2.845

2023影响因子

(CJCR)

  • 中文核心
  • EI
  • 中国科技核心
  • Scopus
  • CSCD
  • 英国科学文摘

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

一种结合双区域滤波和图像融合的单幅图像去雾算法

张小刚 唐美玲 陈华 汤红忠

张小刚, 唐美玲, 陈华, 汤红忠. 一种结合双区域滤波和图像融合的单幅图像去雾算法. 自动化学报, 2014, 40(8): 1733-1739. doi: 10.3724/SP.J.1004.2014.01733
引用本文: 张小刚, 唐美玲, 陈华, 汤红忠. 一种结合双区域滤波和图像融合的单幅图像去雾算法. 自动化学报, 2014, 40(8): 1733-1739. doi: 10.3724/SP.J.1004.2014.01733
ZHANG Xiao-Gang, TANG Mei-Ling, CHEN Hua, TANG Hong-Zhong. A Dehazing Method in Single Image Based on Double-area Filter and Image Fusion. ACTA AUTOMATICA SINICA, 2014, 40(8): 1733-1739. doi: 10.3724/SP.J.1004.2014.01733
Citation: ZHANG Xiao-Gang, TANG Mei-Ling, CHEN Hua, TANG Hong-Zhong. A Dehazing Method in Single Image Based on Double-area Filter and Image Fusion. ACTA AUTOMATICA SINICA, 2014, 40(8): 1733-1739. doi: 10.3724/SP.J.1004.2014.01733

一种结合双区域滤波和图像融合的单幅图像去雾算法

doi: 10.3724/SP.J.1004.2014.01733
基金项目: 

国家自然科学基金(61174050,61203016)资助

详细信息
    作者简介:

    张小刚 湖南大学电气与信息工程学院教授. 主要研究方向为工业窑炉过程控制与模式识别.E-mail:zhangxiaogang@126.com

    通讯作者:

    陈华 湖南大学信息科学与工程学院讲师. 主要研究方向为图像处理与模式识别.E-mail:anneychen@126.com

A Dehazing Method in Single Image Based on Double-area Filter and Image Fusion

Funds: 

Supported by National Natural Science Foundation of China (61174050, 61203016)

  • 摘要: 基于大气散射物理模型和暗原色先验原理,提出一种结合 双区域滤波和图像融合的单幅图像去雾算法.首先在计算暗通道函数时,定义了一类暗区 域对图像边缘的低强度像素点进行描述,该区域像素点的暗原色中值取其三原色通道的最小值,以代替原来的中值滤波运算值.此滤波方法不仅能有效去除Halo效应,而且避免了黑斑效应;然后基 于大气散射物理模型定义一种伪去雾图,将其与原去雾图进行像素级融合对原图进行色度校正,实 现了柔性去雾,改善了现有方法易出现过去雾的缺陷.实验结果表明,该算法去雾后图像具有较好清 晰度及色彩恢复度,去雾鲁棒性强.在大雾和图像色彩失真严重的情况下,仍可有效恢复图像.
  • [1] Shwartz S, Namer E, Schechner Y Y. Blind haze separation. In: Proceedings of IEEE Conference on Computer Vision and Pattern Recognition. Washington D.C., USA: IEEE, 2006. 1984-1991
    [2] [2] Namer E, Schechner Y Y. Advanced visibility improvement based on polarization filtered images. In: Proceedings of IEEE Conference on Polarization Science and Remote Sensing. Washington D.C., USA: IEEE, 2005. 36-45
    [3] [3] Schechner Y Y, Narasimhan S G, Nayar S K. Instant dehazing of images using polarization. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition. Washington D.C., USA: IEEE, 2001. 325-332
    [4] [4] Schechner Y Y, Narasimhan S G, Nayar S K. Polarization-based vision through haze. Applied Optics, 2003, 42(3): 511-525
    [5] [5] Oakley J P, Satherley B L. Improving image quality in poor visibility conditions using a physical model for contrast degradation. IEEE Transactions on Image Processing, 1998, 7(2): 167-179
    [6] [6] Narasimhan S G, Nayar S K. Vision and the atmosphere. International Journal of Computer Vision, 2002, 48(3): 233-254
    [7] [7] Narasimhan S G, Nayar S K. Chromatic framework for vision in bad weather. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition. New York, USA: IEEE, 2000. 598-605
    [8] [8] Tan R T. Visibility in bad weather from a single image. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition. Anchorgae, USA: IEEE, 2008. 23-28
    [9] [9] Fattal R. Single image dehazing. ACM Transactions on Graphics, 2008, 27(3): 1-9
    [10] He Kai-Ming, Sun Jian, Tang Xiao-Ou. Single image haze removal using dark channel prior. In: Proceeding of IEEE Conference on Computer Vision and Pattern Recognition. Washington D.C., USA: IEEE, 2009. 1956-1963
    [11] He Kai-Ming, Sun Jian, Tang Xiao-Ou. Single image haze removal using dark channel prior. IEEE Transaction on Pattern Analysis and Machine Intelligence, 2011, 33(12): 2341-2353
    [12] Xu H R, Guo J M, Liu Q, Ye L L. Fast image dehazing using improved dark channel prior. In: Proceedings of the IEEE International Conference on Information Science and Technology. Hubei, China: IEEE, 2012. 663-667
    [13] Yu Jing, Li Da-Peng, Liao Qing-Min. Physics-based fast single image fog removal. Acta Automatica Sinica, 2011, 37(2): 143-149(禹晶, 李大鹏, 廖庆敏. 基于物理模型的快速单幅图像去雾方法. 自动化学报, 2011, 37(2): 143-149)
    [14] Gibson K B, Vo D T, Nguyen T Q. An investigation of dehazing effects on image and video coding. IEEE Transactions on Image Processing, 2012, 21(2): 662-673
    [15] Narasimhan S G, Nayar S K. Removing weather effects from monochrome images. In: Proceedings of the IEEE Computer Society Conference on Computer Vision and Pattern Recognition. Washington D.C., USA: IEEE, 2001. 186-193
    [16] Narasimhan S G, Nayar S K. Contrast restoration of weather degraded images. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2003, 25(6): 713-724
    [17] Burt P J, Kolczynski R J. Enhanced image capture through fusion. In: Proceedings of the IEEE Computer on Computer Vision, Berlin, Germany: IEEE, 1993. 173-182
    [18] He Kai-Ming, Sun Jian, Tang Xiao-Ou. Guided image filtering. IEEE Transaction on Pattern Analysis and Machine Intelligence, 2013, 35(6): 1397-1409
    [19] Li Da-Peng, Yu Jing, Xiao Chuang-Bai. No-reference quality assessment method for defogged images. Journal of Image and Graphics, 2011, 16(9): 1753-1757(李大鹏, 禹晶, 肖创柏. 图像去雾的无参考客观质量评测方法. 中国图象图形学报, 2011, 16(9): 1753-1757)
  • 加载中
计量
  • 文章访问数:  2389
  • HTML全文浏览量:  163
  • PDF下载量:  1005
  • 被引次数: 0
出版历程
  • 收稿日期:  2013-04-17
  • 修回日期:  2013-12-09
  • 刊出日期:  2014-08-20

目录

    /

    返回文章
    返回