2.765

2022影响因子

(CJCR)

  • 中文核心
  • EI
  • 中国科技核心
  • Scopus
  • CSCD
  • 英国科学文摘

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

融合多策略的黄金正弦黑猩猩优化算法

刘成汉 何庆

刘成汉, 何庆. 融合多策略的黄金正弦黑猩猩优化算法. 自动化学报, 2023, 49(11): 2360−2373 doi: 10.16383/j.aas.c210313
引用本文: 刘成汉, 何庆. 融合多策略的黄金正弦黑猩猩优化算法. 自动化学报, 2023, 49(11): 2360−2373 doi: 10.16383/j.aas.c210313
Liu Cheng-Han, He Qing. Golden sine chimp optimization algorithm integrating multiple strategies. Acta Automatica Sinica, 2023, 49(11): 2360−2373 doi: 10.16383/j.aas.c210313
Citation: Liu Cheng-Han, He Qing. Golden sine chimp optimization algorithm integrating multiple strategies. Acta Automatica Sinica, 2023, 49(11): 2360−2373 doi: 10.16383/j.aas.c210313

融合多策略的黄金正弦黑猩猩优化算法

doi: 10.16383/j.aas.c210313
基金项目: 国家自然科学基金(62166006), 贵州省科技计划项目重大专项项目([2021] 335), 公共大数据国家重点实验室开放课题(2017BDKFJJ004)资助
详细信息
    作者简介:

    刘成汉:贵州大学大数据与信息工程学院硕士研究生. 主要研究方向为智能优化算法, 深度学习. E-mail: lzttym@163.com

    何庆:贵州大学大数据与信息工程学院教授. 主要研究方向为认知无线电, 智能算法. 本文通信作者. E-mail: qhe@gzu.edu.cn

Golden Sine Chimp Optimization Algorithm Integrating Multiple Strategies

Funds: Supported by National Natural Science Foundation of China (62166006), Major Special Project of Guizhou Science and Technology Planning Project ([2021] 335), and Open Project of State Key Laboratory of Public Big Data (2017BDKFJJ004)
More Information
    Author Bio:

    LIU Cheng-Han Master student at the College of Big Data and Information Engineering, Guizhou University. His research interest covers intelligent optimization algorithm and deep learning

    HE Qing Professor at the College of Big Data and Information Engineering, Guizhou University. His research interest covers cognitive radio and intelligent algorithms. Corresponding author of this paper

  • 摘要: 针对黑猩猩优化算法(Chimp optimization algorithm, ChOA)存在收敛速度慢、精度低和易陷入局部最优值问题, 提出一种融合多策略的黄金正弦黑猩猩优化算法(Multi-strategy golden sine chimp optimization algorithm, IChOA). 引入Halton序列初始化种群, 提高初始化种群的多样性, 加快算法收敛, 提高收敛精度; 考虑到收敛因子和权重因子对于平衡算法勘探和开发能力的重要作用, 引入改进的非线性收敛因子和自适应权重因子, 平衡算法的搜索能力; 结合黄金正弦算法相关思想, 更新个体位置, 提高算法对局部极值的处理能力. 通过对23个基准测试函数的寻优对比分析和Wilcoxon秩和统计检验以及部分CEC2014测试函数寻优结果对比可知, 改进的算法具有更好的鲁棒性; 最后, 通过2个实际工程优化问题的实验对比分析, 进一步验证了IChOA在处理现实优化问题上的优越性.
  • 图  1  种群随机初始化个体分布图

