2.765

2022影响因子

(CJCR)

  • 中文核心
  • EI
  • 中国科技核心
  • Scopus
  • CSCD
  • 英国科学文摘

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

基于轮胎状态刚度预测的极限工况路径跟踪控制研究

王国栋 刘洋 李绍松 卢晓晖 张邦成

王国栋, 刘洋, 李绍松, 卢晓晖, 张邦成. 基于轮胎状态刚度预测的极限工况路径跟踪控制研究. 自动化学报, 2022, 48(6): 1590−1600 doi: 10.16383/j.aas.c190349
引用本文: 王国栋, 刘洋, 李绍松, 卢晓晖, 张邦成. 基于轮胎状态刚度预测的极限工况路径跟踪控制研究. 自动化学报, 2022, 48(6): 1590−1600 doi: 10.16383/j.aas.c190349
Wang Guo-Dong, Liu Yang, Li Shao-Song, Lu Xiao-Hui, Zhang Bang-Cheng. Research on path tracking control under limit conditions based on tire state stiffness prediction. Acta Automatica Sinica, 2022, 48(6): 1590−1600 doi: 10.16383/j.aas.c190349
Citation: Wang Guo-Dong, Liu Yang, Li Shao-Song, Lu Xiao-Hui, Zhang Bang-Cheng. Research on path tracking control under limit conditions based on tire state stiffness prediction. Acta Automatica Sinica, 2022, 48(6): 1590−1600 doi: 10.16383/j.aas.c190349

基于轮胎状态刚度预测的极限工况路径跟踪控制研究

doi: 10.16383/j.aas.c190349
基金项目: 国家重点研发计划(2017YFB0103602), 国家自然科学基金(51905045, 61603060)资助
详细信息
    作者简介:

    王国栋:长春工业大学机电工程学院硕士研究生. 主要研究方向为车辆动力学控制与智能车辆控制. E-mail: wangguodong99@outlook.com

    刘洋:长春孔辉汽车科技股份有限公司中级工程师. 主要研究方向为汽车智能底盘、电控悬架系统及控制算法. E-mail: liuyang@khat.com.cn

    李绍松:长春工业大学机电工程学院讲师. 2013年获得吉林大学博士学位. 主要研究方向为车辆动力学控制. 本文通信作者. E-mail: lishaosong@ccut.edu.cn

    卢晓晖:长春工业大学机电工程学院副教授. 2013年获得吉林大学博士学位. 主要研究方向为汽车动力传动系统控制技术, 压电驱动与控制技术, 微能源俘获技术. E-mail: luxh13@ccut.edu.cn

    张邦成:长春工业大学机电工程学院教授. 2011年获得吉林大学博士学位. 主要研究方向为机械电子测量技术与故障诊断. E-mail: zhangbangcheng@ccut.edu.cn

Research on Path Tracking Control Under Limit Conditions Based on Tire State Stiffness Prediction

Funds: Supported by National Key Research and Development Program of China (2017YFB0103602) and National Natural Science Foundation of China (51905045, 61603060)
More Information
    Author Bio:

    WANG Guo-Dong Master student at the School of Mechanical and Electrical Engineering, Changchun University of Technology. His research interest covers vehicle dynamics and intelligent vehicle control

    LIU Yang Intermediate engineer at KH Automotive Technologies (Changchun) Co., Ltd.. His research interest covers automotive intelligent chassis, electronically controlled suspension systems, and control algorithms

    LI Shao-Song Lecturer at the School of Mechanical and Electrical Engineering, Changchun University of Technology. He received his Ph.D. degree from Jilin University in 2013. His research interest covers vehicle dynamics control. Corresponding author of this paper

    LU Xiao-Hui Associate professor at the School of Mechanical and Electrical Engineering, Changchun University of Technology. She received her Ph.D. degree from Jilin University in 2013. Her research interest covers automotive powertrain control technology, piezoelectric drive and control technology, and microenergy capture technology

    ZHANG Bang-Cheng Professor at the School of Mechanical and Electrical Engineering, Changchun University of Technology. He received his Ph.D. degree from Jilin University in 2011. His research interest covers mechatronic measurement technology and fault diagnosis

