2.624

2020影响因子

(CJCR)

  • 中文核心
  • EI
  • 中国科技核心
  • Scopus
  • CSCD
  • 英国科学文摘

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

动态系统间歇故障诊断技术综述

周东华 史建涛 何潇

周东华, 史建涛, 何潇. 动态系统间歇故障诊断技术综述. 自动化学报, 2014, 40(2): 161-171. doi: 10.3724/SP.J.1004.2014.00161
引用本文: 周东华, 史建涛, 何潇. 动态系统间歇故障诊断技术综述. 自动化学报, 2014, 40(2): 161-171. doi: 10.3724/SP.J.1004.2014.00161
ZHOU Dong-Hua, SHI Jian-Tao, HE Xiao. Review of Intermittent Fault Diagnosis Techniques for Dynamic Systems. ACTA AUTOMATICA SINICA, 2014, 40(2): 161-171. doi: 10.3724/SP.J.1004.2014.00161
Citation: ZHOU Dong-Hua, SHI Jian-Tao, HE Xiao. Review of Intermittent Fault Diagnosis Techniques for Dynamic Systems. ACTA AUTOMATICA SINICA, 2014, 40(2): 161-171. doi: 10.3724/SP.J.1004.2014.00161

动态系统间歇故障诊断技术综述

doi: 10.3724/SP.J.1004.2014.00161
基金项目: 

国家重点基础研究发展计划(973计划)(2010CB731800,2009CB32 0602);国家自然科学基金(61210012,61290324,61074084)资助

详细信息
    作者简介:

    史建涛 清华大学自动化系博士研究生.主要研究方向为故障诊断与容错控制,分布式多智能体系统.E-mail:shijt11@mails.tsinghua.edu.cn

Review of Intermittent Fault Diagnosis Techniques for Dynamic Systems

Funds: 

Supported by National Basic Research Program of China (973 Program) (2010CB731800, 2009CB320602) and National Natural Science Foundation of China (61210012, 61290324, 61074084)

