2.765

2022影响因子

(CJCR)

  • 中文核心
  • EI
  • 中国科技核心
  • Scopus
  • CSCD
  • 英国科学文摘

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

卷积神经网络表征可视化研究综述

司念文 张文林 屈丹 罗向阳 常禾雨 牛铜

司念文, 张文林, 屈丹, 罗向阳, 常禾雨, 牛铜. 卷积神经网络表征可视化研究综述. 自动化学报, 2022, 48(8): 1890−1920 doi: 10.16383/j.aas.c200554
引用本文: 司念文, 张文林, 屈丹, 罗向阳, 常禾雨, 牛铜. 卷积神经网络表征可视化研究综述. 自动化学报, 2022, 48(8): 1890−1920 doi: 10.16383/j.aas.c200554
Si Nian-Wen, Zhang Wen-Lin, Qu Dan, Luo Xiang-Yang, Chang He-Yu, Niu Tong. Representation visualization of convolutional neural networks: A survey. Acta Automatica Sinica, 2022, 48(8): 1890−1920 doi: 10.16383/j.aas.c200554
Citation: Si Nian-Wen, Zhang Wen-Lin, Qu Dan, Luo Xiang-Yang, Chang He-Yu, Niu Tong. Representation visualization of convolutional neural networks: A survey. Acta Automatica Sinica, 2022, 48(8): 1890−1920 doi: 10.16383/j.aas.c200554

卷积神经网络表征可视化研究综述

doi: 10.16383/j.aas.c200554
基金项目: 国家自然科学基金(61673395, U1804263)和中原科技创新领军人才项目(214200510019)资助
详细信息
    作者简介:

    司念文:信息工程大学信息系统工程学院博士研究生. 主要研究方向为深度学习的安全性与可解释性. E-mail: snw1608@163.com

    张文林:信息工程大学信息系统工程学院副教授. 主要研究方向为深度学习和语音识别. 本文通信作者. E-mail: zwlin_2004@163.com

    屈丹:信息工程大学信息系统工程学院教授. 主要研究方向为机器学习, 深度学习和语音识别. E-mail: qudanqudan@163.com

    罗向阳:信息工程大学网络空间安全学院教授. 主要研究方向为人工智能与信息安全. E-mail: xiangyangluo@126.com

    常禾雨:信息工程大学密码工程学院博士研究生. 主要研究方向为深度学习与行人重识别. E-mail: okaychy@163.com

    牛铜:信息工程大学信息系统工程学院副教授. 主要研究方向为深度学习和语音识别. E-mail: jerry_newton@sina.com

Representation Visualization of Convolutional Neural Networks: A Survey

Funds: Supported by National Natural Science Foundation of China (61673395, U1804263) and Zhongyuan Science and Technology Innovation Leading Talent Project (214200510019)
More Information
    Author Bio:

    SI Nian-Wen Ph.D. candidate at the College of Information System Engineering, Information Engineering University. His research interest covers deep learning security and interpret ability

    ZHANG Wen-Lin Associate professor at the College of Information System Engineering, Information Engineering University. His research interest covers deep learning and speech recognition. Corresponding author of this paper

    QU Dan Professor at the College of Information System Engineering, Information Engineering University. Her research interest covers machine learning, deep learning and speech recognition

    LUO Xiang-Yang Professor at the College of Cyberspace Security, Information Engineering University. His research interest covers artificial intelligence and information security

    CHANG He-Yu Ph.D. candidate at the College of Cryptographic Engineering, Information Engineering University. Her research interest covers deep learning and person re-identification

    NIU Tong Associate professor at the College of Information System Engineering, Information Engineering University. His research interest covers deep learning and speech recognition

  • 摘要: 近年来, 深度学习在图像分类、目标检测及场景识别等任务上取得了突破性进展, 这些任务多以卷积神经网络为基础搭建识别模型, 训练后的模型拥有优异的自动特征提取和预测性能, 能够为用户提供“输入–输出”形式的端到端解决方案. 然而, 由于分布式的特征编码和越来越复杂的模型结构, 人们始终无法准确理解卷积神经网络模型内部知识表示, 以及促使其做出特定决策的潜在原因. 另一方面, 卷积神经网络模型在一些高风险领域的应用, 也要求对其决策原因进行充分了解, 方能获取用户信任. 因此, 卷积神经网络的可解释性问题逐渐受到关注. 研究人员针对性地提出了一系列用于理解和解释卷积神经网络的方法, 包括事后解释方法和构建自解释的模型等, 这些方法各有侧重和优势, 从多方面对卷积神经网络进行特征分析和决策解释. 表征可视化是其中一种重要的卷积神经网络可解释性方法, 能够对卷积神经网络所学特征及输入–输出之间的相关关系以视觉的方式呈现, 从而快速获取对卷积神经网络内部特征和决策的理解, 具有过程简单和效果直观的特点. 对近年来卷积神经网络表征可视化领域的相关文献进行了综合性回顾, 按照以下几个方面组织内容: 表征可视化研究的提起、相关概念及内容、可视化方法、可视化的效果评估及可视化的应用, 重点关注了表征可视化方法的分类及算法的具体过程. 最后是总结和对该领域仍存在的难点及未来研究趋势进行了展望.
  • 图  1  传统机器学习与深度学习的学习过程对比[8]

