2.765

2022影响因子

(CJCR)

  • 中文核心
  • EI
  • 中国科技核心
  • Scopus
  • CSCD
  • 英国科学文摘

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

一种基于多视立体视觉的多视图直线匹配方法

傅康平 申抒含 胡占义

傅康平, 申抒含, 胡占义. 一种基于多视立体视觉的多视图直线匹配方法. 自动化学报, 2014, 40(8): 1680-1689. doi: 10.3724/SP.J.1004.2014.01680
引用本文: 傅康平, 申抒含, 胡占义. 一种基于多视立体视觉的多视图直线匹配方法. 自动化学报, 2014, 40(8): 1680-1689. doi: 10.3724/SP.J.1004.2014.01680
FU Kang-Ping, SHEN Shu-Han, HU Zhan-Yi. Line Matching Across Views Based on Multiple View Stereo. ACTA AUTOMATICA SINICA, 2014, 40(8): 1680-1689. doi: 10.3724/SP.J.1004.2014.01680
Citation: FU Kang-Ping, SHEN Shu-Han, HU Zhan-Yi. Line Matching Across Views Based on Multiple View Stereo. ACTA AUTOMATICA SINICA, 2014, 40(8): 1680-1689. doi: 10.3724/SP.J.1004.2014.01680

一种基于多视立体视觉的多视图直线匹配方法

doi: 10.3724/SP.J.1004.2014.01680

Line Matching Across Views Based on Multiple View Stereo

Funds: 

Supported by National High Technology Research and Development Program of China (863 Program) (2013AA12A202) and National Natural Science Foundation of China (61227804, 61105032)

  • 摘要: 提出了一种基于多视立体视觉(Multiple view stereo,MVS)进行多视图直线匹配的方法. 本文方法首先利用MVS所得到的三维点云及其可见性信息,建立三维点与图像直线的对应关系. 根据此对应关系,为每条图像直线建立由一个三维点集和一个三维单位向量构成的描述子,用以衡量图像直线之间的相似性及一致性. 之后,本文方法以所有图像直线为顶点建立一个图,并引入了图谱分析来获取统一的顶点距离度量. 最后,本方法对DBSCAN聚类算法进行了修改,并用修改后的算法从图谱分析结果中获取可靠的直线匹配. 实验显示,本方法比已有方法更加鲁棒,并且有更高的准确率.
  • [1] Snavely N, Seitz S M, Szeliski R. Photo tourism: exploring photo collections in 3D. ACM Transactions on Graphics, 2006, 25(3): 835-846
    [2] [2] Furukawa Y, Ponce J. Accurate, dense, and robust multiview stereopsis. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2010, 32(8): 1362-1376
    [3] [3] Snavely N, Seitz S M, Szeliski R. Modeling the world from internet photo collections. International Journal of Computer Vision, 2008, 80(2): 189-210
    [4] [4] Werner T, Zisserman A. New techniques for automated architectural reconstruction from photographs. In: Proceedings of the 7th European Conference on Computer Vision. London, UK: Springer-Verlag, 2002. 541-555
    [5] [5] Aider O A, Hoppenot P, Colle E. A model-based method for indoor mobile robot localization using monocular vision and straight-line correspondences. Robotics and Autonomous Systems, 2005, 52(2-3): 229-246
    [6] [6] Fan B, Wu F C, Hu Z Y. Robust line matching through line-point invariants. Pattern Recognition, 2012, 45(2): 794-805
    [7] [7] Bay H, Ferraris V, Van Gool L. Wide-baseline stereo matching with line segments. In: Proceedings of the 2005 IEEE Computer Society Conference on Computer Vision and Pattern Recognition. Washington DC, USA: IEEE, 2005. 329-336
    [8] [8] Wang Z H, Wu F C, Hu Z Y. Msld: a robust descriptor for line matching. Pattern Recognition, 2009, 42(5): 941-953
    [9] [9] Lpez J, Fucios M, Fdez-Vidal X R, Pardo X M. Detection and matching of lines for close-range photogrammetry. In: Proceedings of the 6th Iberian Conference on Pattern Recognition and Image Analysis. Madeira, Portugal: Springer, 2013. 732-739
    [10] Wang L, Neumann U, You S. Wide-baseline image matching using line signatures. In: Proceedings of the 12th IEEE International Conference on Computer Vision. Kyoto, Japan: IEEE, 2009. 1311-1318
    [11] Zhang L L, Koch R. An efficient and robust line segment matching approach based on LBD descriptor and pairwise geometric consistency. Journal of Visual Communication and Image Representation, 2013, 24(7): 794-805
    [12] Schmid C, Zisserman A. Automatic line matching across views. In: Proceedings of the 1997 IEEE Computer Society Conference on Computer Vision and Pattern Recognition. San Juan, Puerto Rico: IEEE, 1997. 666-671
    [13] Schmid C, Zisserman A. The geometry and matching of lines and curves over multiple views. International Journal of Computer Vision, 2000, 40(3): 199-233
    [14] Heuel S, Frstner W. Matching, reconstructing and grouping 3d lines from multiple views using uncertain projective geometry. In: Proceedings of the 2001 IEEE Computer Society Conference on Computer Vision and Pattern Recognition. Kauai, USA: IEEE, 2001. II517-II524
    [15] Elaksher A F. Automatic line matching across multiple views based on geometric and radiometric properties. Applied Geomatics, 2011, 3(1): 23-33
    [16] Hartley R I, Zisserman A. Multiple View Geometry in Computer Vision (2nd edition). Cambridge: Cambridge University Press, 2004. 321-323
    [17] Xiao J X, Fang T, Tan P, Zhao P, Ofek E, Quan L. Image-based facade modeling. ACM Transactions on Graphics, 2008, 27(5): Article No. 161
    [18] Chen T W, Wang Q. 3d line segment detection for unorganized point clouds from multi-view stereo. In: Proceedings of the 10th Asian conference on Computer vision. Queenstown, New Zealand: Springer-Verlag, 2010. 400-411
    [19] Sander J, Ester M, Kriegel H P, Xu X W. Density-based clustering in spatial databases: the algorithm GDBSCAN and its applications. Data Mining and Knowledge Discovery, 1998, 2(2): 169-194
    [20] Saerens M, Fouss F, Yen L, Dupont P. The principal components analysis of a graph, and its relationships to spectral clustering. In: Proceedings of the 15th European Conference on Machine Learning. Pisa, Italy: Springer-Verlag, 2004. 371-383
    [21] Daszykowski M, Walczak B, Massart D L. Looking for natural patterns in data: Part 1. Density-based approach. Chemometrics and Intelligent Laboratory Systems, 2001, 56(2): 83-92
    [22] Canny J. A computational approach to edge detection. IEEE Transactions on Pattern Analysis and Machine Intelligence, 1986, 8(6): 679-698
  • 加载中
计量
  • 文章访问数:  2791
  • HTML全文浏览量:  99
  • PDF下载量:  2049
  • 被引次数: 0
出版历程
  • 收稿日期:  2013-09-09
  • 修回日期:  2014-01-03
  • 刊出日期:  2014-08-20

目录

    /

    返回文章
    返回