    Fig.  1  Randomly initialized population distribution map

    图  2  使用Halton序列产生的初始种群分布图

    Fig.  2  Halton sequence initialized population distribution map

    图  3  收敛因子对比图

    Fig.  3  Contrast diagram of convergence factors

    图  4  自适应权重因子$\omega $曲线

    Fig.  4  Adaptive weighting factor$\omega $ curve

    图  5  ChOA与HChOA收敛对比图

    Fig.  5  Convergence curve of ChOA and HChOA

    图  6  ChOA与WChOA收敛对比图

    Fig.  6  Convergence curve of ChOA and WChOA

    图  7  ChOA与GChOA收敛对比图

    Fig.  7  Convergence curve of ChOA and GChOA

    图  8  各算法500维寻优对比曲线

    Fig.  8  Comparison curves of 500-dimensional optimization of each algorithm

    图  9  焊接梁模型

    Fig.  9  Welding beam model

    图  10  拉力/压力弹簧优化设计问题模型

    Fig.  10  The model of tension/pressure spring optimization design

    表  1  算法参数设置

    Table  1  Parameter setting of algorithm

    算法参数
    ChOA$m = {{chaos} } (3, 1, 1)$
    PSOc1 = 1.5, c2 = 2.0, $\omega$ = 1, wdamp = 0.99
    GWO
    WOA$b=1 $
    IChOA$m = {chaos} (3, 1, 1)$, $\delta _1=0.3,$$\delta _2=300.0, \delta _3=1.8,$
    $\rho _1=0.10,\;\rho _2=0.05, \;\rho _3=0.30, \; \varepsilon=300$
    下载: 导出CSV

    表  2  基准测试函数介绍

    Table  2  Introduction to benchmark functions

    编号函数名定义域维度最优值绝对精度误差$\varepsilon $
    $f_1 $Sphere[−100, 100]3001.00 × 10−3
    $f_2 $Schwefel'problem 2.22[−10, 10]3001.00 × 10−3
    $f_3 $Schwefel'problem 1.2[−100, 100]3001.00 × 10−3
    $f_4 $Schwefel'problem 2.21[−100, 100]3001.00 × 10−3
    $f_5 $Generalized Rosenbrock's function[−30, 30]3001.00 × 10−2
    $f_6 $Step function[−100, 100]3001.00 × 10−2
    $f_7 $Quartic function[−1.28, 1.28]3001.00 × 10−2
    $f_8 $Generalized Schwefel's problem 2.26[−500, 500]30−12569.50001.00 × 102
    $f_9 $Generalized Rastrigin's Function[−5.12, 5.12]3001.00 × 10−2
    $f_{10} $Ackley's function[−32, 32]3001.00 × 10−2
    $f_{11} $Generalized Criewank function[−600, 600]3001.00 × 10−2
    $f_{12} $Generalized penalized function 1[−50, 50]3001.00 × 10−2
    $f_{13} $Generalized penalized function 2[−50, 50]3001.00 × 10−2
    $f_{14} $Shekell's foxholes function[−65, 65]21.00001.00 × 10−2
    $f_{15} $Kowalik's function[−5, 5]40.00031.00 × 10−2
    $f_{16} $Six-hump camel-back function[−5, 5]2−1.03001.00 × 10−2
    $f_{17} $Branin function[−5, 5]20.39801.00 × 10−2
    $f_{18} $Gold stein-price function[−2, 2]23.00001.00 × 10−2
    $f_{19} $Hatman's function1[0, 1]3−3.86001.00 × 10−2
    $f_{20} $Hatman's function 2
    [0, 1]6−3.32001.00 × 10−2
    $f_{21} $Shekel's family 1[0, 10]4−10.00001.00 × 10−2
    $f_{22}$Shekel's family 2[0, 10]4−10.00001.00 × 10−2
    $f_{23} $Shekel's family 3[0, 10]4−10.00001.00 × 10−2
    下载: 导出CSV

    表  3  各算法寻优结果对比(30维)

    Table  3  Comparison of optimization results of each algorithm (30 dim)