    Fig.  1  Comparison of the learning process between traditional machine learning and deep learning[8]

    图  2  可解释性深度学习的研究内容划分

    Fig.  2  The division of the research content of the interpretable deep learning

    图  3  CNN表征可视化的研究思路

    Fig.  3  The research idea of CNN representation visualization

    图  4  CNN表征可视化的研究内容

    Fig.  4  Research content of the CNN representation visualization

    图  5  基于扰动的方法的解释流程

    Fig.  5  Interpretation process of the perturbation based method

    图  6  使用随机采样产生扰动掩码的过程[43]

    Fig.  6  The process of generating a perturbation mask using random sampling[43]

    图  7  使用生成式模型生成扰动[45] ((a)原图, (b)模糊; (c)灰度; (d)生成扰动; (e)随机噪声)

    Fig.  7  Using generative models to generate perturbation[45] ((a) Original image; (b) Blur; (c) Gray;(d) Generated perturbation; (e) Random noise)

    图  8  基于反向传播的方法的解释流程

    Fig.  8  Interpretation process of the backpropagation based method

    图  9  VBP方法的过程[49]

    Fig.  9  The process of the VBP method[49]

    图  10  梯度不稳定导致解释结果的不确定性[51]

    Fig.  10  Uncertainty of interpretation results due to gradient instability[51]

    图  11  梯度方法产生的显著图含有大量噪声[44]

    Fig.  11  The saliency map generated by the gradient method contains a lot of noise[44]

    图  12  单个像素的梯度值的不稳定性[52]

    Fig.  12  The instability of the gradient value of a single pixel[52]

    图  13  反卷积可视化方法的过程

    Fig.  13  The process of deconvolution visualization method

    图  14  VBP、GBP和反卷积三者之间的关系[49]

    Fig.  14  The relationship of VBP, GBP and deconvolution[49]

    图  15  LRP的过程

    Fig.  15  The process of the LRP

    图  16  LRP正向传播的过程[19]

    Fig.  16  The forward propagation process of the LRP[19]

    图  17  LRP反向传播的过程[19]

    Fig.  17  The backpropagation process of the LRP[19]

    图  18  CAM的过程

    Fig.  18  The process of the CAM

    图  19  Grad-CAM的过程

    Fig.  19  The process of the Grad-CAM

    图  20  Score-CAM的过程[66]

    Fig.  20  The process of the Score-CAM[66]

    图  21  AM的过程

    Fig.  21  The process of the AM

    图  22  DGN-AM的过程

    Fig.  22  The process of the DGN-AM

    图  23  在MNIST数据集上使用AM方法对目标CNN模型的可视化结果对比[19]

    Fig.  23  Comparison of the visualization results of the target CNN model using the AM method on the MNIST dataset[19]

    图  24  Squeeze and excitation模块[18]

    Fig.  24  Squeeze and excitation module[18]

    图  25  通道–空间注意力模块[72]

    Fig.  25  Channel-spatial attention module[72]

    图  26  通道注意力模块[72]

    Fig.  26  Channel attention module[72]

    图  27  空间注意力模块[72]

    Fig.  27  Spatial attention module[72]

    图  28  ResNet50、集成SENet的ResNet50 (ResNet50 + SE)和集成CBAM的ResNet50 (ResNet50 + CBAM)的最高层特征图的可视化[72]

    Fig.  28  Visualization of the highest-level feature maps of ResNet50, ResNet50 integrated with SEnet (ResNet50 + SE), and ResNet50 integrated with CBAM (ResNet50 + CBAM)[72]

    图  29  LIME的样本处理流程

    Fig.  29  The sample processing flow of the LIME

    图  30  LIME在AlexNet、VGGNet16及ResNet50模型上可视化结果示例

    Fig.  30  Example of LIME visualization results on AlexNet, VGGNet16 and ResNet50 models

    图  31  热力图的后处理与效果对比

    Fig.  31  Post-processing and effect comparison of heatmap

    图  32  可视化方法的效果比较. 每张输入图像分别展示了灰度和彩色两种可视化结果

    Fig.  32  Comparison of the effects of visualization methods. Each input image shows two visualization results of grayscale and color image

    图  33  FGSM生成对抗样本的过程[87]

    Fig.  33  The process of generating adversarial example by FGSM[87]

    图  34  使用FGSM对抗样本测试Grad-CAM的稳定性[63] ((a)原图; (b)对抗图像; (c) Grad-CAM “Dog”; (d) Grad-CAM “Cat”)

    Fig.  34  Using FGSM adversarial example to test the stability of Grad-CAM[63] ((a) Original image; (b) Adversarial image; (c) Grad-CAM “Dog”; (d) Grad-CAM “Cat”)

    图  35  针对可视化结果的攻击

    Fig.  35  Attacks on the visualization results

    图  36  使用GAN生成的目标图像诱导对LRP显著图的攻击[82, 90]

    Fig.  36  Using the target image generated by GAN to induce an attack on the LRP saliency map[82, 90]

    表  1  梯度方法及其变种的特点比较

    Table  1  Comparison of the characteristics of the gradient method and its variants

