2.793

2018影响因子

(CJCR)

  • 中文核心
  • EI
  • 中国科技核心
  • Scopus
  • CSCD
  • 英国科学文摘

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

平行机器人与平行无人系统:框架、结构、过程、平台及其应用

白天翔 王帅 沈震 曹东璞 郑南宁 王飞跃

白天翔, 王帅, 沈震, 曹东璞, 郑南宁, 王飞跃. 平行机器人与平行无人系统:框架、结构、过程、平台及其应用. 自动化学报, 2017, 43(2): 161-175. doi: 10.16383/j.aas.2017.y000002
引用本文: 白天翔, 王帅, 沈震, 曹东璞, 郑南宁, 王飞跃. 平行机器人与平行无人系统:框架、结构、过程、平台及其应用. 自动化学报, 2017, 43(2): 161-175. doi: 10.16383/j.aas.2017.y000002
BAI Tian-Xiang, WANG Shuai, SHEN Zhen, CAO Dong-Pu, ZHENG Nan-Ning, WANG Fei-Yue. Parallel Robotics and Parallel Unmanned Systems: Framework, Structure, Process, Platform and Applications. ACTA AUTOMATICA SINICA, 2017, 43(2): 161-175. doi: 10.16383/j.aas.2017.y000002
Citation: BAI Tian-Xiang, WANG Shuai, SHEN Zhen, CAO Dong-Pu, ZHENG Nan-Ning, WANG Fei-Yue. Parallel Robotics and Parallel Unmanned Systems: Framework, Structure, Process, Platform and Applications. ACTA AUTOMATICA SINICA, 2017, 43(2): 161-175. doi: 10.16383/j.aas.2017.y000002

平行机器人与平行无人系统:框架、结构、过程、平台及其应用

doi: 10.16383/j.aas.2017.y000002
详细信息
    作者简介:

    白天翔 中国科学院自动化研究所复杂系统管理与控制国家重点实验室博士研究生.主要研究方向为先进机器人控制, 机器人协调与机器人仿真.E-mail:baitianxiang2014@ia.ac.cn

    王帅 中国科学院自动化研究所复杂系统管理与控制国家重点实验室博士研究生.主要研究方向为社会计算和平行管理.E-mail:wangshuai2015@ia.ac.cn

    沈震 中国科学院自动化研究所副研究员.主要研究方向为复杂系统, 智能制造.E-mail:zhen.shen@ia.ac.cn

    曹东璞 英国克兰菲尔德大学驾驶员认知与自动驾驶实验室主任.中科院自动化所客座研究员.主要研究方向为自动驾驶, 人车协同, 与平行驾驶.E-mail:d.cao@cranfield.ac.uk

    郑南宁 西安交通大学人工智能与机器人研究所教授.中国工程院院士.主要研究方向为模式识别与智能系统、机器视觉与图象处理.E-mail:nnzheng@mail.xjtu.edu.cn

    通讯作者:

    王飞跃 中国科学院自动化研究所复杂系统管理与控制国家重点实验室研究员.国防科学技术大学军事计算实验与平行系统技术研究中心主任.主要研究方向为智能系统和复杂系统的建模、分析与控制.本文通信作者.E-mail:feiyue.wang@ia.ac.cn

  • 本文责任编委 刘德荣

Parallel Robotics and Parallel Unmanned Systems: Framework, Structure, Process, Platform and Applications

More Information
    Author Bio:

    Ph. D. candidate at the State Key Laboratory of Management and Control for Complex Systems, Institute of Automation, Chinese Academy of Sciences. His research interest covers advanced robotics control, robot coordination and robotics simulation

    Ph. D. candidate at the State Key Laboratory of Management and Control for Complex Systems, Institute of Automation, Chinese Academy of Sciences. His research interest covers social computing and parallel management

    Associate professor at Institute of Automation, Chinese Academy of Sciences. His research interest covers complex systems and smart manufacturing

    Director of Driver Cognition and Automated Driving Laboratory, Cranfield University, Visiting Professor at Institute of Automation, Chinese Academy of Sciences. His research interest covers automated driving, driver-automation collaboration and parallel driving

    Professor at Institute of Artificial Intelligence and Robotics (IAIR), Xi'an Jiaotong University. Member of Chinese Academy of Engineering. His research interest covers pattern recognition and intelligent systems, computer vision and image processing