  • 摘要: 介绍了间歇故障的概念,对间歇故障的背景和产生原因以及间歇故障诊断问题的研究意义进行了分析,以间歇故障的成因、幅值特性和不同时刻发生故障之间的相关性等为依据,对间歇故障进行了 分类. 然后对间歇故障诊断的研究现状进行了概述,把目前间歇故障诊断的方法大体分为定性分析和定量分析两大类,并对每一类现有 的方法进行细分,对每种方法的基本思想、优劣特点和适用条件进行了概述 和讨论. 最后探讨了间歇故障诊断研究中亟待解决的问题.
  • [1] Zhou Dong-Hua, Hu Yan-Yan. Fault diagnosis techniques for dynamic systems. Acta Automatica Sinica, 2009, 35(6): 748-758(周东华, 胡艳艳. 动态系统的故障诊断技术. 自动化学报, 2009, 35(6): 748-758)
    [2] Beard R V. Failure Accommodation in Linear Systems through Self-reorganization[Ph.D. dissertation], Department of Aeronautics and Astronautics, MIT, USA, 1971
    [3] Mehra R K, Peschon J. An innovations approach to fault detection and diagnosis in dynamic systems. Automatica, 1971, 7(5): 637-640
    [4] Frank P M. Fault diagnosis in dynamic systems using analytical and knowledge-based redundancy: a survey and some new results. Automatica, 1990, 26(3): 459-474
    [5] Zhou Dong-Hua, Ye Hao, Wang Gui-Zeng, Ding Xian-Chun. Discussion of some important issues of observer based fault diagnosis technique. Acta Automatica Sinica, 1998, 24(3): 338-344(周东华, 叶昊, 王桂增, Ding Xian-Chun. 基于观测器方法的故障诊断技术若干重要问题的探讨. 自动化学报, 1998, 24(3): 338-344)
    [6] Patton R J, Frank P M, Clark R N. Issues of Fault Diagnosis for Dynamic Systems. London: Springer-Verlag, 2000
    [7] Zhou Dong-Hua, Ye Yin-Zhong. Fault Diagnosis and Fault-Tolerant Control. Beijing: Tsinghua University Press, 2000(周东华, 叶银忠. 现代故障诊断与容错控制. 北京: 清华大学出版社, 2000)
    [8] Zhou Dong-Hua, Li Gang, Li Yuan. Fault Diagnosis Technology of Data-driven for Industrial Processes ——-Approaches Based on Principal Component Analysis and Partial Least Square. Beijing: Science Press, 2011(周东华, 李钢, 李元. 数据驱动的工业过程故障诊断技术——-基于主元分析与偏最小二乘的方法. 北京: 科学出版社, 2011)
    [9] Correcher A, Garcia E, Morant F, Quiles E, Rodriguez L. Intermittent failure dynamics characterization. IEEE Transactions on Reliability, 2012, 61(3): 649-658
    [10] The Authoritative Dictionary, IEEE Standard 100, 2000
    [11] Liu J X, Zhang X. Detection method of intermittent faults in electronic systems based on Markov model. In: Proceedings of the 4th International Symposium on Computational Intelligence and Design. Hangzhou, China: IEEE, 2011. 216-219
    [12] Li Shun-Ming, Chu Xiang-Lei. New three-state partition of fault classification method and its threshold confirmation. Journal of Nanjing University of Aeronautics and Astronautics, 2008, 40(3): 292-296(李舜酩, 楚向磊. 新三态故障分类模型及其阈值确定. 南京航空航天大学学报, 2008, 40(3): 292-296)
    [13] Ball M, Hardy F. Effects and detection of intermittent failures in digital systems. In: Proceedings of the 1969 Fall Joint Computer Conference. Las Vegas, USA: AFIPS, 1969. 329-335
    [14] Zanardelli W G, Strangas E G, Aviyente S. Identification of intermittent electrical and mechanical faults in permanent-magnet AC drives based on time-frequency analysis. IEEE Transactions on Industry Applications, 2007, 43(4): 971-980
    [15] McConnel S, Siewiorek D P. C.vmp: the implementation, performance, and reliability of a fault tolerant multiprocessor. In: Proceedings of the 3rd USA-Japan Computer Conference. San Francisco, USA: AFIPS, 1978. 325-330
    [16] Krasnobaev V A, Krasnobaev L A. Application of Petri nets for the modeling of detection and location of intermittent faults in computers. Automation and Remote Control, 1989, 49(9): 1198-1204
    [17] Blom M, Lippolt B. Diagnosing intermittent faults in telecommunication networks. In: Proceedings of the 1992 IEEE Global Telecommunications Conference. Orlando, USA: IEEE, 1992. 544-548
    [18] Liu Xin-Min, Wen Xi-Sen, Qiu Jing, Liu Guan-Jun. False alarm filter of mechatronics built-in test based on the hidden Markov model. Acta Armamentarii, 2005, 26(3): 387-391(柳新民, 温熙森, 邱静, 刘冠军. 基于隐马尔可夫模型的机电系统机内测试虚警抑制. 兵工学报, 2005, 26(3): 387-391)
    [19] Zeng Tian-Xiang. Electronic Equipment Testability and Diagnostic Technology. Beijing: Aviation Industry Press, 1995(曾天翔. 电子设备测试性及诊断技术. 北京: 航空工业出版社, 1995)
