2.765

2022影响因子

(CJCR)

  • 中文核心
  • EI
  • 中国科技核心
  • Scopus
  • CSCD
  • 英国科学文摘

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

含有输入时滞的非线性系统的输出反馈采样控制

马倩 盛兆明 徐胜元

马倩, 盛兆明, 徐胜元. 含有输入时滞的非线性系统的输出反馈采样控制. 自动化学报, xxxx, xx(x): x−xx doi: 10.16383/j.aas.c220774
引用本文: 马倩, 盛兆明, 徐胜元. 含有输入时滞的非线性系统的输出反馈采样控制. 自动化学报, xxxx, xx(x): x−xx doi: 10.16383/j.aas.c220774
Ma Qian, Sheng Zhao-Ming, Xu Sheng-Yuan. Sampled-data output feedback control for nonlinear systems with input delay. Acta Automatica Sinica, xxxx, xx(x): x−xx doi: 10.16383/j.aas.c220774
Citation: Ma Qian, Sheng Zhao-Ming, Xu Sheng-Yuan. Sampled-data output feedback control for nonlinear systems with input delay. Acta Automatica Sinica, xxxx, xx(x): x−xx doi: 10.16383/j.aas.c220774

含有输入时滞的非线性系统的输出反馈采样控制

doi: 10.16383/j.aas.c220774
基金项目: 国家自然科学基金(62173183)资助
详细信息
    作者简介:

    马倩:南京理工大学自动化学院教授. 主要研究方向为时滞系统, 多智能体系统和非线性系统的分析与控制. 本文通信作者. E-mail: qianmashine@gmail.com

    盛兆明:南京理工大学自动化学院博士研究生. 主要研究方向为非线性系统的分析与控制. E-mail: kzzxtmcszm@163.com

    徐胜元:南京理工大学自动化学院教授. 主要研究方向为广义系统, 时滞系统和非线性系统的分析与控制. E-mail: syxu@njust.edu.cn

Sampled-data Output Feedback Control for Nonlinear Systems With Input Delay

Funds: Supported by National Natural Science Foundation of China (62173183)
More Information
    Author Bio:

    MA Qian Professor at the School of Automation, Nanjing University of Science and Technology. Her research interest covers the analysis and control of time-delay systems, multi-agent systems, and nonlinear systems. Corresponding author of this paper

    SHENG Zhao-Ming Ph. D. candidate at the School of Automation, Nanjing University of Science and Technology. His research interest is the analysis and control of nonlinear systems

    XU Sheng-Yuan Professor at the School of Automation, Nanjing University of Science and Technology. His research interest covers the analysis and control of singular systems, time-delay systems, and nonlinear systems

  • 摘要: 针对含有输入时滞和低阶非线性项的非线性系统, 提出了一种基于采样机制的无记忆输出反馈控制方法. 该方法移除了传统预测控制方法预测映射难以确定的限制, 同时避免了时滞依赖方法对过去时刻状态信息的依赖性, 在实际中更易实现. 首先, 根据系统输出在采样时刻的信息, 利用加幂积分技术和齐次占优思想设计了无记忆输出反馈控制器. 然后, 利用齐次系统理论提出了闭环系统的稳定性条件. 最后, 仿真结果验证了所提方法的正确性和优越性.
  • 图  1  系统状态$ x_1 $的响应

    Fig.  1  Response curve of $ x_1 $

    图  2  系统状态$ x_2 $的响应

    Fig.  2  Response curve of $ x_2 $

    图  3  控制输入$ u $的响应

    Fig.  3  Response curve of $ u $

    图  4  不同控制方法下系统状态$ x_1 $的响应

    Fig.  4  Response curve of $ x_1 $ under different control methods

    图  5  不同控制方法下系统状态$ x_2 $的响应

    Fig.  5  Response curve of $ x_2 $ under different control methods

    图  6  系统状态$ x_1 $的响应

    Fig.  6  Response curve of $ x_1 $

    图  7  系统状态$ x_2 $的响应

    Fig.  7  Response curve of $ x_2 $

    图  8  控制输入$ u $的响应

    Fig.  8  Response curve of $ u $

    图  9  不同控制方法下系统状态$ x_1 $的响应

    Fig.  9  Response curve of $ x_1 $ under different control methods

    图  10  不同控制方法下系统状态$ x_2 $的响应

    Fig.  10  Response curve of $ x_2 $ under different control methods

  • [1] 王焕清, 陈明, 刘晓平. 一类非线性系统模糊自适应固定时间量化反馈控制. 自动化学报, 2021, 47(12): 2823-2830 doi: 10.16383/j.aas.c190681