    函数ChOAPSOGWOSChOAIChOA
    平均值标准差平均值标准差平均值标准差平均值标准差平均值标准差
    $f_{1} $1.34 × 10−51.19 × 10−201.40 × 10−42.11 × 10−45.95 × 10−286.85 × 10−285.66 × 10−335.68 × 10300
    $f_{2} $1.42 × 10−58.55 × 10−214.21 × 10−24.54 × 10−27.95 × 10−174.97 × 10−171.72 × 10−201.91 × 101000
    $f_{3} $6.31 × 1001.40 × 10−177.01 × 1012.21 × 1012.83 × 10−51.12 × 10−46.19 × 10−82.25 × 10400
    $f_{4} $2.75 × 10−25.95 × 10−281.08 × 1003.17 × 10−15.69 × 10−75.55 × 10−72.75 × 10−101.26 × 10000
    $f_{5} $2.87 × 1012.51 × 10−149.67 × 1016.01 × 1012.70 × 1018.26 × 10−12.85 × 1021.00 × 1073.13 × 10−45.26 × 10−17
    $f_{6} $3.72 × 1004.48 × 10−151.10 × 10−48.28 × 10−57.64 × 10−13.58 × 10−13.01 × 1005.62 × 1036.51 × 10−33.25 × 10−4
    $f_{7} $1.72 × 10−31.09 × 10−181.22 × 10−14.49 × 10−21.72 × 10−37.51 × 10−41.00 × 10−35.77 × 1017.81 × 10−71.02 × 10−12
    $f_{8} $−5.65 × 1032.75 × 10−12−4.84 × 1031.15 × 103−6.08 × 1031.02 × 103−9.87 × 1031.80 × 102−1.26 × 1041.83 × 10−11
    $f_{9} $1.41 × 10104.67 × 1011.16 × 1013.22 × 1004.16 × 10007.77 × 10100
    $f_{10} $1.96 × 1011.79 × 10−142.76 × 10−15.09 × 10−11.05 × 10−132.39 × 10−141.50 × 10−141.76 × 1018.88 × 10−160
    $f_{11} $4.79 × 10−27.00 × 10−179.21 × 10−37.74 × 10−35.14 × 10−39.98 × 10−308.30 × 10100
    $f_{12} $3.98 × 10−15.60 × 10−176.92 × 10−31.19 × 10−25.99 × 10−29.78 × 10−21.62 × 10−13.31 × 1076.46 × 10−44.39 × 10−18
    $f_{13} $2.82 × 1001.76 × 10−156.68 × 10−38.91 × 10−36.27 × 10−13.06 × 10−16.76 × 10−15.16 × 1072.97 × 10−54.56 × 10−16
    $f_{14} $1.00 × 1001.12 × 10−153.63 × 1002.50 × 1005.09 × 1004.34 × 1001.00 × 1001.04 × 1010.99 × 1004.48 × 10−16
    $f_{15} $1.36 × 10−34.39 × 10−195.80 × 10−42.21 × 10−45.73 × 10−38.98 × 10−36.80 × 10−41.70 × 10−32.30 × 10−45.46 × 10−19
    $f_{16} $−1.03 × 1006.72 × 10−15−1.03 × 1006.25 × 10−16−1.03 × 1002.42 × 10−8−1.03 × 1002.21 × 10−1−1.03 × 1005.60 × 10−16
    $f_{17} $3.98 × 10−13.36 × 10−163.98 × 10−103.98 × 10−103.99 × 10−14.90 × 10−33.99 × 10−18.98 × 10−16
    $f_{18} $3.00 × 10003.18 × 1001.33 × 10−155.70 × 1001.47 × 1013.00 × 1001.92 × 10−13.00 × 1000
    $f_{19} $−3.85 × 1002.69 × 10−15−3.86 × 1002.58 × 10−15−3.86 × 1002.17 × 10−3−3.86 × 1009.16 × 10−2−3.72 × 1001.34 × 10−18
    $f_{20} $−1.92 × 1001.12 × 10−15−3.26 × 1006.05 × 10−2−3.23 × 1008.43 × 10−2−3.32 × 1001.24 × 10−1−2.90 × 1005.23 × 10−15
    $f_{21} $−4.92 × 1002.69 × 10−15−6.87 × 1003.01 × 100−8.80 × 1002.20 × 100−1.01 × 1013.34 × 10−1−1.01 × 1012.38 × 10−15
    $f_{22} $−4.99 × 1002.69 × 10−15−8.46 × 1003.08 × 100−10.22 × 1009.70 × 10−1−5.18 × 1005.74 × 10−2−9.78 × 1008.79 × 10−15
    $f_{23} $−5.02 × 1004.48 × 10−16−8.95 × 1001.78 × 100−9.90 × 1001.96 × 100−1.05 × 1014.95 × 10−2−9.93 × 1008.97 × 10−16
    下载: 导出CSV