    Corresponding author: WANG Fei-Yue Professor at the State Key Laboratory of Management and Control for Complex Systems, Institute of Automation, Chinese Academy of Sciences. Director of the Research Center for Computational Experiments and Parallel Systems Technology, National University of Defense Technology. His research interest covers modeling, analysis, and control of intelligent systems and complex systems. Corresponding author of this paper
  • 摘要: 本文将基于ACP(Artificial societies,computational experiments,parallel execution)的平行系统思想与机器人领域相结合,形成一种软硬件相结合的框架,为无人机、无人车、无人船在复杂环境中实验、学习与实际工作提供便捷、安全的平台,即平行无人系统.本文从平行机器人的基本概念出发,提出平行无人系统的基本框架,并介绍了各模块的基本功能与实现方法,探讨了其中的关键技术.然后本文围绕无人机、无人车、无人船三个方面展望了无人平行系统在实际中的应用和所面临的挑战,提出了平行无人系统的未来发展方向.
    1)  本文责任编委 刘德荣
  • 图  1  平行系统基本框架

    Fig.  1  The basic framework of parallel system

    图  2  机器人软硬件结构

    Fig.  2  Illustration of the hardware and software structures in robots

    图  3  平行机器人基本框架, 图片引用自[10]

    Fig.  3  Basic framework of parallel robotics (the image is cited from [10])

    图  4  ACP平行系统流程图

    Fig.  4  Flow chart of an ACP based parallel system

    图  5  平行无人系统计算实验框架

    Fig.  5  Framework of computational experiments in parallel unmanned systems

    图  6  平行无人系统混合平行执行框架与原理

    Fig.  6  Framework of the hybrid parallel execution process in parallel unmanned systems

    图  7  软件定义的机器人的软硬件框架

    Fig.  7  Framework of software-defined robotics

    图  8  基于ROS/Gazebo的人工系统计算实验平台框架

    Fig.  8  Illustration of a computational experiment platform in the artificial system based on ROS/Gazebo

    图  9  平行无人系统网络拓扑

    Fig.  9  Network topology of a parallel unmanned system

    图  10  无人驾驶自主能力等级模型, 引用自[42]

    Fig.  10  Illustration of the unmanned ground vehicles autonomy levels (UGVAL), the image is cited from [42]

    图  11  一种平行执行时序, 图片引用自[50]

    Fig.  11  Illustration of a parallel execution sequence (the image is cited from [50])

  • [1] Amin R, Aijun L, Shamshirband S. A review of quadrotor UAV:control methodologies and performance evaluation. International Journal of Automation and Control, 2016, 10(2):87-103 doi: 10.1504/IJAAC.2016.076453
    [2] Gupte S, Mohandas P I T, Conrad J M. A survey of quadrotor unmanned aerial vehicles. In:Proceedings of the 2012 IEEE Southeastcon. Orlando, FL, USA:IEEE, 2012. 1-6
    [3] 王飞跃.关于复杂系统的建模、分析、控制和管理.复杂系统与复杂性科学, 2006, 3(2):26-34 http://www.cnki.com.cn/Article/CJFDTOTAL-FZXT200602003.htm

    Wang Fei-Yue. On the modeling, analysis, control and management of complex systems. Complex Systems and Complexity Science, 2006, 3(2):26-34 http://www.cnki.com.cn/Article/CJFDTOTAL-FZXT200602003.htm
    [4] 王飞跃, 刘德荣, 熊刚, 程长建, 赵冬斌.复杂系统的平行控制理论及应用.复杂系统与复杂性科学, 2012, 9(3):1-12 http://www.cnki.com.cn/Article/CJFDTOTAL-FZXT201203002.htm

    Wang Fei-Yue, Liu De-Rong, Xiong Gang, Cheng Chang-Jian, Zhao Dong-Bin. Parallel control theory of complex systems and applications. Complex Systems and Complexity Science, 2012, 9(3):1-12 http://www.cnki.com.cn/Article/CJFDTOTAL-FZXT201203002.htm
    [5] 王飞跃.软件定义的系统与知识自动化:从牛顿到默顿的平行升华.自动化学报, 2015, 41(1):1-8 http://www.aas.net.cn/CN/abstract/abstract18578.shtml

    Wang Fei-Yue. Software-defined systems and knowledge automation:a parallel paradigm shift from Newton to Merton. Acta Automatica Sinica, 2015, 41(1):1-8 http://www.aas.net.cn/CN/abstract/abstract18578.shtml
    [6] 王飞跃.关于复杂系统研究的计算理论与方法.中国基础科学, 2004, 6(5):3-10 http://www.cnki.com.cn/Article/CJFDTOTAL-ZGJB200405000.htm

