法; 其次采用系统失真信号功率定量刻画攻击信号造成系统性能损失程度, 理论证明了系统失真信号功率上界; 在此基础上考虑最坏情况下攻击能够躲过检测, 基于水印信号与其他混合信号相互独立性新增第三检测式, 同时理论证明了系统失真信号功率上界进一步受限范围, 进而提升不确定系统的安全性; 最后仿真算例验证了所提方法的有效性和可行性.
针对传统动态水印检测方法无法适用模型不确定系统的攻击检测问题, 首先分析模型不确定项导致的传统动态水印检测失效原因, 然后考虑模型不确定项和过程噪声的统计规律, 将其影响转化为对方差变化特性进行分析, 提出两个具有鲁棒性的攻击检测式以及检测式中关键时变方差阈值的确定方法; 其次采用系统失真信号功率定量刻画攻击信号造成系统性能损失程度, 理论证明了系统失真信号功率上界; 在此基础上考虑最坏情况下攻击能够躲过检测, 基于水印信号与其他混合信号相互独立性新增第三检测式, 同时理论证明了系统失真信号功率上界进一步受限范围, 进而提升不确定系统的安全性; 最后仿真算例验证了所提方法的有效性和可行性.
当前状态:
, 最新更新时间: ,
doi: 10.16383/j.aas.c230252
摘要:
聚焦多机器人系统协同寻源问题, 即通过驱使多个机器人相互协同寻找未知环境中物理信号放射源的位置. 由于执行任务的机器人通常处于户外开放网络环境中, 攻击者在网络中生成的虚假数据注入攻击容易导致多机器人系统寻源任务的失败. 在网络攻击情形下仍旧能够追寻到源点, 提出一种基于弹性向量趋同的多机器人系统协同多维寻源方法. 有别于现有文献在处理多维寻源时将向量分解成各个维度上的标量进而设计基于标量的弹性趋同协议, 所提出的多维寻源方法不仅能够有效抵御虚假数据注入攻击完成寻源任务, 并且其界定的安全区间相较于传统基于标量信息界定的安全区间更加严格和精准. 在假设f-局部有界(f-locally bounded) 虚假数据注入攻击模型下, 理论分析给出了正常机器人在所设计的控制协议下追寻到源点的充分必要条件. 仿真结果表明, 该方法在分布式多机器人系统协作寻源和抵抗恶意攻击方面具有优越性.
聚焦多机器人系统协同寻源问题, 即通过驱使多个机器人相互协同寻找未知环境中物理信号放射源的位置. 由于执行任务的机器人通常处于户外开放网络环境中, 攻击者在网络中生成的虚假数据注入攻击容易导致多机器人系统寻源任务的失败. 在网络攻击情形下仍旧能够追寻到源点, 提出一种基于弹性向量趋同的多机器人系统协同多维寻源方法. 有别于现有文献在处理多维寻源时将向量分解成各个维度上的标量进而设计基于标量的弹性趋同协议, 所提出的多维寻源方法不仅能够有效抵御虚假数据注入攻击完成寻源任务, 并且其界定的安全区间相较于传统基于标量信息界定的安全区间更加严格和精准. 在假设f-局部有界(f-locally bounded) 虚假数据注入攻击模型下, 理论分析给出了正常机器人在所设计的控制协议下追寻到源点的充分必要条件. 仿真结果表明, 该方法在分布式多机器人系统协作寻源和抵抗恶意攻击方面具有优越性.
当前状态:
, 最新更新时间: ,
doi: 10.16383/j.aas.c200701
摘要:
针对任意初始状态下机械臂轨迹跟踪问题, 提出一种变长度误差跟踪迭代学习控制(Iterative learning control, ILC)方法. 首先, 构造不依赖于期望轨迹的双曲余弦型期望误差轨迹, 放宽经典迭代学习控制的初始状态要求严格一致条件. 由于该误差轨迹只需设置一个常数项, 因而能够有效减少计算量, 使得期望误差轨迹的设计更为简单. 其次, 考虑机械臂运行区间随迭代次数变化的问题, 构建虚拟误差变量补偿机制, 通过定义虚拟误差变量对未运行区间进行信息补偿, 放宽经典迭代学习控制的迭代长度不变条件. 在此基础上, 基于Lyapunov-like理论设计迭代学习控制器和全限幅学习律, 实现机械臂关节位置在指定区间上跟踪给定的期望轨迹和保证未知参数估计值的有界性. 最后, 仿真结果验证了本文所提方法的有效性.
针对任意初始状态下机械臂轨迹跟踪问题, 提出一种变长度误差跟踪迭代学习控制(Iterative learning control, ILC)方法. 首先, 构造不依赖于期望轨迹的双曲余弦型期望误差轨迹, 放宽经典迭代学习控制的初始状态要求严格一致条件. 由于该误差轨迹只需设置一个常数项, 因而能够有效减少计算量, 使得期望误差轨迹的设计更为简单. 其次, 考虑机械臂运行区间随迭代次数变化的问题, 构建虚拟误差变量补偿机制, 通过定义虚拟误差变量对未运行区间进行信息补偿, 放宽经典迭代学习控制的迭代长度不变条件. 在此基础上, 基于Lyapunov-like理论设计迭代学习控制器和全限幅学习律, 实现机械臂关节位置在指定区间上跟踪给定的期望轨迹和保证未知参数估计值的有界性. 最后, 仿真结果验证了本文所提方法的有效性.
当前状态:
, 最新更新时间: ,
doi: 10.16383/j.aas.c210676
摘要:
高精度时间同步是任务关键型工业网络控制系统的核心支撑技术, 针对工业环境中普遍存在周期性振动等扰动信号导致晶振频率漂移, 影响时间同步精度的问题, 基于扩展比例积分(Proportional integral,\begin{document}$ \mathrm{P}\mathrm{I} $\end{document} )观测器, 提出一种新型的抗扰补偿器结构, 用于消除周期性扰动的影响, 并构建了相应的精细抗干扰反馈控制方法, 用于实现高精度时间同步. 与传统的扰动观测器相比, 所提出的扩展\begin{document}$ \mathrm{P}\mathrm{I} $\end{document} 抗扰补偿器克服了传统扰动观测器零点不变局限性, 提出了零点配置方法, 以充分利用闭环系统的传递函数矩阵(Transfer function matrix, TFM)在系统零点处降秩的特性, 实现了对于特定频率扰动信号的补偿作用. 并给出了所提出的控制器和抗扰补偿器的稳定性证明和控制器参数的稳定域. 通过基于实测参数的无线网络仿真实验, 验证了在\begin{document}$5\;\mathrm{g}$\end{document} 周期性振动干扰下, 本文提出的方法明显优于传统滤波器和补偿器, 达到了同步误差在4 μs以内, 实现了高精度时间同步.
高精度时间同步是任务关键型工业网络控制系统的核心支撑技术, 针对工业环境中普遍存在周期性振动等扰动信号导致晶振频率漂移, 影响时间同步精度的问题, 基于扩展比例积分(Proportional integral,
当前状态:
, 最新更新时间: ,
doi: 10.16383/j.aas.c220984
摘要:
本文主要研究网络环境下无人水面船舶 (Unmanned surface vessels, USVs) 遭受虚假数据注入式 (False-data-injection, FDI) 攻击的跟踪控制问题. 其中, USVs 遭受内部和外部不确定以及输入饱和约束等实际因素均考虑在设计中. 在控制设计过程中, 为避免将船舶速度的攻击信号引入闭环系统, 采用分类重构思想, 构造一种新的神经网络 (Neural network, NN) 状态观测器, 同时在线重构船舶速度和攻击信号. 进一步, 在~Backstepping 设计框架下, 利用重构的攻击信号补偿~USVs 运动学通道因虚假数据注入式攻击引起的非匹配不确定项. 在动力学设计通道中, 利用自适应神经技术和单参数学习法, 在线重构了由内部和外部不确定组成的复合不确定部分, 进而提出自适应神经输出反馈控制方案. 理论分析表明, 即便存在~FDI 攻击、内外不确定以及执行器饱和约束的情况下, 所提控制方案能迫使~USVs 跟踪给定的参考轨迹. 同时, 仿真和比较结果阐明了所提控制方案的有效性和优越性.
本文主要研究网络环境下无人水面船舶 (Unmanned surface vessels, USVs) 遭受虚假数据注入式 (False-data-injection, FDI) 攻击的跟踪控制问题. 其中, USVs 遭受内部和外部不确定以及输入饱和约束等实际因素均考虑在设计中. 在控制设计过程中, 为避免将船舶速度的攻击信号引入闭环系统, 采用分类重构思想, 构造一种新的神经网络 (Neural network, NN) 状态观测器, 同时在线重构船舶速度和攻击信号. 进一步, 在~Backstepping 设计框架下, 利用重构的攻击信号补偿~USVs 运动学通道因虚假数据注入式攻击引起的非匹配不确定项. 在动力学设计通道中, 利用自适应神经技术和单参数学习法, 在线重构了由内部和外部不确定组成的复合不确定部分, 进而提出自适应神经输出反馈控制方案. 理论分析表明, 即便存在~FDI 攻击、内外不确定以及执行器饱和约束的情况下, 所提控制方案能迫使~USVs 跟踪给定的参考轨迹. 同时, 仿真和比较结果阐明了所提控制方案的有效性和优越性.
当前状态:
, 最新更新时间: ,
doi: 10.16383/j.aas.c220983
摘要:
机器阅读理解任务旨在要求系统对于给定的文章进行理解, 然后针对给定的问题进行回答. 先前的工作重点聚焦在问题和文章之间的交互信息. 然而, 忽略了对问题进行更加细粒度的分析, 如: 问题所考察的阅读技巧是什么. 受到先前阅读理解相关文献的启发, 人类对于问题的理解是一个多维度的过程, 首先人类需要理解问题的上/下文语义信息, 然后再针对不同类型的问题识别其需要使用的阅读技巧, 最后再通过与文章的交互来回答出问题的答案. 出于该目的, 提出一种基于阅读技巧识别和双通道融合的机器阅读理解方法来对问题进行更细致的分析, 从而提高模型回答问题的准确性. 具体来说, 阅读技巧识别器通过对比学习的方法能够显式地捕获阅读技巧的语义信息. 双通道融合机制会将问题与文章的交互信息和阅读技巧的语义信息进行深层次的融合, 从而达到辅助系统理解问题和文章的目的. 为了验证模型的效果, 在FairytaleQA数据集上面进行实验, 实验结果表明, 提出的方法实现了目前在机器阅读理解任务和阅读技巧识别任务上最好的效果.
机器阅读理解任务旨在要求系统对于给定的文章进行理解, 然后针对给定的问题进行回答. 先前的工作重点聚焦在问题和文章之间的交互信息. 然而, 忽略了对问题进行更加细粒度的分析, 如: 问题所考察的阅读技巧是什么. 受到先前阅读理解相关文献的启发, 人类对于问题的理解是一个多维度的过程, 首先人类需要理解问题的上/下文语义信息, 然后再针对不同类型的问题识别其需要使用的阅读技巧, 最后再通过与文章的交互来回答出问题的答案. 出于该目的, 提出一种基于阅读技巧识别和双通道融合的机器阅读理解方法来对问题进行更细致的分析, 从而提高模型回答问题的准确性. 具体来说, 阅读技巧识别器通过对比学习的方法能够显式地捕获阅读技巧的语义信息. 双通道融合机制会将问题与文章的交互信息和阅读技巧的语义信息进行深层次的融合, 从而达到辅助系统理解问题和文章的目的. 为了验证模型的效果, 在FairytaleQA数据集上面进行实验, 实验结果表明, 提出的方法实现了目前在机器阅读理解任务和阅读技巧识别任务上最好的效果.
当前状态:
, 最新更新时间: ,
doi: 10.16383/j.aas.c230109
摘要:
虹膜识别技术因唯一性、稳定性、非接触性、准确性等特性广泛应用于各类现实场景中. 然而, 现有的许多虹膜识别系统在认证过程中仍然容易遭受各种攻击的干扰, 导致安全性方面可能存在风险隐患. 在不同的攻击类型中, 呈现攻击由于出现在早期的虹膜图像获取阶段, 且形式变化多端, 因而虹膜呈现攻击检测成为虹膜识别技术中首先需要解决的安全问题之一, 得到了学术界和产业界的广泛重视. 本综述是目前已知第一篇虹膜呈现攻击检测领域的中文综述, 旨在帮助研究人员快速、全面地了解该领域的相关知识以及发展动态. 总体来说, 本文对虹膜呈现攻击检测的难点、术语和攻击类型、主流方法、公共数据集、比赛及可解释性等方面进行全面归纳. 具体而言, 首先介绍虹膜呈现攻击检测的背景、虹膜识别系统现存的安全漏洞与呈现攻击的目的. 其次, 按照是否使用额外硬件设备将检测方法分为基于硬件与基于软件的方法两大类, 并在基于软件的方法中按照特征提取的方式作出了进一步归纳和分析. 此外, 还整理了开源方法、可申请的公开数据集以及概括了历届相关比赛. 最后, 对虹膜呈现攻击检测未来可能的发展方向进行了展望.