    方法显著图生成依据特点
    VBP普通梯度过程简单, 但存在梯度噪声问题
    GBP每一层使用 ReLU过程简单, 但存在梯度噪声问题
    积分梯度梯度图的平均过程复杂, 需多次迭代, 耗时
    平滑梯度梯度图的平均过程复杂, 需多次迭代, 耗时
    整流梯度阈值过滤后的梯度过程较复杂, 阈值的选取需要经验
    下载: 导出CSV

    表  2  类激活映射方法的比较

    Table  2  Comparision of the class activation mapping methods

    方法通道权重优点缺点
    CAMSoftmax 层权重类别区分性依赖 GAP 层
    Grad-CAM各通道的梯度平均值类别区分性, 结构通用梯度不稳定
    Grad-CAM++各通道的梯度平均值, 高阶梯度类别区分性, 结构通用梯度不稳定, 高阶梯度计算复杂
    Score-CAM对各通道的预测值类别区分性, 结构通用, 权重稳定权重计算过程复杂, 重复迭代耗时
    下载: 导出CSV

    表  3  可视化方法的特点比较

    Table  3  Comparison of characteristics of visualization methods

    方法分类方法名称发表年份细粒度/
    区域级
    类别相关在线/
    离线
    模型明晰/
    模型不可知
    可视化视角局部解释/
    全局解释
    扰动简单扰动[13, 4243]2014、2018区域级离线模型不可知输出类局部
    有意义的扰动[44]2017区域级离线模型明晰的输出类局部
    生成式扰动[4546]2019区域级离线模型明晰输出类局部
    反向传播梯度类反向传播VBP[2223]2010、2013细粒度离线模型明晰输出类局部
    GBP[50]2014细粒度离线模型明晰输出类局部
    Smooth gradient[52]2017细粒度离线模型明晰输出类局部
    Integrated gradient[53]2017细粒度离线模型明晰输出类局部
    Rectified gradient[54]2019细粒度离线模型明晰输出类局部
    规则类反向传播Deconvolution[13]2013细粒度离线模型明晰的神经元/层局部
    LRP[58]2015细粒度离线模型明晰输出类局部
    DTD[61]2017细粒度离线模型明晰输出类局部
    CLRP[59]、SGLRP[60]2018、2019细粒度离线模型明晰输出类局部
    类激活映射CAM[62]2015区域级在线模型明晰输出类局部
    Grad-CAM[6364]2016、2017区域级离线模型明晰输出类局部
    Grad-CAM++[65]2018区域级离线模型明晰输出类局部
    Score-CAM[66]2019区域级离线模型明晰输出类局部
    激活最大化AM[81]2009细粒度离线模型明晰神经元/输出类全局
    DGN-AM[82]2016细粒度离线模型明晰的神经元/输出类全局
    注意为掩码通道注意力[18]2017区域级在线模型明晰的局部
    空间–通道注意力[72]2018区域级在线模型明晰局部
    类别注意力区域级在线模型明晰
    其他方法LIME[78]2016区域级离线模型不可知输出类局部
    SHAP[79]2017细粒度离线模型不可知输出类局部
    下载: 导出CSV

    表  4  CNN表征可视化相关的综述文献统计

    Table  4  Review literature statistics related to CNN representation visualization

    文献发表年份侧重内容
    [103]2016几种典型的特征可视化方法 (如扰动、反向传播、
    激活最大化等), 以及相互之间的关系分析
    [104]2017特征可视化的必要性, 基于反向传播的可视化方法
    [105]2017模型可视化, 不限于 CNN 可解释性领域
    [19]2018基于反向传播的可视化方法
    (AM、VBP、DTD 和 LRP 等)
    [106]2018自解释的 CNN
    [20]2018可解释性的概念, 相关文献分类
    [107]2018人工智能的可解释性
    [102]2019机器学习的可解释性方法与评估
    [108]2020机器学习的可解释性
    [109]2020深度学习的可解释性
    [110]2020人工智能的可解释性
    [111]2020人工智能的可解释性
    下载: 导出CSV
  • [1] Krizhevsky A, Sutskever I, Hinton G. Imagenet classification with deep convolutional neural networks. In: Proceedings of the 26th Annual Conference on Neural Information Processing Systems. Lake Tahoe, Nevada, USA: 2012. 1106–1114
    [2] Deng J, Dong W, Socher R, Li L, Li K, L F. ImageNet: A large-scale hierarchical image database. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition. Miami Beach, Florida, USA: 2009. 248–255
    [3] Lin T, Maire M, Belongie S J, Hays J, Perona P, Ramanan D, Dollar P, Zitnick C L. Microsoft COCO: Common objects in context. In: Proceedings of the 13th European Conference on Computer Vision. Zurich, Switzerland: 2014. 740–755
    [4] Li M, Zhang T, Chen Y, Smola A J. Efficient mini-batch training for stochastic optimization. In: Proceedings of the 20th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining. New York, USA: 2014. 661–670
    [5] Hinton G E, Srivastava N, Krizhevsky A, Sutskever I, Salakhutdinov R R. Improving neural networks by preventing co-adaptation of feature detectors. arXiv preprint, 2012, arXiv: 1207.0580
    [6] Nair V, Hinton G E. Rectified linear units improve restricted boltzmann machines. In: Proceedings of the 27th International Conference on Machine Learning. Haifa, Israel: 2010.807–814
    [7] 刘颖, 雷研博, 范九伦, 王富平, 公衍超, 田奇. 基于小样本学习的图像分类技术综述. 自动化学报, 2021, 47(2): 297−315.