    Wang Fei-Yue. Computational theory and method on complex system. China Basic Science, 2004, 6(5):3-10 http://www.cnki.com.cn/Article/CJFDTOTAL-ZGJB200405000.htm
    [7] 王飞跃.平行系统方法与复杂系统的管理和控制.控制与决策, 2004, 19(5):485-489, 514 http://www.cnki.com.cn/Article/CJFDTOTAL-KZYC200405001.htm

    Wang Fei-Yue. Parallel system methods for management and control of complex systems. Control and decision, 2004, 19(5):485-489, 51 http://www.cnki.com.cn/Article/CJFDTOTAL-KZYC200405001.htm
    [8] 王飞跃.平行控制:数据驱动的计算控制方法.自动化学报, 2013, 39(4):293-302 http://www.aas.net.cn/CN/abstract/abstract17915.shtml

    Wang Fei-Yue. Parallel control:a method for data-driven and computational control. Acta Automatica Sinica, 2013, 39(4):293-302 http://www.aas.net.cn/CN/abstract/abstract17915.shtml
    [9] 王飞跃.人工社会、计算实验、平行系统-关于复杂社会经济系统计算研究的讨论.复杂系统与复杂性科学, 2004, 1(4):25-35 http://www.cnki.com.cn/Article/CJFDTOTAL-FZXT200404001.htm

    Wang Fei-Yue. Artificial societies, computational experiments, and parallel systems:a discussion on computational theory of complex social-economic systems. Complex Systems and Complexity Science, 2004, 1(4):25-35 http://www.cnki.com.cn/Article/CJFDTOTAL-FZXT200404001.htm
    [10] 王飞跃.机器人的未来发展:从工业自动化到知识自动化.科技导报, 2015, 33(21):39-44 http://www.cnki.com.cn/Article/CJFDTOTAL-KJDB201521012.htm
    [11] 杨书评, 刘颖.机器人标准化领域研究进展和趋势.科技导报, 2015, 33(23):116-119 http://www.cnki.com.cn/Article/CJFDTOTAL-KJDB201523039.htm
    [12] Goldberg K. Beyond the web:excavating the real world via mosaic. In:Proceedings of the 2nd International World Wide Web Conference. Chicago, USA, 1994. 1-12 http://citeseerx.ist.psu.edu/viewdoc/summary?doi=10.1.1.299.6262
    [13] Zweigle O, van de Molengraft R, D'Andrea R, Häussermann K. RoboEarth-conneting robots world-wide. In:Proceedings of the 2nd International Conference on Interaction Sciences Information Technology, Culture and Human. Seoul, Korea:ICIS, 2009. 184-191
    [14] Hunziker D, Gajamohan M, Waibel M, D'Andrea R. Rapyuta:the RoboEarth cloud engine. In:Proceedings of the 2013 IEEE International Conference on Robotics and Automation (ICRA). Karlsruhe, Germany:IEEE, 2013. 438-444 http://ieeexplore.ieee.org/abstract/document/6630612/
    [15] Saxena A, Jain A, Sener O, Jami A, Misra D K, Koppula H S. RoboBrain:large-scale knowledge engine for robots. ArXiv:1412.0691, 2014. 1-11 https://arxiv.org/abs/1412.0691
    [16] Hu G Q, Tay W P, Wen Y G. Cloud robotics:architecture, challenges and applications. IEEE Network, 2012, 26(3):21-28 doi: 10.1109/MNET.2012.6201212
    [17] 王飞跃.知识机器人与工业5.0:迎接智能机的时代.北京, 中国:2015年国家机器人发展论坛, 2015
    [18] 王飞跃.无人车的未来:平行车和平行驾驶.首届中国智能车大会暨国家智能车发展论坛, 苏州, 2015

    Wang Fei-Yue. Parallel driving for intelligent vehicles:past, present, and future. 2015 China Conference on Intelligent Vehicles, 2015 National Intelligent Vehicle Development Forum, Soochow, 2015
    [19] He F, Miao Q H, Li Y T, Wang F Y, Tang S M. Modeling and analysis of artificial transportation system based on multi-agent technology. In:Proceedings of the 2006 IEEE Intelligent Transportation Systems Conference. Toronto, Canada:IEEE, 2006. 1120-1124 http://ieeexplore.ieee.org/abstract/document/1707372/
    [20] Duan W, Cao Z D, Wang Y Z, Zhu B, Zeng D, Wang F Y, Qiu X G, Song H B, Wang Y. An ACP approach to public health emergency management:using a campus outbreak of H1N1 influenza as a case study. IEEE Transactions on Systems, Man, and Cybernetics:Systems, 2013, 43(5):1028-1041 doi: 10.1109/TSMC.2013.2256855
    [21] 伦淑娴. ACP理论的平行执行方式分类研究.自动化学报, 2012, 38(10):1602-1608 doi: 10.3724/SP.J.1004.2012.01602