  • 摘要: 为解决高速极限工况下自动驾驶车辆紧急避撞时传统路径跟踪控制方法因轮胎力表达不精确导致的路径跟踪失败问题, 提出一种基于轮胎状态刚度预测的模型预测路径跟踪控制方法. 首先, 基于非线性UniTire轮胎模型求解的轮胎状态刚度对非线性轮胎力进行线性化处理. 其次, 基于期望路径信息提出状态刚度预测方法, 实现预测时域内轮胎力的预测和线性化. 最后, MATLAB和CarSim联合仿真实验表明: 所提出的方法能够明显改善高速极限工况下的避撞控制效果.
  • 图  1  车辆模型

    Fig.  1  Vehicle model

    图  2  控制器整体结构

    Fig.  2  Overall structure of the proposed controller

    图  3  基于Sigmoid函数的路径规划

    Fig.  3  Path planning based on sigmoid function

    图  4  轮胎侧偏状态刚度

    Fig.  4  Lateral tire state stiffness

    图  5  预测时域内的轮胎力

    Fig.  5  Tire force over prediction horizon

    图  6  轮胎状态刚度对比曲线

    Fig.  6  Comparison of tire state stiffness

    图  7  侧向位移

    Fig.  7  Lateral displacement

    图  8  横摆角

    Fig.  8  Yaw angle

    图  9  前轮转角

    Fig.  9  Front steering angle

    图  10  车辆侧偏角

    Fig.  10  Vehicle sideslip angle

    图  11  前轮轮胎侧向力

    Fig.  11  Lateral force at front tire

    图  12  后轮轮胎侧向力

    Fig.  12  Lateral force at rear tire

    图  13  侧向位移

    Fig.  13  Lateral displacement

    图  14  横摆角

    Fig.  14  Yaw angle

    图  15  前轮转角

    Fig.  15  Front steering angle

    图  16  车辆侧偏角

    Fig.  16  Vehicle sideslip angle

    图  17  前轮轮胎侧向力

    Fig.  17  Lateral force at front tire

    图  18  后轮轮胎侧向力

    Fig.  18  Lateral force at rear tire

    表  1  车辆参数

    Table  1  Vehicle parameters

    参数符号
    质心到前轴的距离lf1.04 m
    质心到后轴的距离lr1.56 m
    整车质量m1 240 kg
    横摆转动惯量Iz2 031.4 kgm2
    下载: 导出CSV

    表  2  控制器参数

    Table  2  MPC controller parameters

    参数LTI-MPCLTV-MPC
    Ts0.010.01
    P4040
    M11
    ${Y_{\max }}$(°)55
    ${\varphi _{\max }}$(°)1515
    ${\delta _f}_{\max }$(°)1010
    ${\Delta{\delta_f}_{\max }}$(°)0.170.17
    ${\tau _{\varphi ,80}}$550550
    ${\tau _{y ,80}}$260260
    ${\tau _{u ,80}}$1 9001 900
    ${\tau _{\varphi ,100}}$550550
    ${\tau _{y ,100}}$260260
    ${\tau _{u ,100}}$3 5003 500
    下载: 导出CSV
  • [1] Shen C, Guo H Y, Liu F, Chen H. MPC-based path tracking controller design for autonomous ground vehicles. In: Proceedings of the 36th Chinese Control Conference. Dalian, China: CCC, 2017. 9584−9586
    [2] 陈虹, 申忱, 郭洪艳, 刘俊. 面向动态避障的智能汽车滚动时域路径规划. 中国公路学报, 2019, 32(01): 162-172. doi: 10.3969/j.issn.1001-7372.2019.01.018

    Chen Hong, Shen Chen, Guo Hong-Yan, Liu Jun. Moving horizon Path Planning for Intelligent vehicle Considering Dynamic Obstacle Avoidance. China Journal of Highway and Transport, 2019, 32(01): 162-172. doi: 10.3969/j.issn.1001-7372.2019.01.018
    [3] 熊璐, 付志强, 柏满飞, 章仁燮. 无人驾驶车辆的底层动力学控制研究. 汽车技术, 2017, (11): 5-10.