    Liu Ying, Lei Yan-Bo, Fan Jiu-Lun, Wang Fu-Ping, Gong Yan-Chao, Tian Qi. Survey on image classification technology based on small sample learning. Acta Automatica Sinica, 2021, 47(2): 297−315.
    [8] Goodfellow I, Bengio Y, Courville A. Deep Learning. Cambridge, The MIT Press, 2016.
    [9] LeCun Y, Bottou L, Bengio Y, Haffner P. Gradient-based learning applied to document recognition. Proceedings of the IEEE, 1998, 86(11): 2278-2324. doi: 10.1109/5.726791
    [10] Maas A L, Hannun A Y, Ng A Y. Rectifier nonlinearities improve neural network acoustic models. In: Proceedings of the 30th International Conference on Machine Learning. Atlanta, USA: 2013.
    [11] He K, Zhang X, Ren S, Sun J. Delving deep into rectifiers: Surpassing human-level performance on imageNet classification. In: Proceedings of the IEEE International Conference on Computer Vision. Santiago, Chile: 2015. 1026–103
    [12] 林景栋, 吴欣怡, 柴毅, 尹宏鹏. 卷积神经网络结构优化综述. 自动化学报, 2020, 46(1): 24-37.

    LIN Jing-Dong, WU Xin-Yi, CHAI Yi, YIN Hong-Peng. Structure Optimization of Convolutional Neural Networks: A Survey. ACTA AUTOMATICA SINICA, 2020, 46(1): 24-37.
    [13] Zeiler M D, Fergus R. Visualizing and Understanding Convolutional Networks. In: Proceedings of the 13th European Conference on Computer Vision. Zurich, Switzerland: 2014. 818–833
    [14] Szegedy C, Liu W, Jia Y, Sermanet P, Reed S, Anguelov D, et al. Going deeper with convolutions. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition. Boston, USA: 2015. 1–9
    [15] Simonyan K, Zisserman A. Very deep convolutional networks for large-scale image recognition. arXiv preprint, 2014, arXiv: 1409.1556v6
    [16] He K, Zhang X, Ren S, and Sun J. Deep residual learning for image recognition. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition. Las Vegas, USA: 2016. 770–778
    [17] Huang G, Liu Z, Maaten L, Weinberger K Q. Densely connected convolutional networks. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition. Honolulu, Hawaii, USA: 2017. 2261–2269
    [18] Hu J, Shen L, Sun G. Squeeze-and-excitation networks. In: Proceedings of the 2018 IEEE/CVF Conference on Computer Vision and Pattern Recognition. Salt Lake City, USA: 2018. 7132–7141
    [19] Montavon G, Samek W, Müller K R. Methods for interpreting and understanding deep neural networks. Digital Signal Processing, 2018, 73: 1–15. doi: 10.1016/j.dsp.2017.10.011
    [20] Gilpin L H, Bau D, Yuan B Z, Bajwa A, Specter M, Kagal L. Explaining explanations: An approach to evaluating interpretability of machine learning. arXiv preprint, 2018, arXiv: 1806.00069
    [21] Mitros J, Namee B M. A Categorisation of post-hoc explanations for predictive models. arXiv preprint, 2019, arxiv: 1904.02495
    [22] Baehrens D, Schroeter T, Harmeling S, Kawanabe M, Hansen K, Müller K R. How to Explain Individual Classification Decisions. Journal of Machine Learning Research, 2010, 11(61): 1803–1831.
    [23] Simonyan K, Vedaldi A, Zisserman A. Deep inside convolutional networks: Visualising image classification models and saliency maps. arXiv preprint, 2013, arXiv: 1312.6034
    [24] Li O, Liu H, Chen C, Rudin C. Deep learning for case-based reasoning through prototypes: A neural network that explains its predictions. In: Proceedings of the 32nd AAAI Conference on Artificial Intelligence. New Orleans, USA: 2018. 3530–3537
    [25] Arik S Ö, Pfister T. ProtoAttend: Attention-Based Prototypical Learning. Journal of Machine Learning Research, 2020, 21(210): 1–3.
    [26] Gulshad S, Smeulders A. Explaining with counter visual attributes and examples. In: Proceedings of the 2020 International Conference on Multimedia Retrieval. Dublin, Ireland: 2020: 35–43
    [27] Hendricks L A, Akata Z, Rohrbach M, Donahue J, Schiele B, Darrell T. Generating visual explanations. In: Proceedings of the 14th European Conference on Computer Vision. Amsterdam, Netherlands: 2016. 3–19
    [28] Vinyals O, Toshev A, Bengio S, Erhan D. Show and tell: A neural image caption generator. In: Proceedings of the 28th IEEE Conference on Computer Vision and Pattern Recognition. Boston, USA: 2015. 3156–3164
    [29] Anderson P, He X, Buehler C, Teney D, Johnson M, Gould S, et al. Bottom-up and top-down attention for image captioning and visual question answering. In: Proceedings of the 2018 IEEE/CVF Conference on Computer Vision and Pattern Recognition. Salt Lake City, USA: 2018. 6077–6086
    [30] Zhang Q, Wu Y N, Zhu S C. Interpretable convolutional neural networks. In: Proceedings of the 2018 IEEE/CVF Conference on Computer Vision and Pattern Recognition. Salt Lake City, USA: 2018. 8827–8836
    [31] Wan A, Dunlap L, Ho D, Yin J, Lee S, Jin H, et al. NBDT: Neural-backed decision trees. arXiv preprint, 2020, arxiv: 2004.00221
    [32] Ming Y, Cao S, Zhang R, Li Z, Chen Y, Song Y, et al. Understanding hidden memories of recurrent neural networks. In: Proceedings of the 2017 IEEE Conference on Visual Analytics Science and Technology (VAST). Phoenix, Arizona, USA: 2017. 13–24
    [33] Strobelt H, Gehrmann S, Pfister H, Rush A M. LSTMVis: A Tool for Visual Analysis of Hidden State Dynamics in Recurrent Neural Networks. IEEE Transactions on Visualization and Computer Graphics, 2018, 24(1): 667–676. doi: 10.1109/TVCG.2017.2744158
    [34] Karpathy A, Johnson J, Li F. Visualizing and understanding recurrent networks. arXiv preprint, 2015, arXiv: 1506.02078
    [35] Arras L, Montavon G, Müller K R, Samek W. Explaining recurrent neural network predictions in sentiment analysis. In: Proceedings of the 8th Workshop on Computational Approaches to Subjectivity, Sentiment and Social Media Analysis. Copenhagen, Denmark: 2017. 159–168
    [36] Ding Y, Liu Y, Luan H, Sun M. Visualizing and understanding neural machine translation. In: Proceedings of the 55th Annual Meeting of the Association for Computational Linguistics. Vancouver, BC, Canada: 2017. 1150–1159
    [37] 刘建伟, 谢浩杰, 罗雄麟. 生成对抗网络在各领域应用研究进展. 自动化学报, 2020, 46(12): 2500−2536.