    [20] Liu Xin-Min, Qiu Jing, Liu Guan-Jun, Qian Yan-Ling. Diagnosing intermittent faults to reduce BIT false alarms. Journal of Test and Measurement Technology, 2004, 18(4): 369-372(柳新民, 邱静, 刘冠军, 钱彦岭. 诊断间歇故障降低BIT虚警. 测试技术学报, 2004, 18(4): 369-372)
    [21] Patton R J, Chen J, Lopez-Toribio C J. Fuzzy observers for non-linear dynamic systems fault diagnosis. In: Proceedings of the 37th IEEE Conference on Decision and Control. Tampa, USA: IEEE, 1998. 84-89
    [22] Millan-Almaraz J R, Romero-Troncoso R J, Contreras-Medina L M, Garcia-Perez A. Embedded FPGA based induction motor monitoring system with speed drive fed using multiple wavelet analysis. In: Proceedings of the 2008 International Symposium on Industrial Embedded Systems. Le Grande Motte, France: IEEE, 2008. 215-220
    [23] Wadhwani S, Gupta S P, Kumar V. Fault classification for rolling element bearing in electric machines. IETE Journal of Research, 2008, 54(4): 264-275
    [24] Alamuti M M, Nouri H, Ciric R M, Terzija V. Intermittent fault location in distribution feeders. IEEE Transactions on Power Delivery, 2012, 27(1): 96-103
    [25] Gracia J, Saiz L, Baraza J C, Gil D, Gil P. Analysis of the influence of intermittent faults in a microcontroller. In: Proceedings of the 11th IEEE International Workshop on Design and Diagnostics of Electronic Circuits and Systems. Bratislava, Slovakia: IEEE, 2008. 227-232
    [26] Prasad V B. Markovian model for the evaluation of reliability of computer networks with intermittent faults. In: Proceedings of the 1991 IEEE International Sympoisum on Circuits and Systems. Singapore: IEEE, 1991. 2084-2087
    [27] Ismaeel A A, Bhatnagar R. Test for detection and location of intermittent faults in combinational circuits. IEEE Transactions on Reliability, 1997, 46(2): 269-274
    [28] Malaiya Y K, Su S Y H. A survey of methods for intermittent fault analysis. In: Proceedings of the 1979 National Computer Conference. New York, USA: AFIPS, 1979. 577-585
    [29] Lin T H, Shin K G. An optimal retry policy based on fault classification. IEEE Transactions on Computers, 1994, 43(9): 1014-1025
    [30] Bondavalli A, Chiaradonna S, di Giandomenico F, Grandoni F. Discriminating fault rate and persistency to improve fault treatment. In: Proceedings of the 27th IEEE International Symposium on Fault Tolerant Computing. Seattle, USA: IEEE, 1997. 354-362
    [31] Sorensen B A, Kelly G, Sajecki A, Sorensen P W. An analyzer for detecting intermittent faults in electronic devices. In: Proceedings of the 1994 IEEE Systems Readiness Technology Conference AUTOTESTCON. Anaheim, USA: IEEE, 1994. 417-421
    [32] Yang H, Jiang B, Zhang Y M. Tolerance of intermittent faults in spacecraft attitude control: switched system approach. IET Control Theory and Applications, 2012, 6(13): 2049-2056
    [33] Kamal S. An approach to the diagnosis of intermittent faults. IEEE Transactions on Computers, 1975, C-24(5): 461-467
    [34] Mallela S, Masson G M. Diagnosable systems for intermittent faults. IEEE Transactions on Computers, 1978, C-27(6): 560-566
    [35] Lei Y, Djurdjanovic D. Diagnosis of intermittent connections for DeviceNet. Chinese Journal of Mechanical Engineering, 2010, 23(5): 606-612
    [36] Nakagawa T, Yasui K. Optimal testing-policies for intermittent faults. IEEE Transactions on Reliability, 1989, 38(5): 577-580
    [37] Correcher A, Garcia E, Morant F, Quiles E, Blasco-Gimenez R. Intermittent failure diagnosis in industrial processes. In: Proceedings of the 2003 IEEE International Symposium on Industrial Electronics. Piscataway, USA: IEEE, 2003. 723-728
    [38] Huang Z, Chandra V, Jiang S, Kumar R. Modeling discrete event systems with faults using a rules-based modeling formalism. Mathematical and Computer Modelling of Dynamical Systems, 2003, 9(3): 233-254