    表  4  Wilcoxon秩和检验结果

    Table  4  Wilcoxon rank sum test results

    编号PSO ($p_{1} $)GWO ($p_{2} $)WOA ($p_{3} $)ChOA ($p_{4} $)GChOA ($p_{5} $)
    $f_{1} $3.31 × 10−203.31 × 10−203.31 × 10−203.31 × 10−203.31 × 10−20
    $f_{2} $3.31 × 10−203.31 × 10−203.31 × 10−203.31 × 10−203.25 × 10−20
    $f_{3} $3.31 × 10−203.31 × 10−203.31 × 10−203.31 × 10−203.31 × 10−20
    $f_{4} $3.31 × 10−203.31 × 10−203.31 × 10−203.31 × 10−203.31 × 10−20
    $f_{5} $1.01 × 10−172.47 × 10−171.04 × 10−152.29 × 10−157.96 × 10−18
    $f_{6} $7.06 × 10−181.28 × 10−171.38 × 10−152.13 × 10−167.06 × 10−18
    $f_{7} $4.20 × 10−177.06 × 10−186.88 × 10−141.36 × 10−171.27 × 10−16
    $f_{8} $7.06 × 10−187.06 × 10−182.21 × 10−107.06 × 10−187.06 × 10−18
    $f_{9} $3.31 × 10−203.31 × 10−20NaN1.17 × 10−193.31 × 10−20
    $f_{10} $3.31 × 10−203.31 × 10−202.39 × 10−162.91 × 10−202.62 × 10−23
    $f_{11} $3.31 × 10−203.31 × 10−203.27 × 10−12.50 × 10−43.31 × 10−20
    $f_{12} $7.06 × 10−189.37 × 10−111.83 × 10−177.96 × 10−187.06 × 10−18
    +/=/−12/0/012/0/010/1/112/0/012/0/0
    下载: 导出CSV

    表  5  部分CEC2014函数介绍

    Table  5  Introduction of part CEC2014 function

    函数维度特征定义域最佳值
    CEC0330单峰[−100, 100]300
    CEC0530多峰[−100, 100]500
    CEC0630多峰[−100, 100]600
    CEC1630多峰[−100, 100]1600
    CEC1930混合[−100, 100]1900
    CEC2230混合[−100, 100]2200
    CEC2530复合[−100, 100]2500
    CEC2730复合[−100, 100]2700
    下载: 导出CSV

    表  6  CEC2014函数优化对比

    Table  6  CEC2014 function optimization comparison

    函数PSOSCAL-SHADEHChOAGChOAIChOA
    平均值标准差平均值标准差平均值标准差平均值标准差平均值标准差平均值标准差
    CEC034.87 × 1016.61 × 1018.83 × 1001.36 × 100007.78 × 1047.44 × 1037.54 × 1046.58 × 1037.35 × 1046.23 × 103
    CEC052.09 × 1018.52 × 10−22.21 × 1002.72 × 1002.01 × 1011.70 × 10−25.22 × 1026.67 × 10−25.26 × 1024.21 × 10−25.20 × 1021.02 × 10−2
    CEC061.08 × 1012.53 × 1006.63 × 1013.74 × 1011.67 × 10−29.17 × 10−26.33 × 1022.42 × 1006.33 × 10−52.42 × 1006.31 × 1022.39 × 100
    CEC161.13 × 1017.05 × 10−12.27 × 1011.66 × 10−18.48 × 1002.97 × 10−11.62 × 1032.81 × 10−11.61 × 1031.88 × 10−11.61 × 1031.24 × 10−1
    CEC197.76 × 1001.87 × 1002.88 × 1022.99 × 1013.59 × 1007.22 × 10−12.56 × 1032.46 × 1001.76 × 1032.39 × 1002.32 × 1031.96 × 100
    CEC222.31 × 1021.04 × 1022.43 × 1013.03 × 1013.69 × 1013.36 × 1013.57 × 1039.65 × 1014.21 × 1031.48 × 1023.56 × 1037.48 × 101
    CEC252.09 × 1021.65 × 1002.69 × 1022.71 × 1012.03 × 1024.97 × 10−22.71 × 1039.49 × 1002.71 × 1033.21 × 1002.70 × 1030
    CEC275.36 × 1028.15 × 1032.08 × 1021.89 × 1013.00 × 1021.34 × 10−132.93 × 1035.36 × 1002.91 × 1038.12 × 1002.90 × 1030
    下载: 导出CSV