    Xiong Lu, Fu Zhi-Qiang, Bai Man-Fei, Zhang Ren-Xie. Research on the Bottom Dynamic Control for Unmanned Ground Vehicle. Automobile Technology, 2017, (11): 5-10.
    [4] 周东昇, 李伟, 刘玉龙, 丁伟. 基于滚动时域的线性二次型路径跟踪研究. 汽车技术, 2017, (10): 54-57. doi: 10.3969/j.issn.1000-3703.2017.10.011

    Zhou Dong-Sheng, Li Wei, Liu Yu-Long, Ding Wei. Research on Linear Quadratic Path Tracking Based on Receding Horizon. Automobile Technology, 2017, (10): 54-57. doi: 10.3969/j.issn.1000-3703.2017.10.011
    [5] Mashadi B, Ahmadizadeh P, Majidi M, Mahmoodi-Kaleybar M. Integrated robust controller for vehicle path following. Multibody System Dynamics, 2015, 33(2): 207-228. doi: 10.1007/s11044-014-9409-8
    [6] 阮久宏, 李贻斌, 杨福广, 荣学文. 无人驾驶高速 4WID-4WIS 车辆路径跟踪单点预瞄控制. 重庆大学学报, 2011, 34(10): 21-26.

    Ruan Jiu-Hong, Li Yi-Bin, Yang Fu-Guang, Rong Xue-Wen. Single-point preview control for unmanned high-speed 4WID-4WIS vehicle path tracking. Journal of Chongqing University(Natural Science Edition), 2011, 34(10): 21-26.
    [7] Wang R J, Yin G D, Jin X J. Robust adaptive sliding mode control for nonlinear four-wheel steering autonomous vehicles path tracking systems. In: Proceedings of the 2016 Power Electronics and Motion Control Conference. Hefei, China: IEEE, 2016. 2999−3006
    [8] Falcone P, Tufo M, Borrelli F, Asgari J, Tseng H E. A linear time varying model predictive control approach to the integrated vehicle dynamics control problem in autonomous systems. In: Proceedings of the 46th IEEE Conference on Decision and Control. New Orleans, USA: IEEE, 2008. 2980−2985
    [9] 冀杰, 唐志荣, 吴明阳, 方京城. 面向车道变换的路径规划及模型预测轨迹跟踪. 中国公路学报, 2018, 31(04): 172-179. doi: 10.3969/j.issn.1001-7372.2018.04.021

    JI Jie, Tang Zhi-Rong, Wu Ming-Yang, Fang Jing-Cheng. Path Planning and Tracking for Lane Changing Based on Model predictive Control. China Journal of Highway and Transport, 2018, 31(04): 172-179. doi: 10.3969/j.issn.1001-7372.2018.04.021
    [10] Li S S, Wang G D, Zhang B C, Yu Z X, Cui G J. Vehicle stability control based on model predictive control considering the changing trend of tire force over the prediction horizon. IEEE Access, 2018, 7: 6877-6888
    [11] 陈杰, 李亮, 宋健. 基于 LTV-MPC 的车辆稳定性控制研究. 汽车工程, 2016, 38(3): 308-316. doi: 10.3969/j.issn.1000-680X.2016.03.008

    Chen Jie, Li Liang, Song Jian. A Study on Vehicle Stability Control Based on LTV-MPC. Automotive Engineering, 2016, 38(3): 308-316. doi: 10.3969/j.issn.1000-680X.2016.03.008
    [12] Borrelli F, Falcone P, Keviczky T, Asgari J, Hrovat D. MPC-based approach to active steering for autonomous vehicle systems. International Journal of Vehicle Autonomous Systems, 2005, 3: 265-291. doi: 10.1504/IJVAS.2005.008237
    [13] Falcone P, Borrelli F, Tseng H E, Asgari J, Hrovat D. Linear time-varying model predictive control and its application to active steering systems: stability analysis and experimental validation. International Journal of Robust & Nonlinear Control, 2010, 18(8): 862-875.
    [14] 龚建伟, 姜岩, 徐威. 无人驾驶车辆模型预测控制. 北京: 北京理工大学出版社, 2014.

