2.765

2022影响因子

(CJCR)

  • 中文核心
  • EI
  • 中国科技核心
  • Scopus
  • CSCD
  • 英国科学文摘

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

高阶不确定非线性系统线性状态反馈自适应控制设计

满永超 刘允刚

满永超, 刘允刚. 高阶不确定非线性系统线性状态反馈自适应控制设计. 自动化学报, 2014, 40(1): 24-32. doi: 10.3724/SP.J.1004.2014.00024
引用本文: 满永超, 刘允刚. 高阶不确定非线性系统线性状态反馈自适应控制设计. 自动化学报, 2014, 40(1): 24-32. doi: 10.3724/SP.J.1004.2014.00024
MAN Yong-Chao, LIU Yun-Gang. Adaptive Control Design via Linear State-feedback for High-order Uncertain Nonlinear Systems. ACTA AUTOMATICA SINICA, 2014, 40(1): 24-32. doi: 10.3724/SP.J.1004.2014.00024
Citation: MAN Yong-Chao, LIU Yun-Gang. Adaptive Control Design via Linear State-feedback for High-order Uncertain Nonlinear Systems. ACTA AUTOMATICA SINICA, 2014, 40(1): 24-32. doi: 10.3724/SP.J.1004.2014.00024

高阶不确定非线性系统线性状态反馈自适应控制设计

doi: 10.3724/SP.J.1004.2014.00024
基金项目: 

国家自然科学基金(61273084,61233014,61325016);山东省自然科学杰出青年基金(JQ200919);山东大学自主创新基金(2012JC014)资助

详细信息
    作者简介:

    满永超 山东大学控制科学与工程学院博士研究生. 主要研究方向为非线性控制,量化控制.E-mail:manyongchao2008@126.com

Adaptive Control Design via Linear State-feedback for High-order Uncertain Nonlinear Systems

Funds: 

Supported by National Natural Science Foundation of China (61273084, 61233014, 61325016), Natural Science Foundation for Distinguished Young Scholar of Shandong Province of China (JQ200919), and Independent Innovation Foundation of Shandong University (2012JC014)

  • 摘要: 研究了一类控制系数未知的高阶不确定非线性系统的自适应镇定控制设计. 尽管该问题已经得到解决,但是所设计的控制器是非线性反馈形式,较为复杂. 与现有文献不同,本文通过综合运用增加幂积分技术和切换自适应控制方法,给出了该控制问题的更为简单且易于实现的新型线性反馈控制器,使得系统状态有界且最终趋于零. 值得指出的是,与切换自适应控制文献相比,本文所研究的非线性系统具有更严重的不确定/未知性和更强的非线性,这主要体现在未知的系统控制系数和更高的系统幂次中.
  • [1] Kanellakopoulos I, Kokotović P, Morse A S. Systematic design of adaptive controllers for feedback linearizable systems. IEEE Transactions on Automatic Control, 1991, 36(11): 1241-1253
    [2] Krstić M, Kanellakopoulos I, Kokotović P. Nonlinear and Adaptive Control Design. New York: John Wiley and Sons, 1995
    [3] Khalil H K. Nonlinear Systems (3rd edition). Englewood Cliffs, New Jersey: Prentice Hall, 2002
    [4] Liu Y G, Pan Z G, Shi S J. Output feedback control design for strict-feedback stochastic nonlinear systems under a risk-sensitive cost. IEEE Transactions on Automatic Control, 2003, 48(3): 509-513
    [5] Liu Y G, Zhang J F. Reduced-order observer-based control design for nonlinear stochastic systems. Systems and Control Letters, 2004, 52(2): 123-135
    [6] Liu Y G, Zhang J F. Practical output-feedback risk-sensitive control for stochastic nonlinear systems with stable zero-dynamics. SIAM Journal on Control and Optimization, 2006, 45(3): 885-926
    [7] Lin W, Qian C J. Adding one power integrator: a tool for global stabilization of high-order lower-triangular systems. Systems and Control Letters, 2000, 39(5): 339-351
    [8] Qian C J, Lin W. A continuous feedback approach to global strong stabilization of nonlinear systems. IEEE Transactions on Automatic Control, 2001, 46(7): 1061-1079
    [9] Lin W, Qian C J. Adaptive control of nonlinearly parameterized systems: a nonsmooth feedback framework. IEEE Transactions on Automatic Control, 2002, 47(5): 757-774
    [10] Lin W, Qian C J. Adaptive control of nonlinearly parameterized systems: the smooth feedback case. IEEE Transactions on Automatic Control, 2002, 47(8): 1249-1266
    [11] Sun Z Y, Liu Y G. Adaptive state-feedback stabilization for a class of high-order nonlinear uncertain systems. Automatica, 2007, 43(10): 1772-1783
    [12] Sun Z Y, Liu Y G. Adaptive stabilisation for a large class of high-order uncertain non-linear systems. International Journal of Control, 2009, 82(7): 1275-1287
    [13] Zhang J, Liu Y G. A new approach to adaptive control design without overparametrization for a class of uncertain nonlinear systems. Science China Information Sciences, 2011, 54(7): 1419-1429
    [14] Tsinias J. A theorem on global stabilization of nonlinear systems by linear feedback. Systems and Control Letters, 1991, 17(5): 357-362
    [15] Bacciotti A, Boieri P, Mazzi L. Linear stabilization of nonlinear cascade systems. Mathematics of Control, Signals, and Systems, 1993, 6(2): 146-165
    [16] Jiang Z P, Mareels I. Linear robust control of a class of nonlinear systems with dynamic perturbations. In: Proceedings of the 34th IEEE Conference on Decision and Control. New Orleans, LA: IEEE, 1995. 2239-2244
    [17] Yang B, Lin W. What can linear state feedback accomplish for nonlinear systems? In: Proceedings of the 47th IEEE Conference on Decision and Control. Cancun, Mexico: IEEE, 2008. 1593-1598
    [18] Ye X D. Nonlinear adaptive control by switching linear controllers. Systems and Control Letters, 2012, 61(4): 617-621
    [19] Zheng Han-Ding, Diao Zai-Yun. Mathematical Programming. Jinan: Shandong Education Press, 1997(郑汉鼎, 刁在筠. 数学规划. 济南: 山东教育出版社, 1997)
    [20] Min Ying-Ying, Liu Yun-Gang. Barbalat lemma and its application in analysis of system stability. Journal of Shandong University (Engineering Science), 2007, 37(1): 51-55, 114(闵颖颖, 刘允刚. Barbalat引理及其在系统稳定性分析中的应用. 山东大学学报(工学版), 2007, 37(1): 51-55, 114)
  • 加载中
计量
  • 文章访问数:  1887
  • HTML全文浏览量:  133
  • PDF下载量:  1203
  • 被引次数: 0
出版历程
  • 收稿日期:  2012-12-17
  • 修回日期:  2013-06-06
  • 刊出日期:  2014-01-20

目录