虹膜识别技术因唯一性、稳定性、非接触性、准确性等特性广泛应用于各类现实场景中. 然而, 现有的许多虹膜识别系统在认证过程中仍然容易遭受各种攻击的干扰, 导致安全性方面可能存在风险隐患. 在不同的攻击类型中, 呈现攻击由于出现在早期的虹膜图像获取阶段, 且形式变化多端, 因而虹膜呈现攻击检测成为虹膜识别技术中首先需要解决的安全问题之一, 得到了学术界和产业界的广泛重视. 本综述是目前已知第一篇虹膜呈现攻击检测领域的中文综述, 旨在帮助研究人员快速、全面地了解该领域的相关知识以及发展动态. 总体来说, 本文对虹膜呈现攻击检测的难点、术语和攻击类型、主流方法、公共数据集、比赛及可解释性等方面进行全面归纳. 具体而言, 首先介绍虹膜呈现攻击检测的背景、虹膜识别系统现存的安全漏洞与呈现攻击的目的. 其次, 按照是否使用额外硬件设备将检测方法分为基于硬件与基于软件的方法两大类, 并在基于软件的方法中按照特征提取的方式作出了进一步归纳和分析. 此外, 还整理了开源方法、可申请的公开数据集以及概括了历届相关比赛. 最后, 对虹膜呈现攻击检测未来可能的发展方向进行了展望.
当前状态:
, 最新更新时间: ,
doi: 10.16383/j.aas.c220689
摘要:
常用的气体检测模型需要使用气体传感器阵列响应信号的稳态值对气体进行种类识别和浓度估计, 而实际环境中, 气体一般处于动态变化的状态, 气体传感器阵列响应信号难以达到稳态值或长时间维持稳态状态. 针对上述问题, 提出了一种由动态小波残差卷积神经网络(Dynamic wavelet residual convolutional neural networks, DWRCNN)子模型和权重信号自注意力(Weighted signal self-attention, WSSA)子模型组成的气体检测模型. 该模型可以直接使用气体传感器阵列的原始动态响应信号对动态变化的气体进行成分识别, 并进一步对每种成分气体的浓度在线估计. 经自搭建的仿生嗅觉感知系统对模型的性能进行评估, 结果表明, 与常用气体识别模型相比, DWRCNN能获得接近于100%气体识别准确率, 且在线训练时间短, 收敛速度快; 与常用的气体浓度估计模型相比, WSSA 浓度估计模型能够大幅提高气体浓度估计精度, 并且能够同时对不同的气体都保持较高的气体浓度估计精度, 解决了动态环境中仿生嗅觉感知系统需要针对不同的气体选择不同的最优气体浓度估计模型的问题.
常用的气体检测模型需要使用气体传感器阵列响应信号的稳态值对气体进行种类识别和浓度估计, 而实际环境中, 气体一般处于动态变化的状态, 气体传感器阵列响应信号难以达到稳态值或长时间维持稳态状态. 针对上述问题, 提出了一种由动态小波残差卷积神经网络(Dynamic wavelet residual convolutional neural networks, DWRCNN)子模型和权重信号自注意力(Weighted signal self-attention, WSSA)子模型组成的气体检测模型. 该模型可以直接使用气体传感器阵列的原始动态响应信号对动态变化的气体进行成分识别, 并进一步对每种成分气体的浓度在线估计. 经自搭建的仿生嗅觉感知系统对模型的性能进行评估, 结果表明, 与常用气体识别模型相比, DWRCNN能获得接近于100%气体识别准确率, 且在线训练时间短, 收敛速度快; 与常用的气体浓度估计模型相比, WSSA 浓度估计模型能够大幅提高气体浓度估计精度, 并且能够同时对不同的气体都保持较高的气体浓度估计精度, 解决了动态环境中仿生嗅觉感知系统需要针对不同的气体选择不同的最优气体浓度估计模型的问题.
当前状态:
, 最新更新时间: ,
doi: 10.16383/j.aas.c220820
摘要:
在大数据、云计算、机器学习等新一代人工智能技术的推动下, 自动驾驶的感知智能在近年来得到了显著的提升与发展. 然而, 同人类驾驶过程中隐含的以自我目的实现为引导的自探索性和自主性相比, 现阶段自动驾驶技术主要以辅助驾驶功能为主, 还停留在以被动感知、规划与控制为主的初级智能自动驾驶阶段. 为实现车辆智能从数据驱动的环境感知、辅助决策、被动规划到知识驱动的场景认知、推理决策、主动规划的提升, 亟需增强车辆自身对复杂外界信息归纳提炼、推理决策、评价估计等类人能力. 本文首先回顾了自动驾驶关键技术演化及其应用发展历程; 随后分析了测试对车辆智能评估的效用; 再者基于平行测试理论, 提出了自动驾驶车辆认知智能训练、测试与评估空间的构建方法, 并设计了基于平行测试的认知自动驾驶智能训练框架. 本文研究工作预期能为推动自动驾驶从感知智能向认知智能的升级提供可行的技术支撑与实现路径.
在大数据、云计算、机器学习等新一代人工智能技术的推动下, 自动驾驶的感知智能在近年来得到了显著的提升与发展. 然而, 同人类驾驶过程中隐含的以自我目的实现为引导的自探索性和自主性相比, 现阶段自动驾驶技术主要以辅助驾驶功能为主, 还停留在以被动感知、规划与控制为主的初级智能自动驾驶阶段. 为实现车辆智能从数据驱动的环境感知、辅助决策、被动规划到知识驱动的场景认知、推理决策、主动规划的提升, 亟需增强车辆自身对复杂外界信息归纳提炼、推理决策、评价估计等类人能力. 本文首先回顾了自动驾驶关键技术演化及其应用发展历程; 随后分析了测试对车辆智能评估的效用; 再者基于平行测试理论, 提出了自动驾驶车辆认知智能训练、测试与评估空间的构建方法, 并设计了基于平行测试的认知自动驾驶智能训练框架. 本文研究工作预期能为推动自动驾驶从感知智能向认知智能的升级提供可行的技术支撑与实现路径.
当前状态:
, 最新更新时间: ,
doi: 10.16383/j.aas.c230381
摘要:
在非圆零件车削过程中, 快速刀具伺服(Fast tool servo, FTS)的运动精度直接影响零件的加工质量. 主轴变速加工使得FTS的参考目标信号周期时变而不确定, 这对实现其渐近跟踪提出了极大的挑战. 本文利用FTS的位置域周期特性, 提出一种基于位置域重复控制和时域速度反馈镇定的FTS系统复合控制设计方法, 并给出位置域改进型重复控制器(Spatial modified repetitive controller, SMRC)的数字实现算法, 实现对时变周期参考目标信号的高精度跟踪. 首先, 建立包含位置相关时变周期参考目标信号内模的SMRC, 并引入位置域相位超前装置对镇定补偿器引起的相位滞后进行补偿, 在此基础上构建复合控制律. 然后应用小增益定理和算子理论, 推导出闭环系统的稳定性条件, 在保持系统采样频率不变的条件下, 应用插值法建立SMRC的数字实现算法, 确保位置域重复控制和时域镇定控制器的同步执行. 最后, 通过仿真验证所设计的FTS控制系统具有满意的时变周期跟踪性能和鲁棒性. 并通过与其他位置域重复控制方法的比较, 说明所提方法同时具有更好的暂态和稳态性能.
在非圆零件车削过程中, 快速刀具伺服(Fast tool servo, FTS)的运动精度直接影响零件的加工质量. 主轴变速加工使得FTS的参考目标信号周期时变而不确定, 这对实现其渐近跟踪提出了极大的挑战. 本文利用FTS的位置域周期特性, 提出一种基于位置域重复控制和时域速度反馈镇定的FTS系统复合控制设计方法, 并给出位置域改进型重复控制器(Spatial modified repetitive controller, SMRC)的数字实现算法, 实现对时变周期参考目标信号的高精度跟踪. 首先, 建立包含位置相关时变周期参考目标信号内模的SMRC, 并引入位置域相位超前装置对镇定补偿器引起的相位滞后进行补偿, 在此基础上构建复合控制律. 然后应用小增益定理和算子理论, 推导出闭环系统的稳定性条件, 在保持系统采样频率不变的条件下, 应用插值法建立SMRC的数字实现算法, 确保位置域重复控制和时域镇定控制器的同步执行. 最后, 通过仿真验证所设计的FTS控制系统具有满意的时变周期跟踪性能和鲁棒性. 并通过与其他位置域重复控制方法的比较, 说明所提方法同时具有更好的暂态和稳态性能.
当前状态:
, 最新更新时间: ,
doi: 10.16383/j.aas.c220889
摘要:
由8个推进器和6条刀锋腿混合驱动的水下机器人可在水底或壁面上行走. 本文旨在研究这类机器人运动稳定性的评判准则, 即稳定性判据. 现有的稳定性判据多集中于同一机构(腿)驱动的陆地机器人, 未涉及混合驱动的水下刀锋腿机器人. 针对该问题, 提出了基于捕获点理论的混合驱动水下刀锋腿机器人稳定性判据. 首先, 在建立混合驱动水下滚动倒立摆模型的基础上, 利用机器人运动状态预测摆动腿和支撑腿切换瞬间机器人的动能. 然后, 根据推进器所能提供的推力范围, 计算迫使机器人静止的捕获点变化范围, 即获取捕获域. 最后, 根据捕获域与支撑域的空间关系, 判断机器人是否稳定, 并计算稳定裕度. 水下实验表明, 所提出的稳定性判据具有较好的充要性和普适性.
由8个推进器和6条刀锋腿混合驱动的水下机器人可在水底或壁面上行走. 本文旨在研究这类机器人运动稳定性的评判准则, 即稳定性判据. 现有的稳定性判据多集中于同一机构(腿)驱动的陆地机器人, 未涉及混合驱动的水下刀锋腿机器人. 针对该问题, 提出了基于捕获点理论的混合驱动水下刀锋腿机器人稳定性判据. 首先, 在建立混合驱动水下滚动倒立摆模型的基础上, 利用机器人运动状态预测摆动腿和支撑腿切换瞬间机器人的动能. 然后, 根据推进器所能提供的推力范围, 计算迫使机器人静止的捕获点变化范围, 即获取捕获域. 最后, 根据捕获域与支撑域的空间关系, 判断机器人是否稳定, 并计算稳定裕度. 水下实验表明, 所提出的稳定性判据具有较好的充要性和普适性.
当前状态:
, 最新更新时间: ,
doi: 10.16383/j.aas.c220690
摘要:
联邦学习(Federated learning, FL)在解决人工智能(Artificial intelligence, AI)面临的隐私泄露和数据孤岛问题方面具有显著优势. 针对联邦学习的已有研究未考虑联邦数据之间的关联性和高维性问题, 提出一种基于联邦数据相关性的去中心化联邦降维方法. 该方法基于Swarm学习(Swarm learning, SL)思想, 通过分离耦合特征, 构建典型相关分析(Canonical correlation analysis, CCA)的Swarm联邦框架, 以提取Swarm节点的低维关联特征. 为保护协作参数的隐私安全, 还构建了一种随机扰乱策略来隐藏Swarm特征隐私. 在真实数据集上的实验验证了所提方法的有效性.
联邦学习(Federated learning, FL)在解决人工智能(Artificial intelligence, AI)面临的隐私泄露和数据孤岛问题方面具有显著优势. 针对联邦学习的已有研究未考虑联邦数据之间的关联性和高维性问题, 提出一种基于联邦数据相关性的去中心化联邦降维方法. 该方法基于Swarm学习(Swarm learning, SL)思想, 通过分离耦合特征, 构建典型相关分析(Canonical correlation analysis, CCA)的Swarm联邦框架, 以提取Swarm节点的低维关联特征. 为保护协作参数的隐私安全, 还构建了一种随机扰乱策略来隐藏Swarm特征隐私. 在真实数据集上的实验验证了所提方法的有效性.
当前状态:
, 最新更新时间: ,
doi: 10.16383/j.aas.c220994
摘要:
精准的医学图像自动分割是临床影像学诊断和影像三维重建的重要基础.但医学图像数据的目标对象间对比度差异小、受器官运动影响大, 加之标注样本规模小, 因此在小样本下建立高性能的医学分割模型仍是目前的难点问题. 针对主流原型学习小样本分割网络对医学图像边界分割性能差的问题, 提出一种迭代边界优化的小样本分割网络(Iterative boundary refinement based few-shot-segmentation network, IBR-FSS-Net). 以双分支原型学习的小样本分割框架为基础引入类别注意力机制和密集比较模块, 对粗分割掩码进行迭代优化, 引导分割模型在多次迭代学习过程中关注边界, 从而提升边界分割精度. 为进一步克服医学图像训练样本少且多样性不足的问题, 使用超像素方法生成伪标签, 扩充训练数据以提升模型泛化性. 在主流的ABD-MR和ABD-CT医学图像分割公共数据集上进行实验, 与现有多种先进的医学图像小样本分割方法进行了广泛的对比分析和消融实验. 结果表明, 该方法有效提升了未见医学类别的分割性能.
精准的医学图像自动分割是临床影像学诊断和影像三维重建的重要基础.但医学图像数据的目标对象间对比度差异小、受器官运动影响大, 加之标注样本规模小, 因此在小样本下建立高性能的医学分割模型仍是目前的难点问题. 针对主流原型学习小样本分割网络对医学图像边界分割性能差的问题, 提出一种迭代边界优化的小样本分割网络(Iterative boundary refinement based few-shot-segmentation network, IBR-FSS-Net). 以双分支原型学习的小样本分割框架为基础引入类别注意力机制和密集比较模块, 对粗分割掩码进行迭代优化, 引导分割模型在多次迭代学习过程中关注边界, 从而提升边界分割精度. 为进一步克服医学图像训练样本少且多样性不足的问题, 使用超像素方法生成伪标签, 扩充训练数据以提升模型泛化性. 在主流的ABD-MR和ABD-CT医学图像分割公共数据集上进行实验, 与现有多种先进的医学图像小样本分割方法进行了广泛的对比分析和消融实验. 结果表明, 该方法有效提升了未见医学类别的分割性能.