    Wang Huan-Qing, Chen Ming, Liu Xiao-Ping. Fuzzy adaptive fixed-time quantized feedback control for a class of nonlinear systems. Acta Automatica Sinica, 2021, 47(12): 2823-2830 doi: 10.16383/j.aas.c190681
    [2] Liu L, Chen A Q, Liu Y J. Adaptive fuzzy output-feedback control for switched uncertain nonlinear systems with full-state constraints. IEEE Transactions on Cybernetics, 2022, 52(8): 7340-7351 doi: 10.1109/TCYB.2021.3050510
    [3] Wang Q F, Zhang Z Q, Xie X J. Globally adaptive neural network tracking for uncertain output-feedback systems. IEEE Transactions on Neural Networks and Learning Systems, 2023, 34(2): 814-823 doi: 10.1109/TNNLS.2021.3102274
    [4] Qian C J, Lin W. Output feedback control of a class of nonlinear systems: a nonseparation principle paradigm. IEEE Transactions on Automatic Control, 2002, 47(10): 1710-1715 doi: 10.1109/TAC.2002.803542
    [5] Yan X H, Liu Y G, Zheng W X. Global adaptive output-feedback stabilization for a class of uncertain nonlinear systems with unknown growth rate and unknown output function. Automatica, 2019, 104: 173-181 doi: 10.1016/j.automatica.2019.02.040
    [6] Li H F, Zhang X F, Liu S. An improved dynamic gain method to global regulation of feedforward nonlinear systems. IEEE Transactions on Automatic Control, 2022, 67(6): 2981-2988 doi: 10.1109/TAC.2021.3088787
    [7] Xie X J, Duan N, Zhao C R. A combined homogeneous domination and sign function approach to output-feedback stabilization of stochastic high-order nonlinear systems. IEEE Transactions on Automatic Control, 2014, 59(5): 1303-1309 doi: 10.1109/TAC.2013.2286912
    [8] Zhang X H, Zhang K M, Xie X J. Finite-time output feedback stabilization of nonlinear high-order feedforward systems. International Journal of Robust and Nonlinear Control, 2016, 26(8): 1794-1814 doi: 10.1002/rnc.3384
    [9] Liu Z G, Tian Y P, Sun Z Y. An adaptive homogeneous domination method to time-varying control of nonlinear systems. International Journal of Robust and Nonlinear Control, 2022, 32(1): 527-540 doi: 10.1002/rnc.5806
    [10] Zhai J Y, Liu C. Global dynamic output feedback stabilization for a class of high-order nonlinear systems. International Journal of Robust and Nonlinear Control, 2022, 32(3): 1828-1843 doi: 10.1002/rnc.5911
    [11] Xie X J, Wu Y, Hou Z G. Further results on adaptive practical tracking for high-order nonlinear systems with full-state constraints. IEEE Transactions on Cybernetics, 2022, 52(10): 9978-9985 doi: 10.1109/TCYB.2021.3069865
    [12] Lin X Z, Xue J L, Zheng E L, Park J H. State-feedback stabilization for high-order output-constrained switched nonlinear systems. IEEE Transactions on Systems, Man, and Cybernetics: Systems, 2022, 52(12): 7401-7410 doi: 10.1109/TSMC.2022.3154753
    [13] 刘玉发, 刘勇华, 苏春翌, 鲁仁全. 一类具有未知幂次的高阶不确定非线性系统的自适应控制. 自动化学报, 2022, 48(8): 2018-2027 doi: 10.16383/j.aas.c200893

    Liu Yu-Fa, Liu Yong-Hua, Su Chun-Yi, Lu Ren-Quan. Adaptive control for a class of high-order uncertain nonlinear systems with unknown powers. Acta Automatica Sinica, 2022, 48(8): 2018-2027 doi: 10.16383/j.aas.c200893
    [14] 黄亚欣, 张星慧, 蒋蒙蒙. 带有输入和状态时滞的高阶非线性前馈系统的自适应控制. 自动化学报, 2017, 43(7): 1273-1279 doi: 10.16383/j.aas.2017.e140146

