2.765

2022影响因子

(CJCR)

  • 中文核心
  • EI
  • 中国科技核心
  • Scopus
  • CSCD
  • 英国科学文摘

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

基于广义逆的欠驱动航天器姿态机动控制

黄静 李传江 马广富 刘刚

黄静, 李传江, 马广富, 刘刚. 基于广义逆的欠驱动航天器姿态机动控制. 自动化学报, 2013, 39(3): 285-292. doi: 10.3724/SP.J.1004.2013.00285
引用本文: 黄静, 李传江, 马广富, 刘刚. 基于广义逆的欠驱动航天器姿态机动控制. 自动化学报, 2013, 39(3): 285-292. doi: 10.3724/SP.J.1004.2013.00285
HUANG Jing, LI Chuan-Jiang, MA Guang-Fu, LIU Gang. Generalised Inversion Based Maneuver Attitude Control for Underactuated Spacecraft. ACTA AUTOMATICA SINICA, 2013, 39(3): 285-292. doi: 10.3724/SP.J.1004.2013.00285
Citation: HUANG Jing, LI Chuan-Jiang, MA Guang-Fu, LIU Gang. Generalised Inversion Based Maneuver Attitude Control for Underactuated Spacecraft. ACTA AUTOMATICA SINICA, 2013, 39(3): 285-292. doi: 10.3724/SP.J.1004.2013.00285

基于广义逆的欠驱动航天器姿态机动控制

doi: 10.3724/SP.J.1004.2013.00285
详细信息
    通讯作者:

    黄静

Generalised Inversion Based Maneuver Attitude Control for Underactuated Spacecraft

  • 摘要: 针对欠驱动刚体航天器机动控制问题,应用广义逆方法设计了姿态机动控制器. 首先将三轴稳定欠驱动航天器动力学和运动学系统分解为三个子系统, 应用微分几何理论将欠驱动航天器子系统转化为逐点线性形式, 并设计了欠驱动航天器子系统渐近稳定控制器,进一步引入了动态尺度广义逆和摄动零控制向量, 实现了对另外两轴的控制.设计的广义逆姿态控制器保证了整个系统的渐近稳定性, 达到了控制要求. 数值仿真实验结果表明了所设计控制律的有效性.
  • [1] Crouch P E. Spacecraft attitude control and stabilization: applications of geometric control theory to rigid body models. IEEE Transactions on Automatic Control, 1984, 29(4): 321-331[2] Byrnes C I, Isidori A. On the attitude stabilization of rigid spacecraft. Automatica, 1991, 27(1): 87-95[3] Horri N M, Hodgart S. Attitude stabilization of an underactuated satellite using two wheels. In: Proceedings of the 2003 IEEE Aerospace Conference. Los Angles: IEEE Press, 2003. 2629-2635[4] Tsiotras P, Luo J H. Control of underactuated spacecraft with bounded inputs. Automatica, 2000, 36(8): 1153-1169[5] Tsiotras P, Doumtchenko V. Control of spacecraft subject to actuator failures: state-of-the-art and open problems. Journal of the Astronautical Sciences, 2000, 48(2): 337-358[6] Coverstone-Carroll V. Detumbling and reorienting underactuated rigid spacecraft. Journal of Guidance, Control, and Dynamics, 1996, 19(3): 708-710[7] Bajodah A H. Asymptotic perturbed feedback linearisation of underactuated Euler's dynamics. International Journal of Control, 2009, 82(10): 1856-1869[8] Casagrande D, Astolfi A, Parisini T. Global asymptotic stabilization of the attitude and the angular rates of an underactuated non-symmetric rigid body. Automatica, 2008, 44(7): 1781-1789[9] Behal A, Dawson D, Zergeroglu E, Fang Y. Nonlinear tracking control of an underactuated spacecraft. Journal of Guidance, Control, and Dynamics, 2002, 25(5): 979-985[10] Cheon Y J. Spin-axis stabilization of gyroless and underactuated rigid spacecraft using modified rodrigues parameters. In: Proceedings of the 2010 SICE Annual Conference. Taipei, China: IEEE, 2010. 492-496[11] Zhang Bing, Wu Hong-Xin. Asymptotical stabilization of anglular velosity of a rigid spacecraft with two-dimensional complete configuration. Acta Automatica Sinica, 2000, 26(4): 547-551(张兵, 吴宏鑫. 二维完整配置下刚性航天器姿态角速度的渐近镇定. 自动化学报, 2000, 26(4): 547-551)[12] Li Shi-Hua, Tian Yu-Ping. Attitude stabilization of a rigid spacecraft with two controls. Acta Automatica Sinica, 2003, 29(2): 168-174(李世华, 田玉平. 带两控制器刚体飞行器的姿态镇定. 自动化学报, 2003, 29(2): 168-174)[13] Huang Xing-Hong, Xu Shi-Jie. Attitude control of an underactuated spacecraft based on piecewise decoupling method. Journal of Astronautics, 2007, 28(3): 531-534, 556(黄兴宏, 徐世杰. 欠驱动航天器的分段解耦姿态控制. 宇航学报, 2007, 28(3): 531-534, 556)[14] Zheng Min-Jie, Xu Shi-Jie. Backstepping control for attitude control system of an underactuated spacecraft. Journal of Astronautics, 2006, 27(5): 947-951(郑敏捷, 徐世杰. 欠驱动航天器姿态控制系统的退步控制设计方法. 宇航学报, 2006, 27(5): 947-951)[15] Jin Lei, Xu Shi-Jie. Attitude stabilization of an underactuated spacecraft with two reaction wheels. Chinese Space Science and Technology, 2009, 29(2): 8-16(金磊, 徐世杰. 带有两个飞轮的欠驱动航天器姿态稳定控制研究. 中国空间科学技术, 2009, 29(2): 8-16)[16] Wang Yi, Ge Xin-Sheng. Attitude control of an underactuated spacecraft base on center manifold theory. Journal of Beijing Information Science and Technology University (Natural Science Edition), 2010, 25(2): 37-40, 48(王艺, 戈新生. 基于中心流形理论的欠驱动航天器姿态控制. 北京信息科技大学学报(自然科学版), 2010, 25(2): 37-40, 48)[17] Zheng Yan-Qin, Ge Xin-Sheng. Time-varying control method for attitude stabilization control system of underactuated rigid spacecraft. Journal of System Simulation, 2010, 22(4): 951-956(郑彦琴, 戈新生. 欠驱动刚体航天器姿态稳定的时变控制方法. 系统仿真学报, 2010, 22(4): 951-956)[18] Siciliano B, Khatib O. Springer Handbook of Robotics. New York: Springer, 2008[19] Peters J, Mistry M, Udwadia F, Nakanishi J, Schaal S. A unifying framework for robot control with redundant DOFs. Autonomous Robots, 2008, 24(1): 1-12[20] Boyer F, Alamir M. Further results on the controllability of a two-wheeled satellite. Journal of Guidance, Control, and Dynamics, 2007, 30(2): 611-619[21] Bajodah A H. Generalised dynamic inversion spacecraft control design methodologies. IET Control Theory and Applications, 2008, 3(2): 239-251[22] Khalil H K. Nonlinear Systems (Third edition). Upper Saddle River, NJ: Prentice-Hall, 2002. 505-540
  • 加载中
计量
  • 文章访问数:  1986
  • HTML全文浏览量:  56
  • PDF下载量:  1115
  • 被引次数: 0
出版历程
  • 收稿日期:  2011-01-17
  • 修回日期:  2012-07-25
  • 刊出日期:  2013-03-20

目录

    /

    返回文章
    返回