-
摘要: 近年来基于内容的视频检索技术受到人们越来越多的关注. 本文提出了一套基于语义匹配的交互式视频检索框架, 其贡献主要为以下三方面: 1)定义新型的视频高层特征---语义直方图用以描述视频的高层语义信息; 2)使用主导集聚类算法建立基于非监督学习的检索机制, 用以降低在线计算复杂度和提高检索效率; 3)提出新型的相关反馈机制---基于语义的分支反馈, 该机制采用分支反馈结构和分支更新策略实现检索性能的提升. 实验结果表明了本框架的有效性.
-
关键词:
- 语义匹配直方图 /
- 基于非监督学习的检索机制 /
- 基于语义的分支反馈
Abstract: Content-based video retrieval (CBVR) has attracted increasing interest in recent years. In this paper, we propose a new interactive video retrieval framework using semantic matching. The main contributions are three-fold: 1) We define a novel high-level feature named semantic-matching histogram (SMH) to reflect videos' semantic information. 2) We set up an unsupervised learning-based retrieval mechanism using the dominant set clustering for the sake of low on-line complexity and high retrieval efficiency. 3) We establish a new interactive mechanism called semantic-based relevance feedback (SBRF) working together with SMHs to improve retrieval performances. Experimental results on a database of sports videos show the effectiveness and efficiency of the proposed framework.
计量
- 文章访问数: 3251
- HTML全文浏览量: 28
- PDF下载量: 1234
- 被引次数: 0