    表  7  基准函数寻优平均时间及成功率对比

    Table  7  Comparison of average time and success rate for optimization of benchmark function

    函数ChOAHChOAWChOAGChOAIChOA
    平均值标准差成功率
    (%)
    平均值标准差成功率
    (%)
    平均值标准差成功率
    (%)
    平均值标准差成功率
    (%)
    平均值标准差成功率
    (%)
    f11.97320.01361001.98240.00881001.93020.01551001.41130.01811001.39160.0101100
    f21.95460.01011001.98410.01811001.79620.00631001.41760.01011001.40860.0081100
    f32.29990.008302.29880.00771002.06160.09061002.12720.01281002.11500.0275100
    f42.04560.010701.98840.03091001.99550.06761001.43810.03301001.42080.0446100
    f52.06960.066302.06910.064901.99660.032633.31.46700.053096.61.45740.0244100
    f62.01270.043501.96170.010736.61.96040.013816.61.41220.011143.31.40060.012190.0
    f72.05670.00891002.03640.01901002.05200.01471001.54070.00701001.53560.0098100
    f82.02460.012702.01950.031001.97840.029401.46380.008673.31.46250.013283.3
    f92.01380.034302.02030.011296.61.98550.00961001.43160.01841001.41690.0141100
    f102.00110.011302.00450.014373.31.99990.00861001.45210.01131001.43950.0089100
    f112.02930.008163.32.03010.01441002.01550.00951001.47760.01191001.47350.0116100
    f122.20400.011402.19300.014233.32.16970.016986.61.83540.011043.31.84220.0530100
    f132.18730.011202.17920.011536.62.18110.018456.61.81800.014066.61.81400.0084100
    f140.78930.00901000.79160.00681000.78980.00731001.38300.01001001.35710.0064100
    f150.31310.003900.31410.003450.00.31740.002463.30.27920.002790.00.27880.002496.6
    f160.17300.00381000.17430.00341000.17280.00371000.16470.00371000.16470.0013100
    f170.16900.00121000.17090.00431000.16890.00131000.15560.00611000.15240.0022100
    f180.16730.00251000.16990.00351000.16890.00211000.15160.00121000.15100.0020100
    f190.28040.00451000.28470.00311000.28490.00191000.30210.00641000.25800.0017100
    f200.47510.004246.60.47370.002470.00.47240.002863.30.43040.005363.30.42780.003376.6
    f210.40460.025116.60.40680.003520.00.40120.002870.00.45810.002976.60.40350.005583.3
    f220.44470.004300.44580.003036.60.44030.005053.30.53910.004873.30.43490.005180.0
    f230.50870.002900.50890.003643.30.50800.002136.60.66100.003476.60.63470.003986.6
    下载: 导出CSV

    表  8  焊接梁设计问题结果对比

    Table  8  Comparative results of welding beam design problems

    算法hltb平均值
    GA0.24556.19868.12640.22472.4412
    PSO0.20273.47059.03660.20571.7249
    WOA0.20243.47729.04350.21891.7299
    GWO0.20223.48939.05410.21551.7265
    RO0.20363.52849.00420.20721.7353
    MVO0.20543.47319.04450.20561.7246
    HSSAHHO0.20573.47059.03670.20571.7248
    ChOA0.22143.53588.91150.21271.7737
    SChOA0.20573.47059.03060.20561.7229
    IChOA0.20383.47139.03000.20601.7228
    下载: 导出CSV

    表  9  拉力/压力弹簧优化设计问题结果对比

    Table  9  Comparison of tension/compression spring design

    算法dDP平均值
    GA0.05280.352311.59800.01250
    PSO0.05000.317414.02780.01270
    WOA0.51190.345212.00520.01260
    GWO0.51560.356211.55600.01250
    RO0.04130.349011.76200.01260
    MFO0.05100.364110.86840.01260
    HSSAHHO0.05140.353511.35460.01240
    ChOA0.05000.315914.26290.01280
    SChOA0.05240.348910.65430.01187
    IChOA0.05100.337411.50680.01185
    下载: 导出CSV
  • [1] 何东晓, 周栩, 王佐, 等. 复杂网络社区挖掘—基于聚类融合的遗传算法. 自动化学报, 2010, 36(8): 1160--1170. doi: 10.3724/SP.J.1004.2010.01160