当前状态:
, 最新更新时间: ,
doi: 10.16383/j.aas.c210598
摘要:
前沿的自然场景文本检测方法大多基于全卷积语义分割网络, 利用像素级分类结果有效检测任意形状的文本, 其缺点是模型大、推理时间长、内存占用高, 这在实际应用中限制了其部署. 提出一种基于信息熵迁移的自蒸馏训练方法(Self-distillation via entropy transfer, SDET), 利用文本检测网络深层网络输出的分割图(Segmentation map, SM)信息熵作为待迁移知识, 通过辅助网络将信息熵反馈给浅层网络. 与依赖教师网络的知识蒸馏 (Knowledge distillation, KD)不同, 自蒸馏训练方法仅在训练阶段增加一个辅助网络, 以微小的额外训练代价实现无需教师网络的自蒸馏(Self-distillation, SD). 在多个自然场景文本检测的标准数据集上的实验结果表明, SDET在基线文本检测网络的召回率和F1得分上, 能显著优于其他蒸馏方法.
前沿的自然场景文本检测方法大多基于全卷积语义分割网络, 利用像素级分类结果有效检测任意形状的文本, 其缺点是模型大、推理时间长、内存占用高, 这在实际应用中限制了其部署. 提出一种基于信息熵迁移的自蒸馏训练方法(Self-distillation via entropy transfer, SDET), 利用文本检测网络深层网络输出的分割图(Segmentation map, SM)信息熵作为待迁移知识, 通过辅助网络将信息熵反馈给浅层网络. 与依赖教师网络的知识蒸馏 (Knowledge distillation, KD)不同, 自蒸馏训练方法仅在训练阶段增加一个辅助网络, 以微小的额外训练代价实现无需教师网络的自蒸馏(Self-distillation, SD). 在多个自然场景文本检测的标准数据集上的实验结果表明, SDET在基线文本检测网络的召回率和F1得分上, 能显著优于其他蒸馏方法.
当前状态:
, 最新更新时间: ,
doi: 10.16383/j.aas.c230159
摘要:
以对比语言−图像预训练 (Contrastive language-image pre-training, CLIP)模型为基础, 提出一种面向视频行为识别的多模态模型, 该模型从视觉编码器的时序建模和行为类别语言描述的提示学习两方面对CLIP模型进行拓展, 可更好地学习多模态视频表达. 具体来说, 在视觉编码器中设计了虚拟帧交互模块, 首先由视频采样帧的类别分词做线性变换得到虚拟帧分词, 然后对其进行基于时序卷积和虚拟帧分词移位的时序建模操作, 有效建模了视频中的时空变化信息; 在语言分支上设计了视觉强化提示模块, 通过注意力机制融合视觉编码器末端输出的类别分词和视觉分词所带有的视觉信息, 来获得经过视觉信息强化的语言表达. 在4个公开视频数据集上的全监督实验和2个视频数据集上的小样本、零样本实验结果证明了所提出多模态模型的有效性和泛化性.
以对比语言−图像预训练 (Contrastive language-image pre-training, CLIP)模型为基础, 提出一种面向视频行为识别的多模态模型, 该模型从视觉编码器的时序建模和行为类别语言描述的提示学习两方面对CLIP模型进行拓展, 可更好地学习多模态视频表达. 具体来说, 在视觉编码器中设计了虚拟帧交互模块, 首先由视频采样帧的类别分词做线性变换得到虚拟帧分词, 然后对其进行基于时序卷积和虚拟帧分词移位的时序建模操作, 有效建模了视频中的时空变化信息; 在语言分支上设计了视觉强化提示模块, 通过注意力机制融合视觉编码器末端输出的类别分词和视觉分词所带有的视觉信息, 来获得经过视觉信息强化的语言表达. 在4个公开视频数据集上的全监督实验和2个视频数据集上的小样本、零样本实验结果证明了所提出多模态模型的有效性和泛化性.
当前状态:
, 最新更新时间: ,
doi: 10.16383/j.aas.c220705
摘要:
决策蕴涵分析是形式概念分析研究的重要方面, 基于形式背景获取决策蕴涵、概念规则等知识是数据分析、机器学习的重要研究内容之一. 首先, 利用属性逻辑语义对决策蕴涵的特性进行刻画. 其次, 在经典二值逻辑框架下分析决策蕴涵、概念规则的基于全蕴涵三I推理思想及分离规则 (Modus Ponens, MP) 和逆分离规则 (Modus Tonens, MT) 的近似推理模式的特征, 证明决策蕴涵的MP、MT近似推理结论是决策蕴涵, 概念规则的MP、MT近似推理结论是概念规则等结论. 引进属性逻辑公式的伪距离, 在属性逻辑伪距离空间中分析推理对象范围参数变化对决策蕴涵MP、MT近似推理结论的影响. 最后, 提出若干通过MP、MT近似推理生成决策蕴涵、概念规则及拟决策蕴涵的模式和方法, 数值实验说明所提出的方法是有效的.
决策蕴涵分析是形式概念分析研究的重要方面, 基于形式背景获取决策蕴涵、概念规则等知识是数据分析、机器学习的重要研究内容之一. 首先, 利用属性逻辑语义对决策蕴涵的特性进行刻画. 其次, 在经典二值逻辑框架下分析决策蕴涵、概念规则的基于全蕴涵三I推理思想及分离规则 (Modus Ponens, MP) 和逆分离规则 (Modus Tonens, MT) 的近似推理模式的特征, 证明决策蕴涵的MP、MT近似推理结论是决策蕴涵, 概念规则的MP、MT近似推理结论是概念规则等结论. 引进属性逻辑公式的伪距离, 在属性逻辑伪距离空间中分析推理对象范围参数变化对决策蕴涵MP、MT近似推理结论的影响. 最后, 提出若干通过MP、MT近似推理生成决策蕴涵、概念规则及拟决策蕴涵的模式和方法, 数值实验说明所提出的方法是有效的.
当前状态:
, 最新更新时间: ,
doi: 10.16383/j.aas.c230184
摘要:
事件抽取是一个历史悠久且极具挑战的研究任务, 取得了大量优异的成果. 由于事件抽取涉及的研究内容较多, 它们的目标和重心各不相同, 使得读者难以全面地了解事件抽取包含的研究任务、研究问题以及未来的热点趋势. 尽管现有的少量事件抽取综述梳理了相关成果, 但存在以下局限: 1)研究任务及其研究进展的梳理不清晰; 2)仅从技术路线的角度进行梳理. 由于不同研究任务下的不同研究问题的解决技术不宜一起对比, 因此这样的梳理方式不利于清晰地展示事件抽取在不同方面的研究进展情况. 为此, 面向研究问题对基于深度学习的事件抽取研究成果重新回顾整理. 首先, 界定事件的相关概念, 论述事件抽取的研究任务, 明确各研究任务的目标, 再梳理各任务上的代表性研究成果; 然后, 总结现有事件抽取成果主要致力于解决哪些方面的研究问题, 分析为什么会存在这些问题、为什么需要解决这些问题的原因; 紧接着对每个方面的研究问题进行技术路线梳理, 分析各自的大体研究方案以及研究推进的过程. 最后, 讨论事件抽取可能的发展趋势.
事件抽取是一个历史悠久且极具挑战的研究任务, 取得了大量优异的成果. 由于事件抽取涉及的研究内容较多, 它们的目标和重心各不相同, 使得读者难以全面地了解事件抽取包含的研究任务、研究问题以及未来的热点趋势. 尽管现有的少量事件抽取综述梳理了相关成果, 但存在以下局限: 1)研究任务及其研究进展的梳理不清晰; 2)仅从技术路线的角度进行梳理. 由于不同研究任务下的不同研究问题的解决技术不宜一起对比, 因此这样的梳理方式不利于清晰地展示事件抽取在不同方面的研究进展情况. 为此, 面向研究问题对基于深度学习的事件抽取研究成果重新回顾整理. 首先, 界定事件的相关概念, 论述事件抽取的研究任务, 明确各研究任务的目标, 再梳理各任务上的代表性研究成果; 然后, 总结现有事件抽取成果主要致力于解决哪些方面的研究问题, 分析为什么会存在这些问题、为什么需要解决这些问题的原因; 紧接着对每个方面的研究问题进行技术路线梳理, 分析各自的大体研究方案以及研究推进的过程. 最后, 讨论事件抽取可能的发展趋势.
当前状态:
, 最新更新时间: ,
doi: 10.16383/j.aas.c230049
摘要:
针对现有深度学习光流估计模型在大位移场景下的准确性和鲁棒性问题, 本文提出了一种联合深度超参数卷积和交叉关联注意力的图像序列光流估计方法. 首先, 通过联合深层卷积和标准卷积构建深度超参数卷积以替代普通卷积, 提取更多特征并加快光流估计网络训练的收敛速度, 在不增加网络推理估计量的前提下提高光流估计的准确性; 然后, 设计基于交叉关联注意力的特征提取编码网络, 通过叠加注意力层数获得更大的感受野, 以提取多尺度长距离上下文特征信息, 增强大位移场景下光流估计的鲁棒性; 最后, 采用金字塔残差迭代模型构建联合深度超参数卷积和交叉关联注意力的光流估计网络, 提升光流估计的整体性能. 分别采用MPI-Sintel和KITTI测试图像集对本文方法和现有代表性光流估计方法进行综合对比分析, 实验结果表明本文方法取得了较好的光流估计性能, 尤其在大位移场景下具有更好的估计准确性与鲁棒性.
针对现有深度学习光流估计模型在大位移场景下的准确性和鲁棒性问题, 本文提出了一种联合深度超参数卷积和交叉关联注意力的图像序列光流估计方法. 首先, 通过联合深层卷积和标准卷积构建深度超参数卷积以替代普通卷积, 提取更多特征并加快光流估计网络训练的收敛速度, 在不增加网络推理估计量的前提下提高光流估计的准确性; 然后, 设计基于交叉关联注意力的特征提取编码网络, 通过叠加注意力层数获得更大的感受野, 以提取多尺度长距离上下文特征信息, 增强大位移场景下光流估计的鲁棒性; 最后, 采用金字塔残差迭代模型构建联合深度超参数卷积和交叉关联注意力的光流估计网络, 提升光流估计的整体性能. 分别采用MPI-Sintel和KITTI测试图像集对本文方法和现有代表性光流估计方法进行综合对比分析, 实验结果表明本文方法取得了较好的光流估计性能, 尤其在大位移场景下具有更好的估计准确性与鲁棒性.
当前状态:
, 最新更新时间: ,
doi: 10.16383/j.aas.c230240
摘要:
以一种折叠式高超声速变外形飞行器为研究对象, 综合考虑变形引起的气动特性、动力学特性的动态变化和模型不确定性、外部干扰的影响, 开展飞行器建模与固定时间预设性能控制方法研究. 首先, 建立高超声速变外形飞行器的运动模型和姿态控制模型; 然后, 采用固定时间干扰观测器实现对模型不确定性和外部干扰构成的复合总扰动的精确估计, 并设计一种新型固定时间预设性能函数以定量描述期望性能约束, 在此基础上, 基于预设性能控制架构并结合动态面控制技术设计预设性能姿态控制器, 利用Lyapunov稳定性理论证明闭环系统的固定时间稳定性; 最后, 通过数值仿真验证所提出方法的有效性和鲁棒性.
以一种折叠式高超声速变外形飞行器为研究对象, 综合考虑变形引起的气动特性、动力学特性的动态变化和模型不确定性、外部干扰的影响, 开展飞行器建模与固定时间预设性能控制方法研究. 首先, 建立高超声速变外形飞行器的运动模型和姿态控制模型; 然后, 采用固定时间干扰观测器实现对模型不确定性和外部干扰构成的复合总扰动的精确估计, 并设计一种新型固定时间预设性能函数以定量描述期望性能约束, 在此基础上, 基于预设性能控制架构并结合动态面控制技术设计预设性能姿态控制器, 利用Lyapunov稳定性理论证明闭环系统的固定时间稳定性; 最后, 通过数值仿真验证所提出方法的有效性和鲁棒性.
当前状态:
, 最新更新时间: ,
doi: 10.16383/j.aas.c230018
摘要:
追逃问题的研究在对抗、追踪以及搜查等领域极具现实意义. 借助连续随机博弈与马尔科夫决策过程, 研究使用测量距离求解多对一追逃问题的最优策略. 在此追逃问题中, 追捕群体仅领导者可测量与逃逸者间的相对距离, 而逃逸者具有全局视野. 追逃策略求解被分为追博弈与马尔科夫决策(Markov decision process, MDP)两个过程. 在求解追捕策略时, 通过分割环境引入信念区域状态以估计逃逸者位置, 同时使用测量距离对信念区域状态进行修正, 构建起基于信念区域状态的连续随机追博弈, 并借助不动点定理证明了博弈平稳纳什均衡策略的存在性. 在求解逃逸策略时, 逃逸者根据全局信息建立混合状态下的马尔科夫决策过程及相应的最优贝尔曼方程. 同时给出了基于强化学习的平稳追逃策略求解算法, 并通过案例验证了该算法的有效性.
追逃问题的研究在对抗、追踪以及搜查等领域极具现实意义. 借助连续随机博弈与马尔科夫决策过程, 研究使用测量距离求解多对一追逃问题的最优策略. 在此追逃问题中, 追捕群体仅领导者可测量与逃逸者间的相对距离, 而逃逸者具有全局视野. 追逃策略求解被分为追博弈与马尔科夫决策(Markov decision process, MDP)两个过程. 在求解追捕策略时, 通过分割环境引入信念区域状态以估计逃逸者位置, 同时使用测量距离对信念区域状态进行修正, 构建起基于信念区域状态的连续随机追博弈, 并借助不动点定理证明了博弈平稳纳什均衡策略的存在性. 在求解逃逸策略时, 逃逸者根据全局信息建立混合状态下的马尔科夫决策过程及相应的最优贝尔曼方程. 同时给出了基于强化学习的平稳追逃策略求解算法, 并通过案例验证了该算法的有效性.
