2.793

2018影响因子

(CJCR)

  • 中文核心
  • EI
  • 中国科技核心
  • Scopus
  • CSCD
  • 英国科学文摘

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

基于规则的建模方法的可解释性及其发展

周志杰 曹友 胡昌华 唐帅文 张春潮 王杰

周志杰, 曹友, 胡昌华, 唐帅文, 张春潮, 王杰. 基于规则的建模方法的可解释性及其发展. 自动化学报, 2020, 45(x): 1−16 doi: 10.16383/j.aas.c200402
引用本文: 周志杰, 曹友, 胡昌华, 唐帅文, 张春潮, 王杰. 基于规则的建模方法的可解释性及其发展. 自动化学报, 2020, 45(x): 1−16 doi: 10.16383/j.aas.c200402
Zhou Zhi-Jie, Cao You, Hu Chang-Hua, Tang Shuai-Wen, Zhang Chun-Chao, Wang Jie. The interpretability of rule-based modeling approach and its development. Acta Automatica Sinica, 2020, 45(x): 1−16 doi: 10.16383/j.aas.c200402
Citation: Zhou Zhi-Jie, Cao You, Hu Chang-Hua, Tang Shuai-Wen, Zhang Chun-Chao, Wang Jie. The interpretability of rule-based modeling approach and its development. Acta Automatica Sinica, 2020, 45(x): 1−16 doi: 10.16383/j.aas.c200402

基于规则的建模方法的可解释性及其发展

doi: 10.16383/j.aas.c200402
基金项目: 国家自然科学基金(61773388, 61751304, 61833016, 61702142), 陕西省杰出青年基金(2020JC-34)资助
详细信息
    作者简介:

    周志杰:火箭军工程大学教授. 2010年获得清华大学博士学位. 主要研究方向为证据推理, 置信规则库, 故障诊断, 安全性评估. E-mail: zhouzj04@tsinghua.org.cn

    曹友:火箭军工程大学博士研究生. 2017年获得哈尔滨理工大学学士学位. 主要研究方向为证据推理, 置信规则库, 安全性评估. E-mail: cy936756268@163.com

    胡昌华:火箭军工程大学教授, 长江学者. 1996年获得西北工业大学博士学位. 主要研究方向为故障诊断, 寿命预测. E-mail: hch66603@163.com

    唐帅文:火箭军工程大学博士研究生. 2017年获得火箭军工程大学学士学位. 主要研究方向为证据推理, 故障诊断, 安全性评估. E-mail: tsw631845201@163.com

    张春潮:火箭军工程大学博士研究生. 2019年获得长春理工大学学士学位. 主要研究方向为置信规则库, 故障诊断. E-mail: zhang1875349@163.com

    王杰:火箭军工程大学博士研究生. 2018年获得合肥工业大学学士学位. 主要研究方向为证据推理, 故障诊断, 安全性评估. E-mail: wj2802877478@163.com

The Interpretability of Rule-Based Modeling Approach and its Development

Funds: National Natural Science Foundation of P. R. China (61773388, 61751304, 61833016, 61702142), Shaanxi Outstanding Youth Science Foundation (2020JC-34)
  • 摘要: 建模方法的可解释性指其以可理解的方式表达实际系统行为的能力. 随着实践中对可靠性需求的不断提高, 建立出可靠且可解释的模型以增强人对实际系统的认知成为了建模的重要目标. 基于规则的建模方法可更直观地描述系统机理, 并能有效融合定量信息和定性知识实现不确定信息的灵活处理, 具有较强的建模性能. 本文从基于规则的建模方法出发, 围绕知识库、推理机和模型优化梳理了其在可解释性方面的研究, 最后进行了简要的评述和展望.
  • 图  1  论文整体框架