    He D X, Zhou X, Wang Z, et al. Complex Network Community Mining: Genetic Algorithm Based on Clustering Fusion. Acta Automatica Sinica, 2010, 36(8): 1160--1170. doi: 10.3724/SP.J.1004.2010.01160
    [2] Parsopoulos K E, Vrahatis M N. Particle swarm optimization method for constrained optimization problems. Intelligent Technologies —— Theory and Application: New Trends in Intelligent Technologies, 2002, 76(1): 214−220.
    [3] 龙文, 伍铁斌, 唐明珠, 徐明, 蔡绍洪. 基于透镜成像学习策略的灰狼优化算法. 自动化学报, 2020, 46(10): 2148--2164.

    Long W, Wu T B, Tang M Z, et al. A Grey Wolf Optimization Algorithm Based on Lens Imaging Learning Strategy. Acta Automatica Sinica, 2020, 46(10): 2148-2164.
    [4] Arora S, Singh S. Butterfly optimization algorithm: a novel approach for global optimization. Soft Computing, 2019, 23(3): 715--734. doi: 10.1007/s00500-018-3102-4
    [5] Tharwat A, Elhoseny M, Hassanien A E, et al. Intelligent Bézier curve-based path planning model using Chaotic Particle Swarm Optimization algorithm. Cluster Computing, 2019, 22(2): 4745--4766..
    [6] Guha D, Roy P K, Banerjee S. Load frequency control of interconnected power system using grey wolf optimization. Swarm and Evolutionary Computation, 2016, 27: 97--115. doi: 10.1016/j.swevo.2015.10.004
    [7] Khishe M, Mosavi M R. Chimp optimization algorithm. Expert systems with applications, 2020, 149: 113338. doi: 10.1016/j.eswa.2020.113338
    [8] Lu C, Liang G, Jin Y. Grey wolf optimizer with cellular topological structure. Expert Systems with Applications, 2018, 107: 89--114. doi: 10.1016/j.eswa.2018.04.012
    [9] 王坚浩, 张亮, 史超. 基于混沌搜索策略的鲸鱼优化算法[J]. 控制与决策, 2019, 34(9): 1893--1900.

    Wang J H, Zhang L, Shi C. Whale optimization algorithm based on chaotic search strategy. Control and Decision, 2019, 34(9): 1893--1900.
    [10] 宁杰琼, 何庆. 混合策略改进的蝴蝶优化算法. 计算机应用研究, 2021, 38(06): 1718-1723+1738.

    Ning J Q, He Q. Butterfly optimization algorithm improved by hybrid strategy. Application Research of Computers, 2021, 38(06): 1718--1723+1738.
    [11] 王秋萍, 王梦娜, 王晓峰. 改进收敛因子和比例权重的灰狼优化算法. 计算机工程与应用, 2019, 55(21): 60--65. doi: 10.3778/j.issn.1002-8331.1808-0117

    Wang Q P, Wang M N, Wang X F. Grey wolf optimization algorithm with improved convergence factor and proportional weight. Computer Engineering and Applications, 2019, 55(21): 60--65. doi: 10.3778/j.issn.1002-8331.1808-0117
    [12] Ewees A A, Abd Elaziz M, Houssein E H. Improved grasshopper optimization algorithm using opposition-based learning. Expert Systems with Applications, 201 8, 112: 156--172. doi: 10.1016/j.eswa.2018.06.023
    [13] Dinkar S K, Deep K. Opposition based Laplacian ant lion optimizer. Journal of computational science, 2017, 23: 71--90. doi: 10.1016/j.jocs.2017.10.007
    [14] 吕鑫, 慕晓冬, 张钧, 王震. 混沌麻雀搜索优化算法. 北京航空航天大学学报. 2020, 16(05): 1-10.