当前状态:
, 最新更新时间: ,
doi: 10.16383/j.aas.c230014
摘要:
剩余使用寿命(Remaining useful life, RUL)预测是大型故障预测与设备健康管理(Prognostics and health management, PHM)的重要环节, 对于降低设备维修成本和避免灾难性故障具有重要意义. 针对RUL预测, 首次提出一种基于多变量分析的时序图推理模型(Multivariate similarity temporal knowledge graph, MSTKG), 通过捕捉设备各部件的运行状态耦合关系及其变化趋势, 挖掘其中蕴含的设备性能退化信息, 为寿命预测提供有效依据. 首先, 设计时序图结构, 形式化表达各部件不同工作周期的关联关系. 其次, 提出联合图卷积神经网络(Convolutional neural network, CNN)和门控循环单元 (Gated recurrent unit, GRU)的深度推理网络, 建模并学习设备各部件工作状态的时空演化过程, 并结合回归分析, 得到剩余使用寿命预测结果. 最后, 与现有预测方法相比, 所提方法能够显式建模并利用设备部件耦合关系的变化信息, 仿真实验结果验证了该方法的优越性.
剩余使用寿命(Remaining useful life, RUL)预测是大型故障预测与设备健康管理(Prognostics and health management, PHM)的重要环节, 对于降低设备维修成本和避免灾难性故障具有重要意义. 针对RUL预测, 首次提出一种基于多变量分析的时序图推理模型(Multivariate similarity temporal knowledge graph, MSTKG), 通过捕捉设备各部件的运行状态耦合关系及其变化趋势, 挖掘其中蕴含的设备性能退化信息, 为寿命预测提供有效依据. 首先, 设计时序图结构, 形式化表达各部件不同工作周期的关联关系. 其次, 提出联合图卷积神经网络(Convolutional neural network, CNN)和门控循环单元 (Gated recurrent unit, GRU)的深度推理网络, 建模并学习设备各部件工作状态的时空演化过程, 并结合回归分析, 得到剩余使用寿命预测结果. 最后, 与现有预测方法相比, 所提方法能够显式建模并利用设备部件耦合关系的变化信息, 仿真实验结果验证了该方法的优越性.
当前状态:
, 最新更新时间: ,
doi: 10.16383/j.aas.c210903
摘要:
在小样本分类任务中, 每类可供训练的样本非常有限, 同类样本在特征空间中分布稀疏, 异类样本间的边界模糊. 文章提出一种新的基于特征变换的网络, 并使用度量的方法来处理小样本分类任务. 算法通过嵌入函数将样本映射到特征空间并计算输入样本与样本中心的特征残差, 利用特征变换函数学习样本中心与同类样本间的残差, 使样本在特征空间中向同类样本中心靠拢, 更新样本中心在特征空间中的位置使它们之间的距离增大. 融合余弦相似度和欧氏距离构造一个新的度量方法, 设计一个度量函数对特征图中每个局部特征的度量距离进行联合地表达, 该函数在网络优化时可同时对样本特征间的夹角和欧氏距离进行优化. 网络模型在小样本分类任务常用数据集上的表现证明, 该模型性能优秀且具有泛化性.
在小样本分类任务中, 每类可供训练的样本非常有限, 同类样本在特征空间中分布稀疏, 异类样本间的边界模糊. 文章提出一种新的基于特征变换的网络, 并使用度量的方法来处理小样本分类任务. 算法通过嵌入函数将样本映射到特征空间并计算输入样本与样本中心的特征残差, 利用特征变换函数学习样本中心与同类样本间的残差, 使样本在特征空间中向同类样本中心靠拢, 更新样本中心在特征空间中的位置使它们之间的距离增大. 融合余弦相似度和欧氏距离构造一个新的度量方法, 设计一个度量函数对特征图中每个局部特征的度量距离进行联合地表达, 该函数在网络优化时可同时对样本特征间的夹角和欧氏距离进行优化. 网络模型在小样本分类任务常用数据集上的表现证明, 该模型性能优秀且具有泛化性.
当前状态:
, 最新更新时间: ,
doi: 10.16383/j.aas.c220966
摘要:
篇章关系抽取是识别篇章中实体对之间的关系. 相较于传统的句子级别关系抽取, 篇章级别关系抽取任务更加贴近实际应用, 但是它对实体对的跨句子推理和上下文信息感知等问题提出了新的挑战. 本文提出融合实体和上下文信息(Fuse entity and context information, FECI)的篇章关系抽取方法, 它包含两个模块, 分别是实体信息抽取模块和上下文信息抽取模块. 实体信息抽取模块从两个实体中自动地抽取出能够表示实体对关系的特征. 上下文信息抽取模块根据实体对的提及位置信息, 从篇章中抽取不同的上下文关系特征. 本文在三个篇章级别的关系抽取数据集上进行实验, 效果得到显著地提升.
篇章关系抽取是识别篇章中实体对之间的关系. 相较于传统的句子级别关系抽取, 篇章级别关系抽取任务更加贴近实际应用, 但是它对实体对的跨句子推理和上下文信息感知等问题提出了新的挑战. 本文提出融合实体和上下文信息(Fuse entity and context information, FECI)的篇章关系抽取方法, 它包含两个模块, 分别是实体信息抽取模块和上下文信息抽取模块. 实体信息抽取模块从两个实体中自动地抽取出能够表示实体对关系的特征. 上下文信息抽取模块根据实体对的提及位置信息, 从篇章中抽取不同的上下文关系特征. 本文在三个篇章级别的关系抽取数据集上进行实验, 效果得到显著地提升.
当前状态:
, 最新更新时间: ,
doi: 10.16383/j.aas.c220815
摘要:
为提高复杂海洋环境中无人舰载机(UCA)自动着舰时导航定位的准确性, 研究舰尾流对机载雷达测量过程的动态影响问题, 建立一种基于多层级耦合性分析的测量影响动态建模分析方法. 首先, 利用直接分解法和前向差分法建立一种基于离散化状态空间的时变舰尾流模型, 以克服传统传递函数方法存在的局限性; 其次, 基于舰尾流各分量均与飞机飞行速度相关的客观事实, 通过在时变系统中考虑舰尾流分量间的相互作用关系来构建一种更符合实际系统特征的分量自耦合舰尾流模型; 紧接着, 采用UCA姿态角变化能够改变坐标转换矩阵的思想, 研究舰尾流与UCA位姿变化间的耦合联系, 提出一种准确性更高的舰尾流对UCA位姿的深度影响模型; 然后, 以航母姿态变化对舰载雷达测量结果的影响模型为基础, 通过考虑本研究场景的内在特性, 建立UCA姿态变化对雷达测量结果的影响模型分析方法; 紧接着, 采用示意图方式获得位移变化对机载雷达测量结果的影响模型; 最后, 针对舰船受海洋大气(风、浪、流)干扰而出现失速这一现象, 建立实际海洋环境中舰尾流对机载雷达测量结果的非线性非高斯影响分析模型. 仿真实验研究验证了上述模型分析方法的有效性和优越性.
为提高复杂海洋环境中无人舰载机(UCA)自动着舰时导航定位的准确性, 研究舰尾流对机载雷达测量过程的动态影响问题, 建立一种基于多层级耦合性分析的测量影响动态建模分析方法. 首先, 利用直接分解法和前向差分法建立一种基于离散化状态空间的时变舰尾流模型, 以克服传统传递函数方法存在的局限性; 其次, 基于舰尾流各分量均与飞机飞行速度相关的客观事实, 通过在时变系统中考虑舰尾流分量间的相互作用关系来构建一种更符合实际系统特征的分量自耦合舰尾流模型; 紧接着, 采用UCA姿态角变化能够改变坐标转换矩阵的思想, 研究舰尾流与UCA位姿变化间的耦合联系, 提出一种准确性更高的舰尾流对UCA位姿的深度影响模型; 然后, 以航母姿态变化对舰载雷达测量结果的影响模型为基础, 通过考虑本研究场景的内在特性, 建立UCA姿态变化对雷达测量结果的影响模型分析方法; 紧接着, 采用示意图方式获得位移变化对机载雷达测量结果的影响模型; 最后, 针对舰船受海洋大气(风、浪、流)干扰而出现失速这一现象, 建立实际海洋环境中舰尾流对机载雷达测量结果的非线性非高斯影响分析模型. 仿真实验研究验证了上述模型分析方法的有效性和优越性.
当前状态:
, 最新更新时间: ,
doi: 10.16383/j.aas.c220774
摘要:
针对含有输入时滞和低阶非线性项的非线性系统, 提出了一种基于采样机制的无记忆输出反馈控制方法. 该方法移除了传统预测控制方法预测映射难以确定的限制, 同时避免了时滞依赖方法对过去时刻状态信息的依赖性, 在实际中更易实现. 首先, 根据系统输出在采样时刻的信息, 利用加幂积分技术和齐次占优思想设计了无记忆输出反馈控制器. 然后, 利用齐次系统理论提出了闭环系统的稳定性条件. 最后, 仿真结果验证了所提方法的正确性和优越性.
针对含有输入时滞和低阶非线性项的非线性系统, 提出了一种基于采样机制的无记忆输出反馈控制方法. 该方法移除了传统预测控制方法预测映射难以确定的限制, 同时避免了时滞依赖方法对过去时刻状态信息的依赖性, 在实际中更易实现. 首先, 根据系统输出在采样时刻的信息, 利用加幂积分技术和齐次占优思想设计了无记忆输出反馈控制器. 然后, 利用齐次系统理论提出了闭环系统的稳定性条件. 最后, 仿真结果验证了所提方法的正确性和优越性.
当前状态:
, 最新更新时间: ,
doi: 10.16383/j.aas.c220938
摘要:
目前大多数深度学习算法都依赖于大量的标注数据并欠缺一定的泛化能力. 无监督域适应算法能提取到已标注数据和未标注数据间隐式共同特征, 从而提高算法在未标注数据上的性能. 目前域适应目标检测算法主要为两阶段目标检测器设计. 针对单阶段检测器中无法直接进行实例级特征对齐导致一定数量域不变特征的缺失, 提出结合通道注意力机制的图像级域分类器加强域不变特征提取. 此外对于域适应目标检测中存在类别特征的错误对齐引起的精度下降问题, 通过原型学习构建类别中心, 设计了一种基于原型的循环域三元损失函数, 从而实现原型引导的精细类别特征对齐. 以单阶段目标检测算法作为检测器, 在多种域适应目标检测公共数据集上进行实验. 实验结果证明该方法能有效提升原检测器在目标域的泛化能力达到更高的检测精度, 并且对于单阶段目标检测网络具有一定的通用性.
目前大多数深度学习算法都依赖于大量的标注数据并欠缺一定的泛化能力. 无监督域适应算法能提取到已标注数据和未标注数据间隐式共同特征, 从而提高算法在未标注数据上的性能. 目前域适应目标检测算法主要为两阶段目标检测器设计. 针对单阶段检测器中无法直接进行实例级特征对齐导致一定数量域不变特征的缺失, 提出结合通道注意力机制的图像级域分类器加强域不变特征提取. 此外对于域适应目标检测中存在类别特征的错误对齐引起的精度下降问题, 通过原型学习构建类别中心, 设计了一种基于原型的循环域三元损失函数, 从而实现原型引导的精细类别特征对齐. 以单阶段目标检测算法作为检测器, 在多种域适应目标检测公共数据集上进行实验. 实验结果证明该方法能有效提升原检测器在目标域的泛化能力达到更高的检测精度, 并且对于单阶段目标检测网络具有一定的通用性.
当前状态:
, 最新更新时间: ,
doi: 10.16383/j.aas.c220988
摘要:
带有双球面摆和变绳长效应的桥式起重机具有多输入多输出以及欠驱动的动力学特性, 目前仍缺乏有效的控制策略. 在台车移动、桥架移动、负载升降同步作业过程中, 吊钩和负载两级球面摆动特性更为复杂, 各状态量之间的非线性耦合关系更强, 桥式起重机的防摆控制更具挑战性. 不仅如此, 现有方法无法保证桥式起重机系统全状态量的暂态控制性能. 为解决上述问题, 提出了一种基于多项式的优化轨迹规划方法. 首先, 在未进行近似简化的前提下, 使用拉格朗日方法建立了带有双球面摆和变绳长效应的7自由度桥式起重机的精确动力学模型. 在此基础上, 构造了一组包含各状态量的辅助信号, 将施加在台车、桥架、绳长以及吊钩、负载摆动上的约束转化为对辅助信号的约束, 从而将桥式起重机的轨迹规划问题转化为与辅助信号相关的时间优化问题, 并使用二分法求解. 该轨迹规划方法不仅缩短了吊运时间, 而且确保了全状态量满足约束条件. 最后, 仿真结果证明了动力学模型的准确性和轨迹规划方法的有效性.