    Lun Shu-Xian. Research on the classification of parallel execution modes of ACP theory. Acta Automatica Sinica, 2012, 38(10):1602-1608 doi: 10.3724/SP.J.1004.2012.01602
    [22] 李力, 林懿伦, 曹东璞, 郑南宁, 王飞跃.平行学习-机器学习的一个新型理论框架.自动化学报, 2017, 43(1):1-8 http://www.aas.net.cn/CN/abstract/abstract18984.shtml

    Li Li, Lin Yi-Lun, Cao Dong-Pu, Zheng Nan-Ning, Wang Fei-Yue. Parallel learning-a new framework for machine learning. Acta Automatica Sinica, 2017, 43(1):1-8 http://www.aas.net.cn/CN/abstract/abstract18984.shtml
    [23] Wang F Y, Zhang J, Wei Q L, Zheng X H, Li L. PDP:parallel dynamic programming. IEEE/CAA Journal of Automatica Sinica, 2017, 4(1):1-5 doi: 10.1109/JAS.2017.7510310
    [24] 王飞跃.软件定义的系统与知识自动化:从牛顿到默顿的平行升华.自动化学报, 2015, 41(1):1-8 http://www.aas.net.cn/CN/abstract/abstract18578.shtml

    Wang Fei-Yue. Software-defined systems and knowledge automation:a parallel paradigm shift from Newton to Merton. Acta Automatica Sinica, 2015, 41(1):1-8 http://www.aas.net.cn/CN/abstract/abstract18578.shtml
    [25] O'Kane J M. A Gentle Introduction to ROS. Create Space Independent Publishing Platform, 2013
    [26] Smashing Robotics. Most advanced robotics simulation software overview[Online], available:http://www.smashingrobotics.com/most-advanced-and-used-robotics-simulation-software/, March 6, 2016
    [27] Cook D, Vardy A, Lewis R. A survey of AUV and robot simulators for multi-vehicle operations. In:Proceedings of the 2014 IEEE/OES Autonomous Underwater Vehicles (AUV). Oxford, MS, USA:IEEE, 2014. 1-8 http://ieeexplore.ieee.org/abstract/document/7054411/
    [28] Koenig N, Howard A. Design and use paradigms for gazebo, an open-source multi-robot simulator. In:Proceedings of the 2004 IEEE/RSJ International Conference Intelligent Robots and Systems. Sendai, Japan:IEEE, 2004, 3:2149-2154 http://ieeexplore.ieee.org/abstract/document/1389727/
    [29] Rohmer E, Singh S P N, Freese M. V-REP:a versatile and scalable robot simulation framework. In:Proceedings of the 2013 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS). Tokyo, Japan:IEEE, 2013. 1321-1326 http://ieeexplore.ieee.org/abstract/document/6696520/
    [30] Jia X, Meng M Q H. A survey and analysis of task allocation algorithms in multi-robot systems. In:Proceedings of the 2013 IEEE International Conference on Robotics and Biomimetics (ROBIO). Shenzhen, China:IEEE, 2013. 2280-2285
    [31] Gautam A, Mohan S. A review of research in multi-robot systems. In:Proceedings of the 7th IEEE International Conference on Industrial and Information Systems (ICIIS). Chennai, India:IEEE, 2012. 1-5 http://ieeexplore.ieee.org/abstract/document/6304778/
    [32] Meyer J, Sendobry A, Kohlbrecher S, Klingauf U, von Stryk O. Comprehensive simulation of quadrotor UAVs using ROS and gazebo. In:Proceedings of the 3rd International Conference on Simulation, Modeling, and Programming for Autonomous Robots. Berlin Heidelberg, Germany:Springer, 2012. 400-411 doi: 10.1007/978-3-642-34327-8_36
    [33] Roy A. Ardupilot SITL gazebo plugin[Online], available:https://github.com/AurelienRoy/ardupilot_sitl_gazebo_plugin, February 10, 2017
    [34] Quadcopter dynamic modeling and simulation (quad-sim) v1.00[Online], available:https://github.com/dch33/Quad-Sim, February 10, 2017
    [35] Rahul G, Shahb S M, Guptac N K, Ananthkrishnan N. Modeling, simulation and flight testing of an autonomous quadrotor. In:Procedings of the 2009 ICEAE. 2009. 1-7
    [36] Figueiredo H, Bittar A, Saotome O. Platform for quadrirotors:analysis and applications. In:Procedings of the 2014 International Conference on Unmanned Aircraft Systems (ICUAS). Orlando, FL, USA:IEEE, 2014. 848-856 http://ieeexplore.ieee.org/abstract/document/6842332/
    [37] Waslander S, Wang C. Wind disturbance estimation and rejection for quadrotor position control. In:Proceedings of the 2009 AIAA Infotech@Aerospace Conference and AIAA Unmanned... Unlimited Conference. Seattle, Washington, USA:AIAA, 2009. 1-14 doi: 10.2514/6.2009-1983
    [38] Neumann P P, Bartholmai M. Real-time wind estimation on a micro unmanned aerial vehicle using its inertial measurement unit. Sensors and Actuators A:Physical, 2015, 235:300-310 doi: 10.1016/j.sna.2015.09.036
    [39] Arain B, Kendoul F. Real-time wind speed estimation and compensation for improved flight. IEEE Transactions on Aerospace and Electronic Systems, 2014, 50(2):1599-1606 doi: 10.1109/TAES.2014.120236
    [40] Brezoescu A, Castillo P, Lozano R. Wind estimation for accurate airplane path following applications. Journal of Intelligent & Robotic Systems, 2014, 73(1-4):823-831 http://ieeexplore.ieee.org/abstract/document/6564771/
    [41] Meier L, Camacho J, Godbolt B. Mavlink:micro air vehicle communication protocol[Online], available:http://qgroundcontrol.org/mavlink/start, February 10, 2017
    [42] 黄武陵.平行驾驶系统支持的自主驾驶安全性研究[博士学位论文], 中国科学院大学, 中国科学院自动化研究所, 中国, 2014