    Huang Ya-Xin, Zhang Xing-Hui, Jiang Meng-Meng. Adaptive control for high-order nonlinear feedforward systems with input and state delays. Acta Automatica Sinica, 2017, 43(7): 1273-1279 doi: 10.16383/j.aas.2017.e140146
    [15] Krstic M. Input delay compensation for forward complete and strict-feedforward nonlinear systems. IEEE Transactions on Automatic Control, 2010, 55(2): 287-303 doi: 10.1109/TAC.2009.2034923
    [16] Karafyllis I. Stabilization by means of approximate predictors for systems with delayed input. SIAM Journal on Control and Optimization, 2011, 49(3): 1100-1123 doi: 10.1137/100781973
    [17] Mazenc F, Bliman P A. Backstepping design for time-delay nonlinear systems. IEEE Transactions on Automatic Control, 2006, 51(1): 149-154 doi: 10.1109/TAC.2005.861701
    [18] Zhou B, Yang X F. Global stabilization of feedforward nonlinear time-delay systems by bounded controls. Automatica, 2018, 88: 21-30 doi: 10.1016/j.automatica.2017.10.021
    [19] Zhang M X, Liu L L, Zhao C R. Memoryless output feedback control for a class of stochastic nonlinear systems with large delays in the state and input. Systems and Control Letters, 2023, 171: 105431 doi: 10.1016/j.sysconle.2022.105431
    [20] Zhao C R, Lin W. Global stabilization by memoryless feedback for nonlinear systems with a limited input delay and large state delays. IEEE Transactions on Automatic Control, 2021, 66(8): 3702-3709 doi: 10.1109/TAC.2020.3021053
    [21] Meng Q T, Ma Q, Shi Y. Fixed-time stabilization for nonlinear systems with low-order and high-order nonlinearities via event-triggered control. IEEE Transactions on Circuits and Systems I: Regular Papers, 2022, 69(7): 3006-3015 doi: 10.1109/TCSI.2022.3164552
    [22] 都海波, 李世华, 钱春江, 何怡刚. 基于采样控制的一类本质非线性系统的全局镇定. 自动化学报, 2014, 40(2): 379-384

    Du Hai-Bo, Li Shi-Hua, Qian Chun-Jiang, He Yi-Gang. Global stabilization of a class of inherently nonlinear systems under sampled-data control. Acta Automatica Sinica, 2014, 40(2): 379-384
    [23] Nešić D, Teel A R, Kokotović P V. Sufficient conditions for stabilization of sampled-data nonlinear systems via discrete-time approximations. Systems and Control Letters, 1999, 38(4-5): 259-270 doi: 10.1016/S0167-6911(99)00073-0
    [24] Qian C J, Du H B. Global output feedback stabilization of a class of nonlinear systems via linear sampled-data control. IEEE Transactions on Automatic Control, 2012, 57(11): 2934-2939 doi: 10.1109/TAC.2012.2193707
    [25] Zhai J Y, Du H B, Fei S M. Global sampled-data output feedback stabilisation for a class of nonlinear systems with unknown output function. International Journal of Control, 2016, 89(3): 469-480 doi: 10.1080/00207179.2015.1081294
    [26] Li Z J, Zhao J. Output feedback stabilization for a general class of nonlinear systems via sampled-data control. International Journal of Robust and Nonlinear Control, 2018, 28(7): 2853-2867 doi: 10.1002/rnc.4053
    [27] Bacciotti A, Rosier L. Liapunov Functions and Stability in Control Theory. New York, NY, USA: Springer, 2001.
    [28] Hardy G H, Littlewood J E, Pólya G. Inequalities. Cambridge University Press, Cambridge, 1952.
    [29] Hermes H. Homogeneous coordinates and continuous asymptotically stabilizing feedback controls. Differential Equations. New York, NY, USA: Marcel Dekker, 1991. 249-260
  • 加载中
计量
  • 文章访问数:  683
  • HTML全文浏览量:  271
  • 被引次数: 0
出版历程
  • 收稿日期:  2022-09-28
  • 录用日期:  2023-04-12
  • 网络出版日期:  2023-08-21

目录

    /

    返回文章
    返回