    Liu Jian-Wei, Xie Hao-Jie, Luo Xiong-Lin. Research progress on application of generative adversarial networks in various fields. Acta Automatica Sinica, 2020, 46(12): 2500−2536.
    [38] Chen X, Duan Y, Houthooft R, Schulman J, Sutskever I, Abbeel P. InfoGAN: Interpretable representation learning by information maximizing generative adversarial nets. In: Proceedings of the 30th International Conference on Neural Information Processing Systems. Barcelona, Spain: 2016. 2180–2188
    [39] Radford A, Metz L, Chintala S. Unsupervised representation learning with deep convolutional generative adversarial networks. arXiv preprint, 2015, arXiv: 1511.06434
    [40] Zhu J Y, Krähenbühl P, Shechtman E, Efros A A. Generative visual manipulation on the natural image manifold. In: Proceedings of the European Conference on Computer Vision. Amsterdam, Netherlands: 2016. 597–613
    [41] Shen Y, Gu J, Tang X, Zhou B. Interpreting the latent space of GANs for semantic face editing. In: Proceedings of the 2020 IEEE/CVF Conference on Computer Vision and Pattern Recognition. Virtual Event: 2020. 9243–9252
    [42] Zhou B, Khosla A, Lapedriza A, Oliva A, Torralba A. Object detectors emerge in deep scene CNNs. arxiv: 1412.6856, 2014.
    [43] Petsiuk V, Das A, Saenko K. Rise: Randomized input sampling for explanation of black-box models. arXiv preprint, 2018, arxiv: 1806.07421
    [44] Fong R C, Vedaldi A. Interpretable explanations of black boxes by meaningful perturbation. In: Proceedings of the 2017 IEEE International Conference on Computer Vision. Venice, Italy: 2017. 3449–3457
    [45] Agarwal C, Schonfeld D, Nguyen A. Removing input features via a generative model to explain their attributions to classifier's decisions. arXiv: 1910.04256, 2019.
    [46] Chang C H, Creager E, Goldenberg A, Duvenaud D. Explaining image classifiers by counterfactual generation. In: Proceedings of the 7th International Conference on Learning Representations. New Orleans, USA: 2019.
    [47] Fong R, Patrick M, Vedaldi A. Understanding deep networks via extremal perturbations and smooth masks. In: Proceedings of the IEEE International Conference on Computer Vision. Seoul, Korea: 2019. 2950–2958
    [48] Wagner J, Kohler J M, Gindele T, Hetzel L, Wiedemer J T, Behnke S. Interpretable and fine-grained visual explanations for convolutional neural networks. In: Proceedings of the 2019 IEEE/CVF Conference on Computer Vision and Pattern Recognition. Long Beach, USA: 2019. 9097–9107
    [49] Vedaldi A. Understanding models via visualizations and attribution [Online], available: https://interpretablevision.github.io/slide/iccv19_vedaldi_slide.pdf, 2019.
    [50] Springenberg J T, Dosovitskiy A, Brox T, Riedmiller M A. Striving for simplicity: The all convolutional net. arXiv preprint, 2014, arXiv: 1412.6806
    [51] Sundararajan M, Taly A, Yan Q. Gradients of counterfactuals. arXiv: 1611.02639, 2016.
    [52] Smilkov D, Thorat N, Kim B, Viegas F B, Wattenberg M. Smoothgrad: Removing noise by adding noise. arXiv preprint, 2017, arXiv: 1706.03825
    [53] Sundararajan M, Taly A, Yan Q. Axiomatic attribution for deep networks. In: Proceedings of the 34th International Conference on Machine Learning. Sydney, NSW, Australia: 2017. 3319–3328
    [54] Kim B, Seo J, Jeon S, Koo J, Choe J, Jeon T. Why are Saliency maps noisy? Cause of and solution to noisy saliency maps. In: Proceedings of the 2019 IEEE/CVF International Conference on Computer Vision Workshop. Seoul, Korea: 2019. 4149–4157
    [55] Hooker S, Erhan D, Kindermans P J, Kim B. A benchmark for interpretability methods in deep neural networks. In: Proceedings of the Annual Conference on Neural Information Processing Systems. Vancouver, Canada: 2019. 9737–9748
    [56] Ancona M, Ceolini E, Öztireli C, Gross M. Towards better understanding of gradient-based attribution methods for Deep Neural Networks. In: Proceedings of the 6th International Conference on Learning Representations, Vancouver, BC, Canada: 2018.
    [57] Rieger L, Hansen L K. Aggregating explanation methods for stable and robust explainability. arXiv: 1903.00519, 2019.
