2.765

2022影响因子

(CJCR)

  • 中文核心
  • EI
  • 中国科技核心
  • Scopus
  • CSCD
  • 英国科学文摘

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

基于运动微分约束的无人车辆纵横向协同规划算法的研究

姜岩 龚建伟 熊光明 陈慧岩

姜岩, 龚建伟, 熊光明, 陈慧岩. 基于运动微分约束的无人车辆纵横向协同规划算法的研究. 自动化学报, 2013, 39(12): 2012-2020. doi: 10.3724/SP.J.1004.2013.02012
引用本文: 姜岩, 龚建伟, 熊光明, 陈慧岩. 基于运动微分约束的无人车辆纵横向协同规划算法的研究. 自动化学报, 2013, 39(12): 2012-2020. doi: 10.3724/SP.J.1004.2013.02012
JIANG Yan, GONG Jian-Wei, XIONG Guang-Ming, CHEN Hui-Yan. Research on Differential Constraints-based Planning Algorithm for Autonomous-driving Vehicles. ACTA AUTOMATICA SINICA, 2013, 39(12): 2012-2020. doi: 10.3724/SP.J.1004.2013.02012
Citation: JIANG Yan, GONG Jian-Wei, XIONG Guang-Ming, CHEN Hui-Yan. Research on Differential Constraints-based Planning Algorithm for Autonomous-driving Vehicles. ACTA AUTOMATICA SINICA, 2013, 39(12): 2012-2020. doi: 10.3724/SP.J.1004.2013.02012

基于运动微分约束的无人车辆纵横向协同规划算法的研究

doi: 10.3724/SP.J.1004.2013.02012
基金项目: 

国家自然科学基金(51275041),教育部博士点基金(201211011200 15)资助

详细信息
    作者简介:

    熊光明 北京理工大学智能车辆研究所副教授. 2005 年获北京理工大学机械电子工程系博士学位. 主要研究方向为智能车机器人的控制及视觉技术.E-mail:xiongguangming@bit.edu.cn

Research on Differential Constraints-based Planning Algorithm for Autonomous-driving Vehicles

Funds: 

Supported by National Natural Science Foundation of China (51275041) and Ph.D. Programs Foundation of Ministry of Education of China (20121101120015)