带有双球面摆和变绳长效应的桥式起重机具有多输入多输出以及欠驱动的动力学特性, 目前仍缺乏有效的控制策略. 在台车移动、桥架移动、负载升降同步作业过程中, 吊钩和负载两级球面摆动特性更为复杂, 各状态量之间的非线性耦合关系更强, 桥式起重机的防摆控制更具挑战性. 不仅如此, 现有方法无法保证桥式起重机系统全状态量的暂态控制性能. 为解决上述问题, 提出了一种基于多项式的优化轨迹规划方法. 首先, 在未进行近似简化的前提下, 使用拉格朗日方法建立了带有双球面摆和变绳长效应的7自由度桥式起重机的精确动力学模型. 在此基础上, 构造了一组包含各状态量的辅助信号, 将施加在台车、桥架、绳长以及吊钩、负载摆动上的约束转化为对辅助信号的约束, 从而将桥式起重机的轨迹规划问题转化为与辅助信号相关的时间优化问题, 并使用二分法求解. 该轨迹规划方法不仅缩短了吊运时间, 而且确保了全状态量满足约束条件. 最后, 仿真结果证明了动力学模型的准确性和轨迹规划方法的有效性.
当前状态:
, 最新更新时间: ,
doi: 10.16383/j.aas.c220775
摘要:
隐写者检测通过设计模型检测在批量图像中嵌入秘密信息进行隐蔽通信的隐写者, 对解决非法使用隐写术的问题具有重要意义. 本文提出一种基于多示例学习图卷积网络的隐写者检测算法(Steganographer detection algorithm based on multiple-instance learning graph convolutional network, MILGCN), 将隐写者检测形式化为多示例学习(Multiple-instance learning, MIL) 任务. 本文中设计的共性增强图卷积网络(Graph convolutional network, GCN) 和注意力图读出模块能够自适应地突出示例包中正示例的模式特征, 构建有区分度的示例包表征并进行隐写者检测. 实验表明, 本文设计的模型能够对抗多种批量隐写术和与对应的策略.
隐写者检测通过设计模型检测在批量图像中嵌入秘密信息进行隐蔽通信的隐写者, 对解决非法使用隐写术的问题具有重要意义. 本文提出一种基于多示例学习图卷积网络的隐写者检测算法(Steganographer detection algorithm based on multiple-instance learning graph convolutional network, MILGCN), 将隐写者检测形式化为多示例学习(Multiple-instance learning, MIL) 任务. 本文中设计的共性增强图卷积网络(Graph convolutional network, GCN) 和注意力图读出模块能够自适应地突出示例包中正示例的模式特征, 构建有区分度的示例包表征并进行隐写者检测. 实验表明, 本文设计的模型能够对抗多种批量隐写术和与对应的策略.
当前状态:
, 最新更新时间: ,
doi: 10.16383/j.aas.c230039
摘要:
针对金属平面及三维结构材料的工业表面缺陷检测, 本文概述了视觉检测技术的基本原理和研究现状, 并总结出视觉自动检测系统的关键技术包括光学成像技术、图像预处理技术与缺陷检测器. 本文首先介绍了如何根据检测对象的光学特性选择合适的二维、三维光学成像技术; 其次介绍了图像降噪、特征提取、图像分割和拼接等预处理技术的重要作用; 然后根据缺陷检测器的实现原理将其分为模板匹配、图像分类、图像语义分割、目标检测和图像异常检测五类, 并对其中的经典算法进行了归纳分析. 最后, 本文探讨了工业场景下视觉检测技术实施中的关键问题, 并对该技术的发展趋势进行了展望.
针对金属平面及三维结构材料的工业表面缺陷检测, 本文概述了视觉检测技术的基本原理和研究现状, 并总结出视觉自动检测系统的关键技术包括光学成像技术、图像预处理技术与缺陷检测器. 本文首先介绍了如何根据检测对象的光学特性选择合适的二维、三维光学成像技术; 其次介绍了图像降噪、特征提取、图像分割和拼接等预处理技术的重要作用; 然后根据缺陷检测器的实现原理将其分为模板匹配、图像分类、图像语义分割、目标检测和图像异常检测五类, 并对其中的经典算法进行了归纳分析. 最后, 本文探讨了工业场景下视觉检测技术实施中的关键问题, 并对该技术的发展趋势进行了展望.
当前状态:
, 最新更新时间: ,
doi: 10.16383/j.aas.c230081
摘要:
随着深度强化学习的研究与发展, 强化学习在博弈与优化决策、智能驾驶等现实问题中的应用也取得显著进展. 然而强化学习在智能体与环境的交互中存在人工设计奖励函数难的问题, 因此研究者提出了逆强化学习这一研究方向. 如何从专家演示中学习奖励函数和进行策略优化是一个新颖且重要的研究课题, 在人工智能领域具有十分重要的研究意义. 本文综合介绍了逆强化学习算法的最新进展, 首先介绍了逆强化学习在理论方面的新进展, 然后分析了逆强化学习面临的挑战以及未来的发展趋势, 最后讨论了逆强化学习的应用进展和应用前景.
随着深度强化学习的研究与发展, 强化学习在博弈与优化决策、智能驾驶等现实问题中的应用也取得显著进展. 然而强化学习在智能体与环境的交互中存在人工设计奖励函数难的问题, 因此研究者提出了逆强化学习这一研究方向. 如何从专家演示中学习奖励函数和进行策略优化是一个新颖且重要的研究课题, 在人工智能领域具有十分重要的研究意义. 本文综合介绍了逆强化学习算法的最新进展, 首先介绍了逆强化学习在理论方面的新进展, 然后分析了逆强化学习面临的挑战以及未来的发展趋势, 最后讨论了逆强化学习的应用进展和应用前景.
当前状态:
, 最新更新时间: ,
doi: 10.16383/j.aas.c230189
摘要:
针对含有执行器非线性的车辆队列控制系统, 提出了一种固定时间全局预设性能控制方法. 首先, 设计了一种平滑等效变换, 在同一框架下解决了死区及饱和问题, 同时消除了执行器非线性固有拐点问题. 其次, 构造了两个新型性能函数, 并基于此提出了一种全局预设性能控制算法, 实现了如下目标: 1) 保证了跟踪误差在固定时间内收敛到预定稳态区域; 2) 消除了初始误差必须已知的限制; 3) 减小了误差的超调量. 然后, 基于上述等效变换及预设性能控制算法, 设计了一种固定时间滑模队列容错控制方案, 实现了固定时间单车稳定及队列稳定. 最后, 通过 MATLAB 仿真实验, 验证了所提算法的有效性.
针对含有执行器非线性的车辆队列控制系统, 提出了一种固定时间全局预设性能控制方法. 首先, 设计了一种平滑等效变换, 在同一框架下解决了死区及饱和问题, 同时消除了执行器非线性固有拐点问题. 其次, 构造了两个新型性能函数, 并基于此提出了一种全局预设性能控制算法, 实现了如下目标: 1) 保证了跟踪误差在固定时间内收敛到预定稳态区域; 2) 消除了初始误差必须已知的限制; 3) 减小了误差的超调量. 然后, 基于上述等效变换及预设性能控制算法, 设计了一种固定时间滑模队列容错控制方案, 实现了固定时间单车稳定及队列稳定. 最后, 通过 MATLAB 仿真实验, 验证了所提算法的有效性.
当前状态:
, 最新更新时间: ,
doi: 10.16383/j.aas.c220939
摘要:
无线网络是工业物联网中的一种具有良好前景的网络互联技术. 它的应用为工业现场设备的部署提供了极大的便利, 使设备摆脱了线缆的束缚从而在空间上的选点更为灵活, 同时能够节省线材和人力等方面的成本. 然而, 无线通信易受环境噪声的影响, 尤其是在复杂电磁干扰的工业环境中, 易导致无线传输的时延增大和数据丢失. 这些问题对于传输实时性要求较高的工业控制系统而言是非常不利的因素. 为了提高无线网络在工业环境中数据传输的实时性, 业界设计了多种传输调度算法以提高无线通信的实时性和可靠性从而满足工业应用的需求. 综述了工业无线网络传输调度算法的研究现状, 对其发展历程、问题定义、评价指标、分类方法和现有标准等方面进行了全面的总结, 详细阐述了具有代表性的调度算法的工作原理, 并指出了未来的研究方向.
无线网络是工业物联网中的一种具有良好前景的网络互联技术. 它的应用为工业现场设备的部署提供了极大的便利, 使设备摆脱了线缆的束缚从而在空间上的选点更为灵活, 同时能够节省线材和人力等方面的成本. 然而, 无线通信易受环境噪声的影响, 尤其是在复杂电磁干扰的工业环境中, 易导致无线传输的时延增大和数据丢失. 这些问题对于传输实时性要求较高的工业控制系统而言是非常不利的因素. 为了提高无线网络在工业环境中数据传输的实时性, 业界设计了多种传输调度算法以提高无线通信的实时性和可靠性从而满足工业应用的需求. 综述了工业无线网络传输调度算法的研究现状, 对其发展历程、问题定义、评价指标、分类方法和现有标准等方面进行了全面的总结, 详细阐述了具有代表性的调度算法的工作原理, 并指出了未来的研究方向.
当前状态:
, 最新更新时间: ,
doi: 10.16383/j.aas.c211112
摘要:
针对云服务器中存在软件老化现象, 将造成系统性能衰退与可靠性下降的问题, 借鉴剩余使用寿命(Remaining useful life, RUL)概念, 提出基于支持向量(Support vectors, SVs)和高斯函数拟合(Gaussian function fitting, GFF)的老化预测方法(SVs-GFF). 首先, 提取云服务器老化数据的统计特征指标, 并采用支持向量回归(Support vector regression, SVR) 对统计特征指标进行数据稀疏化处理, 得到支持向量序列数据; 然后, 建立基于密度聚类的高斯函数拟合模型, 对不同核函数下的支持向量序列数据进行老化曲线拟合, 并采用Fréchet距离优化算法选取最优老化曲线; 最后, 基于最优老化曲线, 评估系统到达老化阈值前的RUL, 以预测系统何时发生老化. 在OpenStack云服务器4个老化数据集上的实验结果表明, 基于RUL和SVs-GFF的云服务器老化预测方法与传统预测方法相比, 具有更高的预测精度和更快的收敛速度.
针对云服务器中存在软件老化现象, 将造成系统性能衰退与可靠性下降的问题, 借鉴剩余使用寿命(Remaining useful life, RUL)概念, 提出基于支持向量(Support vectors, SVs)和高斯函数拟合(Gaussian function fitting, GFF)的老化预测方法(SVs-GFF). 首先, 提取云服务器老化数据的统计特征指标, 并采用支持向量回归(Support vector regression, SVR) 对统计特征指标进行数据稀疏化处理, 得到支持向量序列数据; 然后, 建立基于密度聚类的高斯函数拟合模型, 对不同核函数下的支持向量序列数据进行老化曲线拟合, 并采用Fréchet距离优化算法选取最优老化曲线; 最后, 基于最优老化曲线, 评估系统到达老化阈值前的RUL, 以预测系统何时发生老化. 在OpenStack云服务器4个老化数据集上的实验结果表明, 基于RUL和SVs-GFF的云服务器老化预测方法与传统预测方法相比, 具有更高的预测精度和更快的收敛速度.
当前状态:
, 最新更新时间: ,
doi: 10.16383/j.aas.c221007
摘要:
本文研究了一类具有边界执行器动态特性的双曲线型偏微分方程(Partial differential equation, PDE)系统的输出调节问题. 特别地, 执行器由一组非线性常微分方程(Ordinary differential equation,ODE)描述, 控制输入出现在执行器的一端而非直接作用在PDE系统上, 这使得控制任务变得相当困难. 基于几何设计方法和有限维与无限维反步法, 本文提出了显式表达的输出调节器, 实现了该类系统的扰动补偿及跟踪控制. 并且我们采用Lyapunov稳定性理论严格证明了闭环系统及跟踪误差在范数意义上的指数稳定性. 仿真实例对比验证了所提出控制方法的有效性.
本文研究了一类具有边界执行器动态特性的双曲线型偏微分方程(Partial differential equation, PDE)系统的输出调节问题. 特别地, 执行器由一组非线性常微分方程(Ordinary differential equation,ODE)描述, 控制输入出现在执行器的一端而非直接作用在PDE系统上, 这使得控制任务变得相当困难. 基于几何设计方法和有限维与无限维反步法, 本文提出了显式表达的输出调节器, 实现了该类系统的扰动补偿及跟踪控制. 并且我们采用Lyapunov稳定性理论严格证明了闭环系统及跟踪误差在范数意义上的指数稳定性. 仿真实例对比验证了所提出控制方法的有效性.
当前状态:
, 最新更新时间: ,
doi: 10.16383/j.aas.c220957
摘要:
飞机蒙皮、船舶舱体、高铁车身等大型复杂部件高效高品质制造是航空航天、海洋舰船、轨道交通等领域重大装备发展的根基, 是国家加快培育及发展的战略性新兴产业, 在服务国家的重大需求及维护国防安全中发挥着举足轻重的作用. 大型复杂部件具有尺寸超大、工序繁多、型面复杂等特点, 其制造过程规模大、任务多、精度高, 作业场景复杂. 与此同时, 传统的人工、单机制造面临着效率低、柔性不足、一致性差、空间有限等问题, 难以满足大型复杂部件制造的需求. 多机器人具有高鲁棒性、高效性等优点, 为大型复杂部件制造提供了良好的制造基础. 任务分配与运动规划是多机器人制造系统的决策中枢, 其性能影响整个系统的运行效率. 考虑到重大装备部件制造任务分配与运动规划过程中任务工序多、冲突干涉多、精度需求高等挑战, 本文首先对复杂环境下多机器人任务分配与运动规划的重要性进行了说明; 然后阐述了目前主要的任务分配与运动规划方法, 包括其在智能制造领域复杂环境下的应用; 在此基础上, 对现阶段复杂场景下任务分配和运动规划存在的问题进行了分析, 并使用强化学习与混合优化算法等方法提出了解决思路; 最后对重大装备大型复杂部件制造过程多机器人任务分配和动态规划技术及应用的发展进行了总结与展望.