    [58] Bach S, Binder A, Montavon G, Klauschen F, Müller K, Samek W. On pixel-wise explanations for non-linear classifier decisions by layer-wise relevance propagation. PLOS ONE, 2015, 10(7): 0130140.
    [59] Gu J, Yang Y, Tresp V. Understanding individual decisions of cnns via contrastive backpropagation. In: Proceedings of the 14th Asian Conference on Computer Vision. Perth, Australia: 2018. 119–134
    [60] Iwana B K, Kuroki R, Uchida S. Explaining convolutional neural networks using softmax gradient layer-wise relevance propagation. In: Proceedings of the 2019 IEEE/CVF International Conference on Computer Vision Workshop. Seoul, Korea: 2019. 4176–4185
    [61] Montavon G, Lapuschkin S, Binder A, Samek W, Müller K R. Explaining nonlinear classification decisions with deep Taylor decomposition. Pattern Recognition, 2017, 65: 211–222. doi: 10.1016/j.patcog.2016.11.008
    [62] Zhou B, Khosla A, Lapedriza A, Oliva A, Torralba A. Learning deep features for discriminative localization. In: Proceedings of the 2016 IEEE Conference on Computer Vision and Pattern Recognition. Las Vegas, USA: 2016. 2921–2929
    [63] Selvaraju R R, Cogswell M, Das A, Vedantam R, Parikh D, Batra D. Grad-CAM: Visual explanations from deep networks via gradient-based localization. In: Proceedings of the IEEE International Conference on Computer Vision. Venice, Italy: 2017. 618–626
    [64] Selvaraju R R, Das A, Vedantam R, Cogswell M, Parikh D, Batra D. Grad-CAM: Why did you say that? arXiv preprint, 2016, arXiv: 1611.07450
    [65] Chattopadhay A, Sarkar A, Howlader P, Balasubramanian V N. Grad-CAM++: Generalized gradient-based visual explanations for deep convolutional networks. In: Proceedings of the 2018 IEEE Winter Conference on Applications of Computer Vision. Lake Tahoe, Nevada, USA: 2018. 839–847
    [66] Wang H, Du M, Yang F, Zhang Z. Score-CAM: Improved visual explanations via score-weighted class activation mapping. arXiv preprint, 2019, arXiv: 1910.01279
    [67] Patro B, Lunayach M, Patel S, Namboodiri V. U-CAM: visual explanation using uncertainty based class activation maps. In: Proceedings of the 2019 IEEE/CVF International Conference on Computer Vision. Seoul, Korea: 2019. 7444–7453
    [68] Omeiza D, Speakman S, Cintas C, Weldermariam K. Smooth Grad-CAM++: An enhanced inference level visualization technique for deep convolutional neural network models. arXiv preprint, 2019, arXiv: 1908.01224
    [69] Nguyen A, Yosinski J, Clune J. Deep neural networks are easily fooled: High confidence predictions for unrecognizable images. In: Proceedings of the 2015 IEEE Conference on Computer Vision and Pattern Recognition. Boston, USA: 2015. 427–436
    [70] Mahendran A, Vedaldi A. Visualizing Deep Convolutional Neural Networks Using Natural Pre-images. International Journal of Computer Vision, 2016, 120(3): 233–255. doi: 10.1007/s11263-016-0911-8
    [71] Yosinski J, Clune J, Nguyen A M, Fuchs T J, Lipson H. Understanding neural networks through deep visualization. arXiv preprint, 2015, arXiv: 1506.06579
    [72] Woo S, Park J, Lee J Y, Kweon I S. CBAM: Convolutional block attention module. In: Proceedings of the European Conference on Computer Vision. Munich, Germany: 2018. 3–19
    [73] Li K, Wu Z, Peng K C, Ernst J, Fu Y. Tell me where to look: Guided attention inference network. In: Proceedings of the 2018 IEEE/CVF Conference on Computer Vision and Pattern Recognition. Salt Lake City, USA: 2018. 9215–9223
    [74] Fukui H, Hirakawa T, Yamashita T, Fujiyoshi H. Attention branch network: Learning of attention mechanism for visual explanation. In: Proceedings of the 2019 IEEE/CVF Conference on Computer Vision and Pattern Recognition. Long Beach, CA, USA: 2019. 10705–10714
    [75] Zhang J, Lin Z L, Brandt J, Shen X, Sclaroff S. Top-down neural attention by excitation backprop. In: Proceedings of the European Conference on Computer Vision. Amsterdam, Netherlands: Springer, 2016. 543–559