    [39] Garcia E, Rodriguez L, Morant F, Correcher A, Quiles E. Latent nestling method: a new fault diagnosis methodology for complex systems. In: Proceedings of the 34th Annual Conference on Industrial Electronics. Piscataway, USA: IEEE, 2008. 253-258
    [40] Musierowicz K, Lorenc J, Marcinkowski Z, Kwapisz A. A fuzzy logic-based algorithm for discrimination of damaged line during intermittent earth faults. In: Proceedings of the 2005 IEEE Russia Power Tech. Petersburg, Russia: IEEE, 2005. 963-967
    [41] Jiang S B, Kumar R, Garcia H E. Diagnosis of repeated/intermittent failures in discrete event systems. IEEE Transactions on Robotics and Automation, 2003, 19(2): 310-323
    [42] Correcher A, Garcia E, Morant F, Blasco-Gimenez R, Quiles E. Diagnosis of intermittent fault dynamics. In: Proceedings of the 2008 IEEE International Conference on Emerging Technologies and Factory Automation. Hamburg, Germany: IEEE, 2008. 559-566
    [43] Bennett S M, Patton R J, Daley S, Newton D A. Model based intermittent fault tolerance in an induction motor drive. In: Proceedings of the 1996 Symposium on Control, Optimization and Supervision. Lille, France: CESA, 1996. 678-683
    [44] Bennett S M, Patton R J, Daley S, Newton D A. Torque and flux estimation for a rail traction system in the presence of intermittent sensor faults. In: Proceedings of the 1996 International Conference on Control. Exeter, UK: UKACC, 1996. 72-77
    [45] Gu Zhou, Zhang Jian-Hua, Du Li-Long. Fault tolerant control for a class of time-delay systems with intermittent actuators failure. Control and Decision, 2011, 26(12): 1829-1834(顾洲, 张建华, 杜黎龙. 一类具有间歇性执行器故障的时滞系统的容错控制. 控制与决策, 2011, 26(12): 1829-1834)
    [46] Xu Gui-Bin. Researches on Fault Diagnosis and Prediction in Dynamic Systems[Master dissertation], Tsinghua University, China, 2011(徐贵斌. 动态系统故障诊断及预测研究[硕士学位论文], 清华大学, 中国, 2011)
    [47] Breuer M A. Testing for intermittent faults in digital circuits. IEEE Transactions on Computers, 1973, C-22(3): 241 -246
    [48] Hsu Y T, Hsu C F. Novel model of intermittent faults for reliability and safety measures in long-life computer systems. International Journal of Electronics, 1991, 71(6): 917-937
    [49] Contant O, Lafortune S, Teneketzis D. Diagnosis of intermittent faults. Discrete Event Dynamic Systems——-Theory and Applications, 2004, 14(2): 171-202
    [50] Abreu R, Zoeteweij P, Van Gemund A J C. A new Bayesian approach to multiple intermittent fault diagnosis. In: Proceedings of the 21st International Joint Conference on Artificial Intelligence. Pasadena, Canada: IJCAI, 2009. 653-658
    [51] Abreu R, Van Gemund A J C. Diagnosing multiple intermittent failures using maximum likelihood estimation. Artificial Intelligence, 2010, 174(18): 1481-1497
    [52] Hanson H A, Nolte T, Norstrom C, Punnekkat S. Integrating reliability and timing analysis of CAN-based systems. IEEE Transactions on Industrial Electronics, 2002, 49(6): 1240-1250
    [53] Li J, Tsung F, Lei Y, Djurdjanovic D, Ni J. DeviceNet reliability assessment using physical and data link layer parameters. Quality and Reliability Engineering International, 2010, 26(7): 703-715
    [54] Luo X W, Dong M, Huang Y L. On distributed fault-tolerant detection in wireless sensor networks. IEEE Transactions on Computers, 2006, 55(1): 58-70
    [55] Sun Y Q, Feng H L. Intermittent fault diagnosis in wireless sensor networks. Applied Mechanics and Materials, 2012, 160(1): 318-322
    [56] Hao Ru-Jiang. Application of Acoustic Emission and Morphologic Methods in Fault Diagnostics of Rolling Bearing[Ph.D. dissertation], Tsinghua University, China, 2008(郝如江. 声发射和形态学方法在滚动轴承故障诊断中的应用[博士学位论文]. 清华大学, 中国, 2008)
    [57] Zanardelli W G, Strangas E G. Methods to identify intermittent electrical and mechanical faults in permanent magnet AC drives based on wavelet analysis. In: Proceedings of the 2005 IEEE Vehicle Power and Propulsion Conference. Chicago, USA: IEEE, 2005. 154-160