    Fig.  1  The overall framework of the paper

    图  2  故障树

    Fig.  2  Fault tree

    图  3  贝叶斯网络片段

    Fig.  3  Bayesian network fragment

    图  4  RBM可解释性的主要内容

    Fig.  4  The main contents of RBM interpretability

    图  5  复杂系统安全性推演演示验证系统

    Fig.  5  Complex system security demonstration and verification system

  • [1] Jorge C, Oscar C, Francisco H. Interpretability Issues in Fuzzy Modeling. Springer Berlin Heidelberg, 2003
    [2] He R, Wu X, Sun Z N, Tan T N. Wasserstein CNN: Learning Invariant Features for NIR-VIS Face Recognition. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2019, 41(7): 1761−1773 doi: 10.1109/TPAMI.2018.2842770
    [3] Miao K H, Miao J H. Coronary heart disease diagnosis using deep neural networks. International Journal of Advanced Computer Science and Applications, 2018, 9(10): 1−8
    [4] Ogunfunmi T, Ramachandran R P, Togneri R, Zhao Y J, Xia X J. A primer on deep learning architectures and applications in speech processing. Circuits Systems and Signal Processing, 2019, 38(8): 3406−3432 doi: 10.1007/s00034-019-01157-3
    [5] Hori T, Chen Z, Erdǒgan, Hakan H. Multi-microphone speech recognition integrating beam forming, robust feature extraction, and advanced DNN/RNN backend. Computer Speech and Language, 2017, 46: 401−418 doi: 10.1016/j.csl.2017.01.013
    [6] Wyatt J C. Nervous about artificial neural networks. The Lancet, 1995, 346(8984): 1175−1177 doi: 10.1016/S0140-6736(95)92893-6
    [7] Walker C R, Frize M. Are artificial neural networks "ready to use" for decision making in the neonatal intensive care unit. Pediatric Research, 2004, 56(1): 6−8 doi: 10.1203/01.PDR.0000129654.02381.B9
    [8] Gacto M J, Alcalá R, Herrera F. Interpretability of linguistic fuzzy rule-based systems: an overview of interpretability measures. Information Sciences, 2011, 181(20): 4340−4360 doi: 10.1016/j.ins.2011.02.021
    [9] Guillaume S. Designing fuzzy inference systems from data: An interpretability-oriented review. IEEE Transactions on Fuzzy Systems, 2001, 9(3): 426−443 doi: 10.1109/91.928739
    [10] Zhou S, Gan J Q. Low-level interpretability and high-level interpretability: a unified view of data-driven interpretable fuzzy system modelling. Fuzzy Sets and Systems, 2008, 159(23): 3091−3131 doi: 10.1016/j.fss.2008.05.016
    [11] Mencar C, Fanelli A M. Interpretability constraints for fuzzy information granulation. Information Sciences, 2008, 178(24): 4585−4618 doi: 10.1016/j.ins.2008.08.015
    [12] Jin Y. Fuzzy modelling of high-dimensional systems: complexity reduction and interpretability improvement. IEEE Transactions on Fuzzy Systems, 2000, 8(2): 212−220 doi: 10.1109/91.842154
    [13] Montavon G, Samek W, Müller K. Methods for interpreting and understanding deep neural networks. Digital Signal Processing, 2018, 73: 1−15 doi: 10.1016/j.dsp.2017.10.011
    [14] Robinson R L, Palczewska A, Palczewski J, Kidley N. Comparison of the predictive performance and interpretability of random forest and linear models on benchmark data sets. Journal of Chemical Information and Modeling, 2017, 57(8): 1773−1792 doi: 10.1021/acs.jcim.6b00753
    [15] Zhang Y, Haghani A. A gradient boosting method to improve travel time prediction. Transportation Research, 2015, 58: 308−324
    [16] Ciresan D, Meier U, Masci J, Schmidhuber J. Multi-column deep neural network for traffic sign classification. Neural Networks, 2012, 32: 333−338 doi: 10.1016/j.neunet.2012.02.023
    [17] Andrews R, Diederich J, Tickle A B. Survey and critique of techniques for extracting rules from trained artificial neural networks. Knowledge-Based Systems, 1995, 8(6): 373−389 doi: 10.1016/0950-7051(96)81920-4
    [18] Tickle A B, Andrews R, Golea M, Diederich J. The truth will come to light: directions and challenges in extracting the knowledge embedded within trained artificial neural networks. IEEE Transactions on Neural Networks, 1998, 9(6): 1057−1068 doi: 10.1109/72.728352
    [19] Fu L M. Rule generation from neural networks. IEEE Transactions on Systems, Man, and Cybernetics, 1994, 24(8): 1114−1124 doi: 10.1109/21.299696
    [20] De Fortuny E J, Martens D. Active Learning-Based Pedagogical Rule Extraction. IEEE Transactions on Neural Networks, 2015, 26(11): 2664−2677 doi: 10.1109/TNNLS.2015.2389037