    [76] Hua Y, Mou L, Zhu X X. Recurrently exploring class-wise attention in a hybrid convolutional and bidirectional LSTM network for multi-label aerial image classification. Isprs Journal of Photogrammetry and Remote Sensing, 2019, 149: 188–199. doi: 10.1016/j.isprsjprs.2019.01.015
    [77] Li J, Lin D, Wang Y, Xu G, Ding C. Deep discriminative Representation learning with attention map for scene classification. arXiv preprint, 2019, arXiv: 1902.07967
    [78] Ribeiro M T, Singh S, Guestrin C. Why should I trust you? Explaining the predictions of any classifier. In: Proceedings of the 2016 Conference of the North American Chapter of the Association for Computational Linguistics: Demonstrations. San Diego, USA: 2016. 97–101
    [79] Lundberg S M, Lee S I. A unified approach to interpreting model predictions. In: Proceedings of the 31st International Conference on Neural Information Processing Systems. Long Beach, USA: 2017. 4768–4777
    [80] Shapley L S. A Value for N-Person Games. Contributions to The Theory of Games (AM-28). Princeton: Princeton University Press, 1953. 2: 307–317
    [81] Erhan D, Bengio Y, Courville A, Vincent P. Visualizing Higher-layer Features of a Deep Network, Technical Report 1341, Department of Computer Science and Operations Research, University of Montreal, Canada, 2009
    [82] Nguyen A, Dosovitskiy A, Yosinski J, Brox T, Clune J. Synthesizing the preferred inputs for neurons in neural networks via deep generator networks. In: Proceedings of the Annual Conference on Neural Information Processing Systems. Barcelona, Spain: 2016. 3387–3395
    [83] Ozbulak U. PyTorch CNN Visualizations [Online], available: https://github.com/utkuozbulak/pytorch-cnn-visualizations, 2019.
    [84] Zhang Q, Wang W, Zhu S C. Examining CNN representations with respect to dataset bias. In: Proceedings of the 31st AAAI Conference on Artificial Intelligence. San Francisco, USA: 2017. 4464–4473
    [85] Adebayo J, Gilmer J, Muelly M C, Goodfellow I, Hardt M, Kim B. Sanity checks for saliency maps. In: Proceedings of the Annual Conference on Neural Information Processing Systems. Montréal, Canada: 2018. 9505–9515
    [86] Szegedy C, Zaremba W, Sutskever I, Bruna J, Erhan D, Goodfellow I, et al. Intriguing properties of neural networks. In: Proceedings of the 2014 ICLR International Conference on Learning Representations. Banff, Canada: 2014.
    [87] Goodfellow I J, Shlens J, Szegedy C. Explaining and harnessing adversarial examples. In: Proceedings of the 2015 ICLR International Conference on Learning Representations. San Diego, USA: 2015.
    [88] Gu J, Tresp V. Saliency Methods for explaining adversarial attacks. arXiv preprint, 2019, arXiv: 1908.08413
    [89] Ghorbani A, Abid A, Zou J. Interpretation of neural networks is fragile. In: Proceedings of the 33rd AAAI Conference on Artificial Intelligence. Honolulu, Hawaii, USA: 2019. 3681–3688
    [90] Dombrowski A K, Alber M, Anders C, Ackermann M, Müller K R, Kessel P. Explanations can be manipulated and geometry is to blame. In: Proceedings of the 33rd Conference on Neural Information Processing Systems. Vancouver, Canada: 2019. 13589–13600
    [91] Heo J, Joo S, Moon T. Fooling neural network interpretations via adversarial model manipulation. In: Proceedings of the 33rd Conference on Neural Information Processing Systems. Vancouver, Canada: 2019. 2925–2936
    [92] Zheng H, Fernandes E, Prakash A. Analyzing the interpretability robustness of self-explaining models. arXiv preprint, 2019, arXiv: 1905
    [93] Singh M, Kumari N, Mangla P, Sinha A, Balasubramanian V N, Krishnamurthy B. On the benefits of attributional robustness. arXiv preprint, 2019, arXiv: 1911.13073
    [94] Krug A, Stober S. Introspection for convolutional automatic speech recognition. In: Proceedings of the 2018 EMNLP Workshop BlackboxNLP: Analyzing and Interpreting Neural Networks for NLP. Brussels, Belgium: 2018. 187–199
    [95] Kumar D, Daya I B, Vats K, Feng J, Taylor G W, Wong A. Beyond explainability: Leveraging interpretability for improved adversarial learning. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition Workshops. Long Beach, USA: 2019. 16–19
