Underdetermined Blind Source Separation Algorithm Based on Normal Vector of Hyperplane
-
摘要: 探讨欠定情况下(观测信号少于源数目)的盲信号分离. 首先给出了 m 维超平面的法矢量的计算公式, 提出了一个基于超平面法矢量的矩阵恢复算法. 其次针对语音分离, 提出了 k 源区间及其检测方法, 从而使 k-SCA 条件下的算法推广到了非稀疏信号的盲分离. 在源信号重建上, 提出了一个简化 l1 范数解的新算法. 几个仿真实验 (含语音信号实验) 证实了所提出算法的性能.
-
关键词:
- 欠定盲信号分离(BSS) /
- 稀疏成分分析(SCA) /
- 超平面聚类 /
- 法矢量 /
- k源区间
Abstract: Discussion of blind signal separation problem under underdetermined case (i.e., the case of less observed signals than sources) is presented. First, a formula to calculate the normal vector of any hyperplane is given and a mixing matrix recovery algorithm based on the normal vector of any hyperplane is proposed. Second, for audio signal, k-source intervals are introduced and a method to detect them is proposed. So, the algorithms under the k-SCA condition are extended to blind non-sparse signal separation. To reconstruct the sources, a new algorithm is proposed to simplify the l1-norm solution. Several experiments demonstrate the performance of the proposed algorithm. -
计量
- 文章访问数: 2723
- HTML全文浏览量: 53
- PDF下载量: 1622
- 被引次数: 0