飞机蒙皮、船舶舱体、高铁车身等大型复杂部件高效高品质制造是航空航天、海洋舰船、轨道交通等领域重大装备发展的根基, 是国家加快培育及发展的战略性新兴产业, 在服务国家的重大需求及维护国防安全中发挥着举足轻重的作用. 大型复杂部件具有尺寸超大、工序繁多、型面复杂等特点, 其制造过程规模大、任务多、精度高, 作业场景复杂. 与此同时, 传统的人工、单机制造面临着效率低、柔性不足、一致性差、空间有限等问题, 难以满足大型复杂部件制造的需求. 多机器人具有高鲁棒性、高效性等优点, 为大型复杂部件制造提供了良好的制造基础. 任务分配与运动规划是多机器人制造系统的决策中枢, 其性能影响整个系统的运行效率. 考虑到重大装备部件制造任务分配与运动规划过程中任务工序多、冲突干涉多、精度需求高等挑战, 本文首先对复杂环境下多机器人任务分配与运动规划的重要性进行了说明; 然后阐述了目前主要的任务分配与运动规划方法, 包括其在智能制造领域复杂环境下的应用; 在此基础上, 对现阶段复杂场景下任务分配和运动规划存在的问题进行了分析, 并使用强化学习与混合优化算法等方法提出了解决思路; 最后对重大装备大型复杂部件制造过程多机器人任务分配和动态规划技术及应用的发展进行了总结与展望.
当前状态:
, 最新更新时间: ,
doi: 10.16383/j.aas.c230019
摘要:
离线强化学习通过减小分布偏移实现了习得策略向行为策略的逼近, 但离线经验缓存的数据分布往往会直接影响习得策略的质量. 通过优化采样模型来改善强化学习智能体的训练效果, 提出两种离线优先采样模型: 基于时序差分误差的采样模型和基于鞅的采样模型. 基于时序差分误差的采样模型可以使智能体更多地学习值估计不准确的经验数据, 通过估计更准确的值函数来应对可能出现的分布外状态. 基于鞅的采样模型可以使智能体更多地学习对策略优化有利的正样本, 减少负样本对值函数迭代的影响. 进一步, 将所提离线优先采样模型分别与批约束深度Q学习(Batch-constrained deep Q-learning, BCQ)相结合, 提出基于时序差分误差的优先BCQ和基于鞅的优先BCQ. D4RL和Torcs数据集上的实验结果表明: 所提离线优先采样模型可以有针对性地选择有利于值函数估计或策略优化的经验数据, 获得更高的回报.
离线强化学习通过减小分布偏移实现了习得策略向行为策略的逼近, 但离线经验缓存的数据分布往往会直接影响习得策略的质量. 通过优化采样模型来改善强化学习智能体的训练效果, 提出两种离线优先采样模型: 基于时序差分误差的采样模型和基于鞅的采样模型. 基于时序差分误差的采样模型可以使智能体更多地学习值估计不准确的经验数据, 通过估计更准确的值函数来应对可能出现的分布外状态. 基于鞅的采样模型可以使智能体更多地学习对策略优化有利的正样本, 减少负样本对值函数迭代的影响. 进一步, 将所提离线优先采样模型分别与批约束深度Q学习(Batch-constrained deep Q-learning, BCQ)相结合, 提出基于时序差分误差的优先BCQ和基于鞅的优先BCQ. D4RL和Torcs数据集上的实验结果表明: 所提离线优先采样模型可以有针对性地选择有利于值函数估计或策略优化的经验数据, 获得更高的回报.
当前状态:
, 最新更新时间: ,
doi: 10.16383/j.aas.c220914
摘要:
为降低无人机(Unmanned aerial vehicle, UAV)使能的无线传感网的能量消耗, 延长网络生命周期, 该文提出一种在地面节点能量预算下系统总能耗优化方法. 首先, 提出地面节点聚类方法, 利用目标函数确定最优簇数, 改进模糊C均值算法构建能量均衡的集群, 采用退避定时器机制根据隶属度和能量值选择各集群的最优簇头, 减少地面节点的能耗. 其次, 根据已选簇头位置, 利用遗传算法规划UAV的飞行轨迹, 减小UAV能耗. 最后, 通过单纯形搜索算法和连续凸逼近算法联合优化簇头发射功率和UAV悬停位置, 减小数据采集时系统的总能耗. 仿真结果表明, 所提方法优于所比较的方案.
为降低无人机(Unmanned aerial vehicle, UAV)使能的无线传感网的能量消耗, 延长网络生命周期, 该文提出一种在地面节点能量预算下系统总能耗优化方法. 首先, 提出地面节点聚类方法, 利用目标函数确定最优簇数, 改进模糊C均值算法构建能量均衡的集群, 采用退避定时器机制根据隶属度和能量值选择各集群的最优簇头, 减少地面节点的能耗. 其次, 根据已选簇头位置, 利用遗传算法规划UAV的飞行轨迹, 减小UAV能耗. 最后, 通过单纯形搜索算法和连续凸逼近算法联合优化簇头发射功率和UAV悬停位置, 减小数据采集时系统的总能耗. 仿真结果表明, 所提方法优于所比较的方案.
当前状态:
, 最新更新时间: ,
doi: 10.16383/j.aas.c220754
摘要:
针对级联非线性切换系统, 提出了基于周期事件驱动机制的H∞输出跟踪控制策略. 首先, 基于提出的周期事件驱动方案, 设计了积分型控制器, 并将闭环系统转化为时滞切换系统. 其次, 考虑子系统与控制器异步切换的情况, 并给出驻留时间与平均驻留时间满足的关系, 从而得到H∞输出跟踪控制问题可解的充分条件. 最后, 给出数值仿真验证主要方法的有效性.
针对级联非线性切换系统, 提出了基于周期事件驱动机制的H∞输出跟踪控制策略. 首先, 基于提出的周期事件驱动方案, 设计了积分型控制器, 并将闭环系统转化为时滞切换系统. 其次, 考虑子系统与控制器异步切换的情况, 并给出驻留时间与平均驻留时间满足的关系, 从而得到H∞输出跟踪控制问题可解的充分条件. 最后, 给出数值仿真验证主要方法的有效性.
当前状态:
, 最新更新时间: ,
doi: 10.16383/j.aas.c220635
摘要:
现有的从图像序列中检测和跟踪低信噪比、时变数量多目标的方法, 将多目标视为一个整体. 因此, 随着目标数量的增加, 会出现算法结构复杂、计算量增大、性能下降等问题. 针对上述问题, 提出一种基于代价参考粒子滤波器组的多目标检测前跟踪(Cost-reference particle filter bank based multi-target track-before-detect, CRFB-MTBD)算法, 将多目标跟踪问题转换为序贯地检测和估计多个单目标的问题. 首先, 采用代价参考粒子滤波器(Cost-reference particle filter, CRPFB)组序贯地估计所有可能单目标状态序列; 其次, 基于欧氏距离合并或删减多个单目标状态, 确定目标数量; 最后, 根据累积代价判断每个目标出现和消失的具体时刻. 仿真实验验证了CRPFB-MTBD在信噪比低至6dB时的优良性能, 与基于传统粒子滤波的多目标检测前跟踪算法(Particle filter based multi-target track-beofre-detect, PF-MTBD)、基于概率假设密度的检测前跟踪算法(Probability hypothesis density based track-before-detect, PHD-TBD)和基于伯努利滤波的检测前跟踪算法(Bernoulli based track-before-detect, Bernoulli-TBD)相比, CRPFB-MTBD的目标状态和数量估计结果最佳, 且平均单次运行时间极短.
现有的从图像序列中检测和跟踪低信噪比、时变数量多目标的方法, 将多目标视为一个整体. 因此, 随着目标数量的增加, 会出现算法结构复杂、计算量增大、性能下降等问题. 针对上述问题, 提出一种基于代价参考粒子滤波器组的多目标检测前跟踪(Cost-reference particle filter bank based multi-target track-before-detect, CRFB-MTBD)算法, 将多目标跟踪问题转换为序贯地检测和估计多个单目标的问题. 首先, 采用代价参考粒子滤波器(Cost-reference particle filter, CRPFB)组序贯地估计所有可能单目标状态序列; 其次, 基于欧氏距离合并或删减多个单目标状态, 确定目标数量; 最后, 根据累积代价判断每个目标出现和消失的具体时刻. 仿真实验验证了CRPFB-MTBD在信噪比低至6dB时的优良性能, 与基于传统粒子滤波的多目标检测前跟踪算法(Particle filter based multi-target track-beofre-detect, PF-MTBD)、基于概率假设密度的检测前跟踪算法(Probability hypothesis density based track-before-detect, PHD-TBD)和基于伯努利滤波的检测前跟踪算法(Bernoulli based track-before-detect, Bernoulli-TBD)相比, CRPFB-MTBD的目标状态和数量估计结果最佳, 且平均单次运行时间极短.
当前状态:
, 最新更新时间: ,
doi: 10.16383/j.aas.c220893
摘要:
研究了受到隐蔽攻击的信息物理系统的安全控制问题. 采用Kullback-Leibler(KL)散度描述攻击的隐蔽性, 并设计动态输出反馈控制器使得系统可达集始终保持在安全区域内, 其中可达集定义为系统状态以一定概率属于的集合. 首先, 给出了隐蔽攻击下检测器残差所在范围的一个外椭球近似集. 其次, 根据该近似集和噪声的范围给出了控制器参数与系统椭球形不变可达集的关系. 然后, 通过设计可逆线性变换并构造凸优化问题, 求解安全动态输出控制器参数和相应的不变可达集. 最后, 使用弹簧-质量-阻尼系统进行仿真, 验证了所提控制方法的有效性.
研究了受到隐蔽攻击的信息物理系统的安全控制问题. 采用Kullback-Leibler(KL)散度描述攻击的隐蔽性, 并设计动态输出反馈控制器使得系统可达集始终保持在安全区域内, 其中可达集定义为系统状态以一定概率属于的集合. 首先, 给出了隐蔽攻击下检测器残差所在范围的一个外椭球近似集. 其次, 根据该近似集和噪声的范围给出了控制器参数与系统椭球形不变可达集的关系. 然后, 通过设计可逆线性变换并构造凸优化问题, 求解安全动态输出控制器参数和相应的不变可达集. 最后, 使用弹簧-质量-阻尼系统进行仿真, 验证了所提控制方法的有效性.
当前状态:
, 最新更新时间: ,
doi: 10.16383/j.aas.c210467
摘要:
针对热轧带钢表面缺陷检测存在的智能化水平低、检测精度低和检测速度慢等问题, 本文提出了一种基于自适应全局定位网络(Adaptive global localization network, AGLNet)的深度学习缺陷检测算法. 首先, 引入了一种残差网络(Residual network, ResNet)与特征金字塔网络(Feature pyramid network, FPN)集成的特征提取结构, 减少缺陷语义信息在层级传递间的消失; 其次, 提出基于Tree-structure parzen estimation的自适应树型候选框提取网络(Adaptive tree-structure region proposal network, AT-RPN), 无需先验知识的测试积累, 避免了人为调参的训练模; 最后, 引入了全局定位算法(Global localization regression)算法以全局定位的模式在复杂的缺陷检测中实现缺陷更精确定位.本文实现一种快速、准确、更智能化、更适用于实际工业应用的热轧带钢表面缺陷的算法.实验结果表明, AGLNet在NEU-DET热轧带钢表面缺陷数据集上的检测速度保持在11.8fps, 平均精度达到了79.90 %, 优于目前其他深度学习带钢表面缺陷检测算法; 另外该算法还具备较强的泛化能力.
针对热轧带钢表面缺陷检测存在的智能化水平低、检测精度低和检测速度慢等问题, 本文提出了一种基于自适应全局定位网络(Adaptive global localization network, AGLNet)的深度学习缺陷检测算法. 首先, 引入了一种残差网络(Residual network, ResNet)与特征金字塔网络(Feature pyramid network, FPN)集成的特征提取结构, 减少缺陷语义信息在层级传递间的消失; 其次, 提出基于Tree-structure parzen estimation的自适应树型候选框提取网络(Adaptive tree-structure region proposal network, AT-RPN), 无需先验知识的测试积累, 避免了人为调参的训练模; 最后, 引入了全局定位算法(Global localization regression)算法以全局定位的模式在复杂的缺陷检测中实现缺陷更精确定位.本文实现一种快速、准确、更智能化、更适用于实际工业应用的热轧带钢表面缺陷的算法.实验结果表明, AGLNet在NEU-DET热轧带钢表面缺陷数据集上的检测速度保持在11.8fps, 平均精度达到了79.90 %, 优于目前其他深度学习带钢表面缺陷检测算法; 另外该算法还具备较强的泛化能力.
当前状态:
, 最新更新时间: ,
doi: 10.16383/j.aas.c210664
摘要:
航母甲板在风、浪、流等因素影响下做六自由度不规则运动, 影响舰载机着舰精度. 航母甲板运动预估与补偿是自动着舰系统的重要功能之一, 也是提高舰载机着舰安全性与成功率的关键技术之一. 本文提出一种面向甲板运动预估的鲁棒学习模型, 通过基本构建单元自适应演化出复杂学习系统. 构建单元的训练采用非梯度的伪逆学习策略, 提高了训练效率, 简化了学习控制超参数调优;构建单元的架构设计采用数据驱动的策略, 简化了架构超参数调优;采用图拉普拉斯正则化方法提高了模型的鲁棒性. 通过某型航母在中等海况条件下以典型航速巡航时的仿真实验, 验证了所提方法在甲板纵摇、横摇以及垂荡运动预估问题中的有效性及鲁棒性.
