2.624

2020影响因子

(CJCR)

  • 中文核心
  • EI
  • 中国科技核心
  • Scopus
  • CSCD
  • 英国科学文摘

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

基于信息增量矩阵的故障诊断方法

文成林 胡玉成

文成林, 胡玉成. 基于信息增量矩阵的故障诊断方法. 自动化学报, 2012, 38(5): 832-840. doi: 10.3724/SP.J.1004.2012.00832
引用本文: 文成林, 胡玉成. 基于信息增量矩阵的故障诊断方法. 自动化学报, 2012, 38(5): 832-840. doi: 10.3724/SP.J.1004.2012.00832
WEN Cheng-Lin, HU Yu-Cheng. Fault Diagnosis Based on Information Incremental Matrix. ACTA AUTOMATICA SINICA, 2012, 38(5): 832-840. doi: 10.3724/SP.J.1004.2012.00832
Citation: WEN Cheng-Lin, HU Yu-Cheng. Fault Diagnosis Based on Information Incremental Matrix. ACTA AUTOMATICA SINICA, 2012, 38(5): 832-840. doi: 10.3724/SP.J.1004.2012.00832

基于信息增量矩阵的故障诊断方法

doi: 10.3724/SP.J.1004.2012.00832
详细信息
    通讯作者:

    文成林, 博士, 杭州电子科技大学教授.主要研究方向为多尺度估计理论及其应用, 信号处理与数据融合技术及应用, 动态系统建模理论及其应用.

Fault Diagnosis Based on Information Incremental Matrix

  • 摘要: 主元分析(Principal component analysis, PCA)是一种常用的故障检测方法,由于特征提取不准确, 在用于故障诊断时常存在误报率和漏报率较高的现象.为此,本文首先介绍了基于全局的协方差矩阵的信息增量矩阵的故障诊断方法,虽然相比PCA方法它能有效减少误报率和漏报率, 但随着采样样本的增加,会因计算得到的阈值越来越不具代表性和计算量较大等原因而影响该方法的性能.然后,建立了基于局部数据的移动窗口协方差矩阵的信息增量矩阵的故障诊断方法, 以克服上述方法中存在的不足. 该方法主要通过定义局部协方差矩阵、局部信息增量矩阵、局部信息增量均值、 局部动态阈值、异常检测与判定等过程完成.最后,通过两个数值仿真例子来验证PCA方法、 基于全局的协方差矩阵的信息增量矩阵方法以及本文方法在故障误报和漏报方面的检测效能. 实验结果表明,本文方法具有最好的检测性能.
  • [1] Kano M, Nakagawa Y. Data-based process monitoring, process control, and quality improvement: Recent developments and applications in steel industry. Computers and Chemical Engineering, 2008, 32(1-2): 12-24[2] Zhang Ping, Wang Gui-Zeng, Zhou Dong-Hua. Fault diagnosis methods for dynamic systems. Control Theory and Applications, 2000, 17(2): 153-158 (张萍, 王桂增, 周东华. 动态系统的故障诊断方法. 控制理论与应用, 2000, 17(2): 153-158)[3] Zhou Dong-Hua, Hu Yan-Yan. Fault diagnosis techniques for dynamic systems. Acta Automatica Sinica, 2009, 35(6): 748-758 (周东华, 胡艳艳. 动态系统的故障诊断技术. 自动化学报, 2009, 35(6): 748-758)[4] Venkatasubramanian V, Rengaswamy R, Kavuri S N. A review of process fault detection and diagnosis: part II: qualitative models and search strategies. Computers and Chemical Engineering, 2003, 27(3): 313-326[5] Li Han, Xiao De-Yun. Survey on data driven fault diagnosis methods. Control and Decision, 2011, 26(1): 1-9 (李晗, 萧德云. 基于数据驱动的故障诊断方法综述. 控制与决策, 2011, 26(1): 1-9)[6] Liu Qiang, Chai Tian-You, Qin Si-Zhao, Zhao Li-Jie. Progress of data-driven and knowledge-driven process monitoring and fault diagnosis for industry process. Control and Decision, 2010, 25(6): 801-807 (刘强, 柴天佑, 秦泗钊, 赵立杰. 基于数据和知识的工业过程监视及故障诊断综述. 控制与决策, 2010, 25(6): 801-807)[7] Alcala C F, Qin S J. Analysis and generalization of fault diagnosis methods for process monitoring. Journal of Process Control, 2011, 21(3): 322-330[8] Wen Cheng-Lin, Hu Jing, Wang Tian-Zhen, Chen Zhi-Guo. Relative PCA with applications of data compression and fault diagnosis. Acta Automatica Sinica, 2008, 34(9): 1128-1139 (文成林, 胡静, 王天真, 陈志国. 相对主元分析及其在数据压缩和故障诊断中的应用研究. 自动化学报, 2008, 34(9): 1128-1139)[9] Zhou Fu-Na, Wen Cheng-Lin, Tang Tian-Hao, Chen Zhi-Guo. DCA based multiple faults diagnosis method. Acta Automatica Sinica, 2009, 35(7): 971-982 (周福娜, 文成林, 汤天浩, 陈志国. 基于指定元分析的多故障诊断方法. 自动化学报, 2009, 35(7): 971-982)[10] Zhou Fu-Na, Wen Cheng-Lin, Chen Zhi-Guo Leng Yuan-Bao. DCA based multi-level small fault diagnosis method. Acta Electronica Sinica, 2010, 38(8): 1874-1879 (周福娜, 文成林, 陈志国, 冷元宝. 基于指定元分析的多级相对微小故障诊断方法. 电子学报, 2010, 38(8): 1874-1879)[11] Yang H Y. Advanced Prognosis and Health Management of Aircraft and Spacecraft Subsystems [Master dissertation], Massachusetts Institute of Technology, Massachusetts, 2000
  • 加载中
计量
  • 文章访问数:  1868
  • HTML全文浏览量:  63
  • PDF下载量:  1194
  • 被引次数: 0
出版历程
  • 收稿日期:  2011-09-07
  • 修回日期:  2011-12-20
  • 刊出日期:  2012-05-20

目录

    /

    返回文章
    返回