    Gong Jian-Wei, Jiang Yan, Xu Wei. Model Predictive Control of Self-driving Vehicles. Beijing: Beijing Institute of Technology Press, 2014.
    [15] 杭鹏, 陈辛波, 张榜, 史鹏飞, 唐廷举. 四轮独立转向独立驱动电动车主动避障路径规划与跟踪控制. 汽车工程, 2019, 41(2): 170-176.

    Hang Peng, Chen Xin-Bo, Zhang Bang, Shi Peng-Fei, Tang Ting-Ju. Path Planning and Tracking Control for Collision Avoidance of a 4 Wis-4 WId Electric vehicle. Automotive Engineering, 2019, 41(2): 170-176.
    [16] 徐杨, 陆丽萍, 褚端峰, 黄子超. 无人车辆轨迹规划与跟踪控制的统一建模方法. 自动化学报, 2019, 45(4): 799-807

    Xu Yang, Lu Li-Ping, Chu Duan-Feng, Huang Zi-Chao. Unified modeling of trajectory planning and tracking for unmanned vehicle. Acta Automatica Sinica, 2019, 45(4): 799-807
    [17] Choi M, Choi S B. MPC for vehicle lateral stability via differential braking and active front steering considering practical aspects. Proceedings of the Institution of Mechanical Engineers, Part D: Journal of Automobile Engineering, 2016, (230), 459–469.
    [18] Beal C E, Gerdes J C. Model Predictive Control for Vehicle Stabilization at the Limits of Handling. IEEE Transactions on Control Systems Technology, 2013, 21(4): 1258-1269. doi: 10.1109/TCST.2012.2200826
    [19] Brown M, Funke J, Erlien S, Gerdes J C. Safe driving envelopes for path tracking in autonomous vehicles. Control Engineering Practice, 2017, (61): 307-316.
    [20] Funke J, Brown M, Erlien S M, Gerdes J C. Collision Avoidance and Stabilization for Autonomous Vehicles in Emergency Scenarios. IEEE Transactions on Control Systems Technology, 2017, 25(4): 1204-1216. doi: 10.1109/TCST.2016.2599783
    [21] 郭孔辉. UniTire统一轮胎模型. 机械工程学报, 2016, (12): 90-99.

    Guo Kong-Hui. UniTire: Unified Tire Model. Journal of Mechanical Engineering, 2016, (12): 90-99.
    [22] 许男. 复合工况下轮胎稳态模型研究 [博士学位论文], 吉林大学, 中国, 2012.

    Xu Nan. Study on the Steady State Tire Model under Combined Conditions [Ph.D. dissertation], Jilin University, China, 2012.
    [23] 郭孔辉. 汽车轮胎动力学. 北京: 科学出版社, 2018.

    Guo Kong-Hui. Dynamics of Automobile Tyres. Beijing: Science Press, 2018.
    [24] 袁伟, 蒋拯民, 郭应时. 制动与转向协调动作的车辆避撞控制研究. 中国公路学报, 2019, 32(01): 173-181. doi: 10.3969/j.issn.1001-7372.2019.01.019

    Yuan Wei, Jiang Zheng-Min, Guo Ying-Shi. Research on vehicle Active Collision A voidance System based on the Coordinated Actions of Braking and Steering. China Journal of Highway and Transport, 2019, 32(01): 173-181. doi: 10.3969/j.issn.1001-7372.2019.01.019
    [25] Ackermann C, Bechtloff J, Isermann R. Collision avoidance with combined braking and steering. 2015, 199−213
    [26] 陈虹. 模型预测控制. 北京: 科学出版社, 2013.

    Chen Hong. Model Predictive Control. Beijing: Science Press, 2013.
  • 加载中
图(18) / 表(2)
计量
  • 文章访问数:  422
  • HTML全文浏览量:  316
  • PDF下载量:  142
  • 被引次数: 0
出版历程
  • 收稿日期:  2019-05-09
  • 录用日期:  2019-09-09
  • 网络出版日期:  2022-04-24
  • 刊出日期:  2022-06-02

目录

    /

    返回文章
    返回