    [58] Strangas E G, Aviyente S, Zaidi S S H. Time-frequency analysis for efficient fault diagnosis and failure prognosis for interior permanent-magnet AC motors. IEEE Transactions on Industrial Electronics, 2008, 55(12): 4191-4199
    [59] Alamuti M M, Nouri H, Montakhab M, Polycarpou A. Single end low voltage arcing fault location using time based formulation. In: Proceedings of the 45th International Universities Power Engineering Conference. Cardiff, UK: IEEE, 2010. 5-10
    [60] Radojevic Z M, Terzija V V. Fault distance calculation and arcing faults detection on overhead lines using single end data. In: Proceedings of the 9th International Conference on Developments in Power System Protection. Glasgow, UK: IET, 2008. 638-643
    [61] Cui T, Dong X Z, Bo Z Q, Juszczyk A. Hilbert-transform based transient/intermittent earth fault detection in noneffectively grounded distribution systems. IEEE Transactions on Power Delivery, 2011, 26(1): 143-151
    [62] Yaramasu A, Cao Y, Liu G, Wu B. Intermittent wiring fault detection and diagnosis for SSPC based aircraft power distribution system. In: Proceedings of the 2012 IEEE/ASME International Conference on Advanced Intelligent Mechatronics. Kachsiung, Taiwan, China: IEEE, 2012. 1117-1122
    [63] Xie Jing-Xin, Cheng Chun-Tian, Zhou Gui-Hong, Sun Yu-Mei. A new direct multi-step ahead prediction model based on EMD and chaos analysis. Acta Automatica Sinica, 2008, 34(6): 684-689(谢景新, 程春田, 周桂红, 孙玉梅. 基于经验模式分解与混沌分析的直接多步预测模型. 自动化学报, 2008, 34(6): 684-689)
    [64] Antoniadou I, Manson G, Staszewski W J. Damage detection in gearboxes considering intermittent faults and time-varying loads. In: Proceedings of the 2nd International Conference on Smart Diagnostics of Structures. Cracow, Poland: IEEE, 2011. 14-16
    [65] Guo M W, Ni S H, Zhu J H. Diagnosing intermittent faults to restrain BIT false alarm based on EMD-MSVM. Applied Mechanics and Materials, 2012, 105-107(1): 729-732
    [66] Wang Tian-Shu, Zheng Nan-Ning, Yuan Ze-Jian. Statistical learning in machine intelligence and pattern recognition. Acta Automatica Sinica, 2002, 28(S1): 103-116(王天树, 郑南宁, 袁泽剑. 机器智能与模式识别研究中的统计学习方法. 自动化学报, 2002, 28(S1): 103-116)
    [67] Guo Ming-Wei, Ni Shi-Hong, Zhu Jia-Hai. Intermittent fault diagnosis for built-in test system based on EMD and HMM. Journal of Vibration, Measurement and Diagnosis, 2012, 32(3): 467-470(郭明威, 倪世宏, 朱家海. 基于EMD-HMM的BIT间歇故障识别. 振动、测试与诊断, 2012, 32(3): 467-470)
    [68] Kamal S, Page C V. Intermittent faults: a model and a detection procedure. IEEE Transactions on Computers, 1974, 23(7): 713-719
    [69] Savir J. Optimal random testing of single intermittent failures in combinational circuits. In: Proceedings of the 7th Annual International Conference on Fault-Tolerant Computing. Los Angeles, USA: IEEE, 1977. 180-185
    [70] Sidhu T S, Singh G, Sachdev M S. Arcing fault detection using artificial neural networks. Neurocomputing, 1998, 23(1-3): 225-241
    [71] Kim C J. Electromagnetic radiation behavior of low-voltage arcing fault. IEEE Transactions on Power Delivery, 2009, 24(1): 416-423
    [72] Wu S Y, Zuo M J, Parey A. Simulation of spur gear dynamics and estimation of fault growth. Journal of Sound and Vibration, 2008, 317(3-5): 608-624
    [73] Steadman B, Berghout F, Olsen N, Sorensen B. Intermittent fault detection and isolation system. In: Proceedings of the 43rd Annual IEEE AUTOTESTCON Conference. Salt Lake City, USA: IEEE, 2008. 37-40
    [74] Gracia-Morán J, Gil-Tomás D, Baraza J C, Saiz-Adalid L J, Gil-Vicente P J. Searching representative and low cost fault models for intermittent faults in microcontrollers: a case study. In: Proceedings of the 16th IEEE Pacific Rim International Symposium on Dependable Computing. Tokyo, Japan: IEEE, 2010. 11-18
  • 加载中
计量
  • 文章访问数:  2703
  • HTML全文浏览量:  117
  • PDF下载量:  2503
  • 被引次数: 0
出版历程
  • 收稿日期:  2013-03-14
  • 修回日期:  2013-06-26
  • 刊出日期:  2014-02-20

目录

    /

    返回文章
    返回