    Lu X, Mu X D, Zhang J, Wang Z. Chaos Sparrow Search Optimization Algorithm. Journal of Beijing University of Aeronautics and Astronautics. 2020, 16(05): 1--10.
    [15] Sayed S A E F, Nabil E, Badr A. A binary clonal flower pollination algorithm for feature selection. Pattern Recognition Letters, 2016, 77: 21--27. doi: 10.1016/j.patrec.2016.03.014
    [16] Bangyal W H, Batool H, Ahmed J, et al. An improved particle swarm optimization algorithm with chi-square mutation strategy. International Journal of Advanced Computer Science and Applications, 2019, 10(3): 481-491.
    [17] Tanyildizi E, Demir G. Golden sine algorithm: A novel math-inspired algorithm. Advances in Electrical and Computer Engineering, 2017, 17(2): 71--78. doi: 10.4316/AECE.2017.02010
    [18] 邢燕祯, 王东辉. 基于模糊控制的权重决策灰狼优化算法. 计算机系统应用, 2018, 27(10): 202--208.

    Xing Y Z, Wang D H. Weight decision gray wolf optimization algorithm based on fuzzy control. Computer Systems & Applications, 2018, 27(10): 202--208.
    [19] 郭文艳, 王远, 戴芳, 等. 基于精英混沌搜索策略的交替正余弦算法. 控制与决策, 2019, 34(8): 1654--1662.

    Guo W Y, Wang Y, Dai F, et al. Alternating Sine and Cosine Algorithm Based on Elite Chaotic Search Strategy. Control and Decision, 2019, 34(8): 1654--1662.
    [20] 汪超, 王丙柱, 岑豫皖, 谢能刚. 基于多样性全局最优引导和反向学习的离子运动算法. 控制与决策, 2020, 35(7): 1584−1596.

    Wang Chao, Wang Bing-Zhu, Cen Yu-Wan, Xie Neng-Gang. Ion motion algorithm based on diversity global optimal guidance and reverse learning Control and Decision, 2020, 35(7): 1584−1596.
    [21] Kaur M, Kaur R, Singh N, et al. SChoA: an newly fusion of sine and cosine with chimp optimization algorithm for HLS of datapaths in digital filters and engineering applications. Engineering with Computers, 2021, 42, 1--29.
    [22] Zhang X M, Wang X, Kang Q. Improved grey wolf optimizer and its application to high dimension alfunction and FCM optimization. Control and Decision, 2019, 10(8): 1--10.
    [23] Liang J J, Qu B Y, Suganthan P N. Problem Definitions and Evaluation Criteria for the CEC 2014 Special Session and Competition on Single Objective Real-parameter Numerical Optimization, Technical Report, Computational Intelligence Laboratory, Zhengzhou University, China, 2013.
    [24] Xu G P, Cui Q L, Shi X H, et al. Particle swarm optimization based on dimensional learning strategy. Swarm and Evolutionary Computation, 2019, 45: 33--51. doi: 10.1016/j.swevo.2018.12.009
    [25] Chen H L, Wang M J, Zhao X H. A multi-strategy enhanced sine cosine algorithm for global optimization and constrained practical engineering problems. Applied Mathematics and Computation, 2020, 369: 124872. doi: 10.1016/j.amc.2019.124872
    [26] Tanabe R, Fukunaga A S. Improving the search performance of SHADE using linear population size reduction. In: Proceedings of the IEEE Congress on Evolutionary Computation. Beijing, China: IEEE, 2014. 1658−1665
    [27] 傅文渊. 具有万有引力加速机理的布谷鸟搜索算法. 软件学报, 2021, 32(05): 1480--1494.

    Fu W Y. Cuckoo Search Algorithm with Gravity Acceleration Mechanism. Journal of Software, 2021, 32(05): 1480--1494.
  • 加载中
图(10) / 表(9)
计量
  • 文章访问数:  1749
  • HTML全文浏览量:  912
  • PDF下载量:  245
  • 被引次数: 0
出版历程
  • 收稿日期:  2021-04-12
  • 录用日期:  2021-09-17
  • 网络出版日期:  2021-10-13
  • 刊出日期:  2023-11-22

目录

    /

    返回文章
    返回