    Huang Wu Ling. Parallel Driving System Supported Autonomous Driving Safety Enhancement Research[Ph.D. dissertation], University of Chinese Academy Sciences, Institute of Automation, Chinese Academy of Sciences, China, 2014
    [43] Xiong G, Wang K F, Zhu F H, Cheng C, An X J, Xie Z D. Parallel traffic management for the 2010 Asian Games. IEEE Intelligent Systems, 2010, 25(3):81-85 doi: 10.1109/MIS.2010.87
    [44] Wang F Y. Parallel control and management for intelligent transportation systems:concepts, architectures, and applications. IEEE Transactions on Intelligent Transportation Systems, 2010, 11(3):630-638 doi: 10.1109/TITS.2010.2060218
    [45] Nashashibi F. Automated driving in urban environments:technical challenges, open problems and barriers. In:Proceedings of the 6th Workshop on Planning, Perception and Navigation for Intelligent Vehicles. 2014
    [46] Browne A F, Vutetakis D. Localization of autonomous mobile ground vehicles in a sterile environment:a survey. In:Proceedings of the 2015 ASEE Southeast Section Conference. USA:American Society for Engineering Education, 2015. 1-7
    [47] Lefèvre S, Vasquez D, Laugier C. A survey on motion prediction and risk assessment for intelligent vehicles. ROBOMECH Journal, 2014, 1:1 doi: 10.1186/s40648-014-0001-z
    [48] Mukhtar A, Xia L K, Tang T B. Vehicle detection techniques for collision avoidance systems:a review. IEEE Transactions on Intelligent Transportation Systems, 2015, 16(5):2318-2338 doi: 10.1109/TITS.2015.2409109
    [49] Darema F. Dynamic data driven applications systems:a new paradigm for application simulations and measurements. In:Proceedings of the 4th International Conference on Computational Science. Berlin Heidelberg, Germany:IEEE, 2004. 662-669 doi: 10.1007/978-3-540-24688-6_86
    [50] 周云, 黄柯棣, 胡德文.动态数据驱动应用系统的概念研究.系统仿真学报, 2009, 21(8):2138-2141 http://www.cnki.com.cn/Article/CJFDTOTAL-XTFZ200908006.htm

    Zhou Yun, Huang Ke-Li, Hu De-Wen. Conceptual study on dynamic data driven application system. Journal of System Simulation, 2009, 21(8):2138-2141 http://www.cnki.com.cn/Article/CJFDTOTAL-XTFZ200908006.htm
  • 加载中
图(11)
计量
  • 文章访问数:  2234
  • HTML全文浏览量:  1310
  • PDF下载量:  2394
  • 被引次数: 0
出版历程
  • 收稿日期:  2016-12-28
  • 录用日期:  2017-02-01
  • 刊出日期:  2017-02-01

目录

    /

    返回文章
    返回