航母甲板在风、浪、流等因素影响下做六自由度不规则运动, 影响舰载机着舰精度. 航母甲板运动预估与补偿是自动着舰系统的重要功能之一, 也是提高舰载机着舰安全性与成功率的关键技术之一. 本文提出一种面向甲板运动预估的鲁棒学习模型, 通过基本构建单元自适应演化出复杂学习系统. 构建单元的训练采用非梯度的伪逆学习策略, 提高了训练效率, 简化了学习控制超参数调优;构建单元的架构设计采用数据驱动的策略, 简化了架构超参数调优;采用图拉普拉斯正则化方法提高了模型的鲁棒性. 通过某型航母在中等海况条件下以典型航速巡航时的仿真实验, 验证了所提方法在甲板纵摇、横摇以及垂荡运动预估问题中的有效性及鲁棒性.
当前状态:
, 最新更新时间: ,
doi: 10.16383/j.aas.c220531
摘要:
大规模多视图聚类旨在解决传统多视图聚类算法中计算速度慢、空间复杂度高以致无法扩展到大规模数据的问题.其中, 基于锚点的多视图聚类方法通过使用整体数据集合的锚点集构建后者对于前者的重构矩阵, 利用重构矩阵进行聚类, 有效地降低了算法的时间和空间复杂度.然而, 现有的方法忽视了锚点之间的差异, 均等地看待所有锚点, 导致聚类结果受到低质量锚点的限制.为了定位更具有判别性的锚点, 加强高质量锚点对聚类的影响, 提出了一种基于加权锚点的大规模多视图聚类算法(Multi-view Clustering With Weighted Anchors, MVC-WA).通过引入自适应锚点加权机制, 所提方法在统一框架下确定锚点的权重, 进行锚图的构建.同时, 为了增加锚点的多样性, 根据锚点之间的相似度进一步调整锚点的权重.在9个基准数据集上与现有最先进的大规模多视图聚类算法的对比实验结果验证了所提方法的高效性与有效性.
大规模多视图聚类旨在解决传统多视图聚类算法中计算速度慢、空间复杂度高以致无法扩展到大规模数据的问题.其中, 基于锚点的多视图聚类方法通过使用整体数据集合的锚点集构建后者对于前者的重构矩阵, 利用重构矩阵进行聚类, 有效地降低了算法的时间和空间复杂度.然而, 现有的方法忽视了锚点之间的差异, 均等地看待所有锚点, 导致聚类结果受到低质量锚点的限制.为了定位更具有判别性的锚点, 加强高质量锚点对聚类的影响, 提出了一种基于加权锚点的大规模多视图聚类算法(Multi-view Clustering With Weighted Anchors, MVC-WA).通过引入自适应锚点加权机制, 所提方法在统一框架下确定锚点的权重, 进行锚图的构建.同时, 为了增加锚点的多样性, 根据锚点之间的相似度进一步调整锚点的权重.在9个基准数据集上与现有最先进的大规模多视图聚类算法的对比实验结果验证了所提方法的高效性与有效性.
当前状态:
, 最新更新时间: ,
doi: 10.16383/j.aas.c210921
摘要:
研究了一类存在一步随机时滞的复杂网络分布式状态估计问题, 采用伯努利随机变量刻画测量值的随机时滞情况. 基于复杂网络模型和不可靠测量值, 分别设计了复杂网络的状态预测器和分布式状态估计器, 基于杨氏不等式消除了节点之间的耦合项, 通过优化杨氏不等式引进的参数, 优化了状态预测协方差. 通过设计估计器增益, 获得了状态估计误差协方差, 同时结合预测误差协方差, 获得了状态估计误差协方差的迭代公式, 并给出了估计误差协方差稳定的充分条件. 最后, 对由小车组成的耦合系统进行数值仿真, 验证了所设计估计器的有效性.
研究了一类存在一步随机时滞的复杂网络分布式状态估计问题, 采用伯努利随机变量刻画测量值的随机时滞情况. 基于复杂网络模型和不可靠测量值, 分别设计了复杂网络的状态预测器和分布式状态估计器, 基于杨氏不等式消除了节点之间的耦合项, 通过优化杨氏不等式引进的参数, 优化了状态预测协方差. 通过设计估计器增益, 获得了状态估计误差协方差, 同时结合预测误差协方差, 获得了状态估计误差协方差的迭代公式, 并给出了估计误差协方差稳定的充分条件. 最后, 对由小车组成的耦合系统进行数值仿真, 验证了所设计估计器的有效性.
当前状态:
, 最新更新时间: ,
doi: 10.16383/j.aas.c210518
摘要:
多模态数据间交互式任务的涌现对综合利用不同模态的知识提出了高要求, 多模态知识图谱应运而生, 其通过融合不同模态的知识来满足这类任务的需求. 然而, 现有多模态知识图谱存在图谱知识不完整的问题, 严重阻碍对信息的有效利用. 缓解此问题关键是通过实体对齐方法对图谱进行补全. 当前多模态实体对齐方法以固定权重融合多种模态信息, 在融合过程中忽略了不同模态信息贡献的差异性. 为解决上述问题, 本文设计一套自适应特征融合机制, 根据不同模态数据质量动态融合实体结构信息和视觉信息. 此外, 考虑到视觉信息质量不高、知识图谱之间的结构差异也影响实体对齐的效果, 本文分别设计提升视觉信息有效利用率的视觉特征处理模块以及缓和结构差异性的三元组筛选模块. 在多模态实体对齐任务上的实验结果表明, 本文提出的多模态实体对齐方法的性能优于当前最好的方法.
多模态数据间交互式任务的涌现对综合利用不同模态的知识提出了高要求, 多模态知识图谱应运而生, 其通过融合不同模态的知识来满足这类任务的需求. 然而, 现有多模态知识图谱存在图谱知识不完整的问题, 严重阻碍对信息的有效利用. 缓解此问题关键是通过实体对齐方法对图谱进行补全. 当前多模态实体对齐方法以固定权重融合多种模态信息, 在融合过程中忽略了不同模态信息贡献的差异性. 为解决上述问题, 本文设计一套自适应特征融合机制, 根据不同模态数据质量动态融合实体结构信息和视觉信息. 此外, 考虑到视觉信息质量不高、知识图谱之间的结构差异也影响实体对齐的效果, 本文分别设计提升视觉信息有效利用率的视觉特征处理模块以及缓和结构差异性的三元组筛选模块. 在多模态实体对齐任务上的实验结果表明, 本文提出的多模态实体对齐方法的性能优于当前最好的方法.
当前状态:
, 最新更新时间: ,
doi: 10.16383/j.aas.c210808
摘要:
本文研究了一类分布式优化问题, 其目标是在满足耦合不等式约束和局部可行集约束的情况下使非光滑全局代价函数值最小. 首先, 对原有的分布式连续时间投影算法进行拓展, 结合线性代数理论分析, 我们设计一个适用于强连通加权平衡有向通信网络拓扑图的算法. 其次, 在局部代价函数和耦合不等式约束函数是非光滑凸函数的假设条件下, 利用Moreau-Yosida函数正则化使目标函数和约束函数近似光滑可微. 然后, 根据强连通加权平衡有向图的分布式连续时间投影算法构造李雅普诺夫函数, 证明该算法下的平衡解是分布式优化问题最优解, 并对算法进行收敛性分析. 最后, 通过数值仿真验证了算法的有效性.
本文研究了一类分布式优化问题, 其目标是在满足耦合不等式约束和局部可行集约束的情况下使非光滑全局代价函数值最小. 首先, 对原有的分布式连续时间投影算法进行拓展, 结合线性代数理论分析, 我们设计一个适用于强连通加权平衡有向通信网络拓扑图的算法. 其次, 在局部代价函数和耦合不等式约束函数是非光滑凸函数的假设条件下, 利用Moreau-Yosida函数正则化使目标函数和约束函数近似光滑可微. 然后, 根据强连通加权平衡有向图的分布式连续时间投影算法构造李雅普诺夫函数, 证明该算法下的平衡解是分布式优化问题最优解, 并对算法进行收敛性分析. 最后, 通过数值仿真验证了算法的有效性.
当前状态:
, 最新更新时间: ,
doi: 10.16383/j.aas.c210174
摘要:
针对一类难以建立精确模型的单输入单输出(Single-input single-output, SISO) 非线性离散动态系统, 提出了一种数据驱动模型的自适应控制方法. 所提方法首先设计具有直链与增强结构的随机配置网络(Stochastic configuration network, SCN), 建立了一种可同时表征非线性系统低阶线性部分与高阶非线性项(未建模动态)的数据驱动模型, 并采用增量学习方法与监督机制, 对模型结构与模型参数进行同步更新优化, 保证了数据驱动模型的无限逼近能力, 解决了传统自适应控制采用交替辨识算法存在的建模精度低、模型收敛性无法保证的问题. 进而利用直链部分与增强部分, 分别设计了线性控制器及虚拟未建模动态补偿器, 建立了基于SCN 数据驱动模型的自适应控制新方法, 分析了其稳定性与收敛性, 通过数值仿真实验和采用交替辨识算法的传统自适应控制方法进行对比, 实验结果表明所提方法的有效性.
针对一类难以建立精确模型的单输入单输出(Single-input single-output, SISO) 非线性离散动态系统, 提出了一种数据驱动模型的自适应控制方法. 所提方法首先设计具有直链与增强结构的随机配置网络(Stochastic configuration network, SCN), 建立了一种可同时表征非线性系统低阶线性部分与高阶非线性项(未建模动态)的数据驱动模型, 并采用增量学习方法与监督机制, 对模型结构与模型参数进行同步更新优化, 保证了数据驱动模型的无限逼近能力, 解决了传统自适应控制采用交替辨识算法存在的建模精度低、模型收敛性无法保证的问题. 进而利用直链部分与增强部分, 分别设计了线性控制器及虚拟未建模动态补偿器, 建立了基于SCN 数据驱动模型的自适应控制新方法, 分析了其稳定性与收敛性, 通过数值仿真实验和采用交替辨识算法的传统自适应控制方法进行对比, 实验结果表明所提方法的有效性.
当前状态:
, 最新更新时间: ,
doi: 10.16383/j.aas.c211233
摘要:
纵向联邦学习是一种新兴的分布式机器学习技术, 在保障隐私性的前提下利用分散在各个机构的数据实现机器学习模型的联合训练. 纵向联邦学习被广泛应用于工业互联网金融借贷和医疗诊断等众多领域中, 因此保证其隐私安全性具有重要意义. 本文首先针对纵向联邦学习协议中由于参与方交换的嵌入表示造成的隐私泄露风险, 研究由协作者发起的通用的属性推断攻击. 攻击者利用辅助数据和嵌入表示训练一个攻击模型, 然后利用训练完成的攻击模型窃取参与方的隐私属性. 实验结果表明: 纵向联邦学习在训练、推理阶段产生的嵌入表示容易泄露数据隐私. 为了应对上述隐私泄露风险, 进一步提出一种基于最大最小策略的纵向联邦学习隐私保护方法, 其引入梯度正则组件保证训练过程主任务的预测性能, 同时引入重构组件掩藏参与方嵌入表示中包含的隐私属性信息. 最后, 在钢板缺陷诊断工业场景的实验结果表明: 相比于没有任何防御方法的VFL, 隐私保护方法将攻击推断准确度从95%降到55%以下, 接近于随机猜测的水平, 同时主任务预测准确率仅下降2%.
纵向联邦学习是一种新兴的分布式机器学习技术, 在保障隐私性的前提下利用分散在各个机构的数据实现机器学习模型的联合训练. 纵向联邦学习被广泛应用于工业互联网金融借贷和医疗诊断等众多领域中, 因此保证其隐私安全性具有重要意义. 本文首先针对纵向联邦学习协议中由于参与方交换的嵌入表示造成的隐私泄露风险, 研究由协作者发起的通用的属性推断攻击. 攻击者利用辅助数据和嵌入表示训练一个攻击模型, 然后利用训练完成的攻击模型窃取参与方的隐私属性. 实验结果表明: 纵向联邦学习在训练、推理阶段产生的嵌入表示容易泄露数据隐私. 为了应对上述隐私泄露风险, 进一步提出一种基于最大最小策略的纵向联邦学习隐私保护方法, 其引入梯度正则组件保证训练过程主任务的预测性能, 同时引入重构组件掩藏参与方嵌入表示中包含的隐私属性信息. 最后, 在钢板缺陷诊断工业场景的实验结果表明: 相比于没有任何防御方法的VFL, 隐私保护方法将攻击推断准确度从95%降到55%以下, 接近于随机猜测的水平, 同时主任务预测准确率仅下降2%.
当前状态:
, 最新更新时间: ,
doi: 10.16383/j.aas.c220090
摘要:
实际工业场景中, 需要在生产过程中收集大量测点的数据, 从而掌握生产过程运行状态. 传统的过程监测方法通常仅评估运行状态整体的异常与否, 或对运行状态进行分级评估, 这种方式并不会直接定位故障部位, 不利于故障的高效检修. 为此, 提出了一种基于全量测点估计的监测模型, 根据全量测点估计值与实际值的偏差定义监测指标, 从而实现全量测点的分别精准监测. 为了克服原有的基于工况估计的监测方法监测不全面且对测点间耦合关系建模不充分的问题, 提出了多核图卷积网络(Multi-kernel graph convolution network, MKGCN), 通过将全量传感器测点视为一张全量测点图, 显式地对测点间耦合关系进行建模, 从而实现了全量传感器测点的同步工况估计. 此外, 面向在线监测场景, 设计了基于特征逼近的自迭代方法, 从而克服了在异常情况下由于测点间强耦合导致的部分测点估计值异常的问题. 所提出的方法在电厂百万千瓦超超临界机组中引风机的实际数据上进行了验证, 结果显示, 提出的监测方法与其他典型方法相比能够更精准地检测出发生故障的测点.