  • 摘要: 为了满足在动态环境中快速行驶的要求,现有无人车辆普遍采用在传统规划系统的两层结构(路径规划-路径跟踪)之间增加局部规划的方法,通过在路径跟踪的同时进行避障来减少耗时的全局路径重规划. 本文针对这种三层结构规划系统存在的问题,提出基于运动微分约束的纵横向协同规划算法,在真实环境中实现速度不超过40km/h的无人驾驶. 根据车辆的实时运动状态,用高阶多项式模型在预瞄距离内对可行驶曲线进行建模,不仅使行驶过程中的转向平稳,而且在较高速时仍具有良好的路径跟踪能力. 由横向规划提供横向安全性的同时,在动力学约束的速度容许空间中进行纵向规划,实现平顺的加速与制动,并保证了纵向安全性和侧向稳定性. 该算法根据实时的局部环境自动决定纵横向期望运动参数,不需要人为设定行驶模式或调整参数. 采用该算法的无人驾驶平台在2011年和2012年智能车未来挑战赛的真实交通环境中,用统一的程序框架顺利完成全程的无人驾驶.
  • [1] Hashimoto N, Ozguner U, Sawant N. Evaluation of control in a convoy scenario. In: Proceedings of the 2011 IEEE Intelligent Vehicles Symposium. PiSCAtaway, NJ, USA: IEEE, 2011. 350-355
    [2] Laumond J P. Robot Motion Planning and Control. Berlin: Springer, 1998. 10-13
    [3] LaValle S M. Planning Algorithms. Cambridge: Cambridge University Press, 2006. 36-37
    [4] Choset H, Lynch K M, Hutchinson S, Kantor G A, Burgard W, Kavraki L E, Thrun S. Principles of Robot Motion: Theory, Algorithms, and Implementations. Cambridge: The MIT Press, 2005. 100-115
    [5] Karaman S, Frazzoli E. Sampling-based algorithms for optimal motion planning. The International Journal of Robotics Research, 2011, 30(7): 846-894
    [6] LaValle S M, Kuffner J J Jr. Randomized kinodynamic planning. The International Journal of Robotics Research, 2001, 20(5): 378-400
    [7] Misra J. A walk over the shortest path: Dijkstra's algorithm viewed as fixed-point computation. Information Processing Letters, 2001, 77(2-4): 197-200
    [8] Likhachev M, Ferguson D. Planning long dynamically feasible maneuvers for autonomous vehicles. The International Journal of Robotics Research, 2009, 28(8): 933-945
    [9] Pitvoraiko M, Knepper R A, Kelly A. Differentially constrained mobile robot motion planning in state lattices. Journal of Field Robotics, 2009, 26(3): 308-333
    [10] Snider J M. Automatic Steering Methods for Autonomous Automobile Path Tracking, Technical Report CMU-RI-TR-09-08, Robotics Institute, Carnegie Mellon University, USA, 2009
    [11] Guldner J, Utkin V I, Ackermann J. A sliding mode control approach to automatic car steering. In: Proceedings of the 1994 American Control Conference. New York, NY, USA: IEEE, 1994. 1969-1973
    [12] Chen Y L, Sundareswaran V, Anderson C, Broggi A, Grisleri P, Porta P P, Zani P, Beck J. TerraMaxTM: Team Oshkosh urban robot. Journal of Field Robotics, 2008, 25(10): 841-860
    [13] Montemerlo M, Becker J, Bhat S, Dahlkamp H, Dlogov D, Ettinger S, Haehnel A, Hilden T, Hoffmann G, Huhnke B, Johnston D, Klumpp S, Langer D, Levandowski A, Levinson J, Marcil J, Orenstein D, Paefgen J, Penny I, Petrovskaya A, Pflueger M, Stanek G, Stavens D, Vogt A, Thrun S. Junior: the Stanford entry in the urban challenge. Journal of Field Robotics, 2008, 25(9): 569-597
    [14] Urmson C, Anhalt J, Bagnell D, Baker C, Bittner R, Clark M N, Dolan J, Duggins D, Galatali T, Geyer C, Gittleman M, Harbaugh S, Hebert M, Howard T M, Kolski S, Kelly A, Likhachev M, McNaughton M, Miller N, Peterson K, Pilnick B, Rajkumar R, Rybski P, Salesky B, Seo Y W, Singh S, Snider J, Stentz A, Whittaker W, Wolkowicki Z, Ziglar J, Bae H, Brown T, Demitrish D, Litkouhi B, Nickolaou J, Sadekar V, Zhang W D, Struble J, Taylor M, Darms M, Ferguson D. Autonomous driving in urban environments: Boss and the Urban Challenge. Journal of Field Robotics, 2008, 25(8): 425-66
    [15] Leonard J, How J, Teller S, Berger M, Campbell S, Fiore G, Fletcher L, Frazzoli E, Huang A, Karaman S, Koch O, Kuwata Y, Moore D, Olson E, Peters S, Teo J, Truax R, Walter M, Barrett D, Epstein A, Maheloni K, Moyer K, Jones T, Buckley R, Antone M, Galejs R, Krishnamurthy S, Williams J. A perception-driven autonomous urban vehicle. Journal of Field Robotics, 2008, 25(10): 727-774
    [16] Von Hundelshausen F, Himmelsbach M, Hecker F, Mueller A, Wuensche H J. Driving with tentacles: integral structures for sensing and motion. Journal of Field Robotics, 2008, 25(9): 640-673
    [17] Broggi A, Bertozzi M, Fasciolia A, Guarino C, Lo Bianco C G, Piazzi A. The ARGO autonomous vehicle's vision and control systems. International Journal of Intelligent Control and Systems, 1999, 3(4): 409-441
  • 加载中
计量
  • 文章访问数:  1753
  • HTML全文浏览量:  99
  • PDF下载量:  2975
  • 被引次数: 0
出版历程
  • 收稿日期:  2012-08-24
  • 修回日期:  2013-01-11
  • 刊出日期:  2013-12-20

目录

    /

    返回文章
    返回