    [96] Kim J, Kim M, Kang H, Lee K H. U-GAT-IT: Unsupervised generative attentional networks with adaptive layer-instance normalization for image-to-image translation. In: Proceedings of the 8th International Conference on Learning Representations. Addis Ababa, Ethiopia: 2020.
    [97] Tan Y, Zhang M, Liu Y, Ma S. Rating-boosted latent topics: Understanding users and items with ratings and reviews. In: Proceedings of the 25th International Joint Conference on Artificial Intelligence. New York, USA: 2016. 2640–2646
    [98] Zhang Y, Chen X. Explainable Recommendation: A Survey and New Perspectives. Foundations and Trends in Information Retrieval, 2020, 14(1): 1–101. doi: 10.1561/1500000066
    [99] Bojarski M, Choromanska A, Choromanski K, Firner B, Jackel L, Muller U, et al. VisualBackProp: Visualizing CNNs for autonomous driving. arXiv preprint, 2016, arxiv: 1611.05418
    [100] Kim J, Canny J. Interpretable learning for self-driving cars by visualizing causal attention. In: Proceedings of the 2017 IEEE International Conference on Computer Vision. Venice, Italy: 2017. 2961–2969
    [101] Zhang Z, Xie Y, Xing F, McGough M, Yang L. MDNet: A semantically and visually interpretable medical image diagnosis network. In: Proceedings of the 2017 IEEE Conference on Computer Vision and Pattern Recognition. Honolulu, Hawaii, USA: 2017. 3549–3557
    [102] Carvalho D V, Pereira E M, Cardoso J S. Machine Learning Interpretability: A Survey on Methods and Metrics. Electronics, 2019, 8(8): 832. doi: 10.3390/electronics8080832
    [103] Grün F, Rupprecht C, Navab N, Tombari F. A taxonomy and library for visualizing learned features in convolutional neural networks. arXiv preprint, 2016, arXiv: 1606.07757
    [104] Samek W, Wiegand T, Müller K R. Explainable artificial intelligence: Understanding, visualizing and interpreting deep learning models. arXiv preprint, 2017, arXiv: 1708.08296
    [105] Seifert C, Aamir A, Balagopalan A, Jain D, Sharma A, Grottel S, Gumhold S. Visualizations of Deep Neural Networks in Computer Vision: A Survey. Studies in Big Data, 2017, 123–144.
    [106] Zhang Q, Zhu S. Visual interpretability for deep learning: A survey. Frontiers of Information Technology & Electronic Engineering, 2018, 19(1): 27–39.
    [107] Adadi A, Berrada M. Peeking Inside the Black-Box: A survey on Explainable Artificial Intelligence (XAI). IEEE Access, 2018, 6: 52138-52160. doi: 10.1109/ACCESS.2018.2870052
    [108] Samek W, Montavon G, Lapuschkin S, Anders C J, Müller K. Toward interpretable machine learning: Transparent deep neural networks and beyond. arXiv preprint, 2020, arXiv: 2003.07631
    [109] Xie N, Ras G, Gerven M van, Doran D. Explainable deep learning: A field guide for the uninitiated. arXiv preprint, 2020, arXiv: 2004.14545
    [110] Arrieta A B, Díaz-Rodríguez N, Ser J D, Bennetot A, Tabik S, Barbado A, Garcia S, Gil-Lopez S, Molina D, Benjamins R, Chatila R, Herrera F. Explainable Artificial Intelligence (XAI): Concepts, Taxonomies, Opportunities and Challenges toward Responsible AI. Information Fusion, 2020, 58: 82–115. doi: 10.1016/j.inffus.2019.12.012
    [111] Das A, Rad P. Opportunities and challenges in explainable artificial intelligence (XAI): A survey. arXiv preprint, 2020, arXiv: 2006.11371
    [112] Vedaldi A, Lux M, Bertini M. MatConvNet: CNNs are also for MATLAB users. ACM Sigmultimedia Records, 2018, 10(1): 9–9. doi: 10.1145/3210241.3210250
    [113] Kim B. Understanding NN [Online], available: https://github.com/1202kbs/Understanding-NN, August 22, 2020.
    [114] Wang Z J, Turko R, Shaikh O, Park H, Das N, Hohman F, Kahng M, Chau D H. CNN Explainer: Learning Convolutional Neural Networks with Interactive Visualization. IEEE Transactions on Visualization and Computer Graphics, 2021, 27: 1396-1406. doi: 10.1109/TVCG.2020.3030418
  • 加载中
图(36) / 表(4)
计量
  • 文章访问数:  3774
  • HTML全文浏览量:  1671
  • PDF下载量:  1107
  • 被引次数: 0
出版历程
  • 收稿日期:  2020-07-15
  • 录用日期:  2021-03-19
  • 网络出版日期:  2021-06-11
  • 刊出日期:  2022-06-01

目录

    /

    返回文章
    返回