实际工业场景中, 需要在生产过程中收集大量测点的数据, 从而掌握生产过程运行状态. 传统的过程监测方法通常仅评估运行状态整体的异常与否, 或对运行状态进行分级评估, 这种方式并不会直接定位故障部位, 不利于故障的高效检修. 为此, 提出了一种基于全量测点估计的监测模型, 根据全量测点估计值与实际值的偏差定义监测指标, 从而实现全量测点的分别精准监测. 为了克服原有的基于工况估计的监测方法监测不全面且对测点间耦合关系建模不充分的问题, 提出了多核图卷积网络(Multi-kernel graph convolution network, MKGCN), 通过将全量传感器测点视为一张全量测点图, 显式地对测点间耦合关系进行建模, 从而实现了全量传感器测点的同步工况估计. 此外, 面向在线监测场景, 设计了基于特征逼近的自迭代方法, 从而克服了在异常情况下由于测点间强耦合导致的部分测点估计值异常的问题. 所提出的方法在电厂百万千瓦超超临界机组中引风机的实际数据上进行了验证, 结果显示, 提出的监测方法与其他典型方法相比能够更精准地检测出发生故障的测点.
当前状态:
, 最新更新时间: ,
doi: 10.16383/j.aas.c211146
摘要:
如今智能优化算法已广泛应用于工程优化中,在当前多能耦合与互补的能源发展趋势下,以仅考虑系统经济指标的单目标优化模式已经不再适用于目前区域综合能源系统的运行优化调度,需要研究一种多目标运行策略来解决区域综合能源系统的运行优化调度问题.首先综合考虑经济与能源利用两个指标并结合商业住宅区域的特性,以系统日运行收益和一次能源利用率为优化目标构建了商业住宅区域综合能源系统多目标运行优化调度模型.其次由于传统多目标智能优化算法缺乏一种最优解综合评价方法,基于非支配排序以及拥挤度计算的多目标算法框架,提出了一种利用模糊一致矩阵选取全局最优解的多目标鲸鱼优化算法(AMOWOA),并将提出算法对商住区域综合能源系统多目标运行优化调度模型进行求解.最后以华东某商业住宅区域综合能源系统为例进行仿真,验证了该方法的有效性和可行性.
如今智能优化算法已广泛应用于工程优化中,在当前多能耦合与互补的能源发展趋势下,以仅考虑系统经济指标的单目标优化模式已经不再适用于目前区域综合能源系统的运行优化调度,需要研究一种多目标运行策略来解决区域综合能源系统的运行优化调度问题.首先综合考虑经济与能源利用两个指标并结合商业住宅区域的特性,以系统日运行收益和一次能源利用率为优化目标构建了商业住宅区域综合能源系统多目标运行优化调度模型.其次由于传统多目标智能优化算法缺乏一种最优解综合评价方法,基于非支配排序以及拥挤度计算的多目标算法框架,提出了一种利用模糊一致矩阵选取全局最优解的多目标鲸鱼优化算法(AMOWOA),并将提出算法对商住区域综合能源系统多目标运行优化调度模型进行求解.最后以华东某商业住宅区域综合能源系统为例进行仿真,验证了该方法的有效性和可行性.
当前状态:
, 最新更新时间: ,
doi: 10.16383/j.aas.c211163
摘要:
针对考虑外部海洋环境扰动和内部模型不确定性的多个欠驱动自主水下航行器, 研究了其在通信资源受限和机载能量受限下的协同路径跟踪控制问题. 首先, 针对水声通信信道窄造成的通信资源受限问题, 设计了一种基于事件触发机制的协同通信策略; 其次, 针对模型不确定性和海洋环境扰动问题, 设计了一种基于事件触发机制的线性扩张状态观测器来逼近水下航行器的未知动力学, 并降低了系统采样次数; 最后, 针对机载能量受限问题, 设计了一种基于事件触发机制的动力学控制律, 在保证控制精度的前提下降低了执行机构的动作频次, 从而节省了能量消耗. 应用级联系统稳定性分析方法, 分别证明了闭环系统是输入状态稳定的, 且系统不存在Zeno行为. 仿真结果验证了所提基于事件触发机制的多自主水下航行器协同路径跟踪控制方法的有效性.
针对考虑外部海洋环境扰动和内部模型不确定性的多个欠驱动自主水下航行器, 研究了其在通信资源受限和机载能量受限下的协同路径跟踪控制问题. 首先, 针对水声通信信道窄造成的通信资源受限问题, 设计了一种基于事件触发机制的协同通信策略; 其次, 针对模型不确定性和海洋环境扰动问题, 设计了一种基于事件触发机制的线性扩张状态观测器来逼近水下航行器的未知动力学, 并降低了系统采样次数; 最后, 针对机载能量受限问题, 设计了一种基于事件触发机制的动力学控制律, 在保证控制精度的前提下降低了执行机构的动作频次, 从而节省了能量消耗. 应用级联系统稳定性分析方法, 分别证明了闭环系统是输入状态稳定的, 且系统不存在Zeno行为. 仿真结果验证了所提基于事件触发机制的多自主水下航行器协同路径跟踪控制方法的有效性.
当前状态:
, 最新更新时间: ,
doi: 10.16383/j.aas.c211091
摘要:
产品质量与污染排放浓度等难测参数的实时检测是实现复杂工业过程优化控制的关键因素之一. 受限于检测技术难度、高时间与经济成本等原因, 难测参数的软测量模型建模样本存在数量少、分布稀疏与不平衡等问题, 严重制约了数据驱动模型的泛化性能. 针对以上问题, 提出一种基于多目标粒子群优化混合优化的虚拟样本生成方法, 首先, 设计综合学习粒子群优化算法的种群表征机制, 使其能够同时编码用于映射模型超参数优化的连续变量和用于虚拟样本选择的离散变量; 然后, 定义具有多阶段多目标特性的综合学习粒子群优化算法适应度函数, 使其能够在确保模型泛化性能的同时最小化虚拟样本数量; 最后, 向虚拟样本生成多目标混合优化任务对综合学习粒子群优化算法进行改进, 使其能够适应虚拟样本优选过程的变维特性并提高优化过程的收敛速度. 同时, 首次借鉴度量学习的指标提出用于评价虚拟样本质量的综合评价指标和分布相似指标. 本文采用混凝土抗压强度和超导临界温度基准数据集验证了所提算法的合理性及有效性, 基于工业数据集构建了面向城市固废焚烧过程的二噁英排放浓度的软测量模型, 进一步验证了所提方法.
产品质量与污染排放浓度等难测参数的实时检测是实现复杂工业过程优化控制的关键因素之一. 受限于检测技术难度、高时间与经济成本等原因, 难测参数的软测量模型建模样本存在数量少、分布稀疏与不平衡等问题, 严重制约了数据驱动模型的泛化性能. 针对以上问题, 提出一种基于多目标粒子群优化混合优化的虚拟样本生成方法, 首先, 设计综合学习粒子群优化算法的种群表征机制, 使其能够同时编码用于映射模型超参数优化的连续变量和用于虚拟样本选择的离散变量; 然后, 定义具有多阶段多目标特性的综合学习粒子群优化算法适应度函数, 使其能够在确保模型泛化性能的同时最小化虚拟样本数量; 最后, 向虚拟样本生成多目标混合优化任务对综合学习粒子群优化算法进行改进, 使其能够适应虚拟样本优选过程的变维特性并提高优化过程的收敛速度. 同时, 首次借鉴度量学习的指标提出用于评价虚拟样本质量的综合评价指标和分布相似指标. 本文采用混凝土抗压强度和超导临界温度基准数据集验证了所提算法的合理性及有效性, 基于工业数据集构建了面向城市固废焚烧过程的二噁英排放浓度的软测量模型, 进一步验证了所提方法.
当前状态:
, 最新更新时间: ,
doi: 10.16383/j.aas.c210966
摘要:
目前, 在带有视差场景的图像对齐中, 主要难点在某些无法找到足够匹配特征的区域, 这些区域称为匹配特征缺失区域. 现有算法往往忽略匹配特征缺失区域的对齐建模, 而只将有足够匹配特征区域中的部分单应变换系数(如相似性变换系数)传递给匹配特征缺失区域, 或者采用将匹配特征缺失区域转化为有足够匹配特征区域的间接方式, 因此对齐效果仍不理想. 在客观事实上, 位于相同平面的区域应该拥有相同的完整单应变换而非部分变换参数. 由此出发, 利用单应变换系数扩散的思想设计了一个二步网格优化的图像对齐算法. 该方法在第一步网格优化时获得有足够匹配特征区域的单应变换, 再基于提出的单应性扩散约束将这些单应变换系数扩散到邻域网格, 进行第二步网格优化, 在保证优化任务简洁高效的前提下实现单应变换系数的传播与图像对齐. 相较于现有的针对视差场景图像对齐算法, 所提方法在各项指标上都获得了更好的效果.
目前, 在带有视差场景的图像对齐中, 主要难点在某些无法找到足够匹配特征的区域, 这些区域称为匹配特征缺失区域. 现有算法往往忽略匹配特征缺失区域的对齐建模, 而只将有足够匹配特征区域中的部分单应变换系数(如相似性变换系数)传递给匹配特征缺失区域, 或者采用将匹配特征缺失区域转化为有足够匹配特征区域的间接方式, 因此对齐效果仍不理想. 在客观事实上, 位于相同平面的区域应该拥有相同的完整单应变换而非部分变换参数. 由此出发, 利用单应变换系数扩散的思想设计了一个二步网格优化的图像对齐算法. 该方法在第一步网格优化时获得有足够匹配特征区域的单应变换, 再基于提出的单应性扩散约束将这些单应变换系数扩散到邻域网格, 进行第二步网格优化, 在保证优化任务简洁高效的前提下实现单应变换系数的传播与图像对齐. 相较于现有的针对视差场景图像对齐算法, 所提方法在各项指标上都获得了更好的效果.
当前状态:
, 最新更新时间: ,
doi: 10.16383/j.aas.c211089
摘要:
目前, 基于深度学习的超分辨算法已经取得了很好的性能. 但是这些方法通常具有较大的内存消耗和较高的计算复杂度, 很难应用到低算力或便携式设备上. 为了解决这一问题, 设计了一种轻量级的组-信息蒸馏残差网络用于快速且精确的单图像超分辨率. 具体来说, 提出一个更加有效的组-信息蒸馏模块, 作为网络特征提取基本块. 同时, 引入密集快捷连接对多个基本块进行组合, 构建组-信息蒸馏残差组, 捕获多层级信息和有效重利用特征. 另外, 还提出一个轻量的非对称残差Non-local模块对长距离依赖关系进行建模, 进一步提升超分的性能. 最后, 设计一个高频损失函数去解决像素损失带来图片细节平滑的问题. 大量的实验证明了该算法相较于其他先进方法, 可以在图像超分辨率性能和模型复杂度之间取得更好的平衡, 其在公开测试数据集B100上4倍超分速率达到56FPS, 比残差注意力网络快15倍.
目前, 基于深度学习的超分辨算法已经取得了很好的性能. 但是这些方法通常具有较大的内存消耗和较高的计算复杂度, 很难应用到低算力或便携式设备上. 为了解决这一问题, 设计了一种轻量级的组-信息蒸馏残差网络用于快速且精确的单图像超分辨率. 具体来说, 提出一个更加有效的组-信息蒸馏模块, 作为网络特征提取基本块. 同时, 引入密集快捷连接对多个基本块进行组合, 构建组-信息蒸馏残差组, 捕获多层级信息和有效重利用特征. 另外, 还提出一个轻量的非对称残差Non-local模块对长距离依赖关系进行建模, 进一步提升超分的性能. 最后, 设计一个高频损失函数去解决像素损失带来图片细节平滑的问题. 大量的实验证明了该算法相较于其他先进方法, 可以在图像超分辨率性能和模型复杂度之间取得更好的平衡, 其在公开测试数据集B100上4倍超分速率达到56FPS, 比残差注意力网络快15倍.
当前状态:
, 最新更新时间: ,
doi: 10.16383/j.aas.c211244
摘要:
分布式电力市场交易模式可以有效缓解传统集中模式下市场主体的隐私安全等问题, 但难以在保障市场主体收益和电力系统安全稳定运行的同时实现社会福利最大化. 因此, 考虑电网线路传输约束, 首先以社会福利最大化为目标构建了集中式交易模型, 并采用拉格朗日乘子法和对偶理论将其等价分解为各市场主体自身利益最大化的分布式交易模型. 在此基础上, 设计了两种适用于不同场景的分布式交易方法, 并构造电网安全成本影响市场主体的决策, 从而保证电网线路传输安全. 最后, 基于算例分析验证了两种方法的有效性.
分布式电力市场交易模式可以有效缓解传统集中模式下市场主体的隐私安全等问题, 但难以在保障市场主体收益和电力系统安全稳定运行的同时实现社会福利最大化. 因此, 考虑电网线路传输约束, 首先以社会福利最大化为目标构建了集中式交易模型, 并采用拉格朗日乘子法和对偶理论将其等价分解为各市场主体自身利益最大化的分布式交易模型. 在此基础上, 设计了两种适用于不同场景的分布式交易方法, 并构造电网安全成本影响市场主体的决策, 从而保证电网线路传输安全. 最后, 基于算例分析验证了两种方法的有效性.