    [21] Wang J P, Gou L, Zhang W. DeepVID: deep visual interpretation and diagnosis for image classifiers via knowledge distillation. IEEE Transactions on Visualization and Computer Graphics, 2019, 25(6): 2168−2180 doi: 10.1109/TVCG.2019.2903943
    [22] Chen Y, Meng H B, Wen X L, Ma Pengga, Qin Y X, Ma Z X, Liu Z Y. Classification methods of a small sample target object in the sky based on the higher layer visualizing feature and transfer learning deep networks. EURASIP Journal on Wireless Communications and Networking, 2018, 2018: 1−12 doi: 10.1186/s13638-017-1011-3
    [23] Oberguggenberger M, King J, Schmelzer B. Classical and imprecise probability methods for sensitivity analysis in engineering: a case study. International Journal of Approximate Reasoning, 2009, 50(4): 680−693 doi: 10.1016/j.ijar.2008.09.004
    [24] Feng Z C, Zhou Z J, Hu C H, Chang L L, Hu G Y, Zhao F J. A new belief rule base model with attribute reliability. IEEE Transactions on Fuzzy Systems, 2019, 27(5): 903−916 doi: 10.1109/TFUZZ.2018.2878196
    [25] Yang L H, Liu J, Wang Y M, Martinez Luis. New activation weight calculation and parameter optimization for extended belief rule-based system based on sensitivity analysis. Knowledge and Information Systems, 2019, 60(2): 837−878 doi: 10.1007/s10115-018-1211-0
    [26] Jensen C A, Reed R D, Marks R J, EI-sharkawi M A, Eggen J. Inversion of feed forward neural networks: algorithms and applications. Proceedings of the IEEE, 1999, 87(9): 1536−1549 doi: 10.1109/5.784232
    [27] Lee G, Jeong J, Seo S, Kim C, Kang P. Sentiment classification with word localization based on weakly supervised learning with a convolutional neural network. Knowledge-Based Systems, 2018, 152(15): 70−82
    [28] Riccardo G, Anna M, Salvatore R, Franco T, Fosca G, Dino P. A survey of methods for explaining black box models. ACM Computing Surveys, 2018, 51(5): 1−42
    [29] Guo H P, Wu S H, Wang Z Q, Wu C A. Linear regression for forecasting photovoltaic power generation. Applied Mechanics and Materials, 2014, 495: 1771−1774
    [30] Sun H M. A naive bayes classifier for prediction of multidrug resistance reversal activity on the basis of atom typing. Journal of Medicinal Chemistry, 2005, 48(12): 4031−4039 doi: 10.1021/jm050180t
    [31] Afsari F, Eftekhari M, Eslami E, Woo P Y. Interpretability-based fuzzy decision tree classifier a hybrid of the subtractive clustering and the multi-objective evolutionary algorithm. Soft Computing, 2013, 17(9): 1673−1686 doi: 10.1007/s00500-013-0981-2
    [32] Sun R. Robust reasoning: integrating rule-based and similarity-based reasoning. Artificial Intelligence, 1995, 75(2): 241−295 doi: 10.1016/0004-3702(94)00028-Y
    [33] Haufe S, Meinecke F, GoRgen K, Sven D. On the interpretation of weight vectors of linear models in multivariate neuroimaging. Neuroimage, 2014, 87: 96−110 doi: 10.1016/j.neuroimage.2013.10.067
    [34] Štrumbelj E, Kononenko I. An efficient explanation of individual classifications using game theory. Journal of Machine Learning Research, 2010, 11(1): 1−18
    [35] Huysmans J, Dejaeger K, Mues C. An empirical evaluation of the comprehensibility of decision table, tree and rule based predictive models. Decision Support Systems, 2011, 51(1): 141−154 doi: 10.1016/j.dss.2010.12.003
    [36] Breslow L A, Aha D W. Simplifying decision trees: a survey. The Knowledge Engineering Review, 1996, 12(1): 1−40
    [37] Breiman L. Random forests. Machine Learning, 2001, 45(1): 5−32 doi: 10.1023/A:1010933404324
    [38] Zadeh L A. Fuzzy sets. Information and Control, 1965, 8(3): 338−353 doi: 10.1016/S0019-9958(65)90241-X
    [39] Mamdani E H. Applications of fuzzy algorithm for control a simple dynamic plant. Proceedings of the IEEE, 1974, 121(12): 1585−1588
    [40] Fiordaliso A. A constrained Takagi-Sugeno fuzzy system that allows for better interpretation and analysis. Fuzzy Sets and Systems, 2001, 118(2): 307−318 doi: 10.1016/S0165-0114(99)00109-8
    [41] Bikdash M. A highly interpretable form of Sugeno inference systems. IEEE Transactions on Fuzzy Systems, 1999, 7(6): 686−696 doi: 10.1109/91.811237
    [42] 周志杰, 陈玉旺, 胡昌华, 张邦成, 常雷雷. 证据推理、置信规则库与复杂系统建模. 北京: 科学出版社, 2017

    Zhou Zhi-Jie, Chen Yu-Wang, Hu Chang-Hua, Zhang Bang-Cheng, Chang Lei-Lei. Evidential Reasoning, Belief Rule Base and Complex System Modeling. Beijing: Science Press, 2017
    [43] Yang J B, Sen P. A general multi-level evaluation process for hybrid MADM with uncertainty. IEEE Transactions on Systems, Man and Cybernetics: Systems, 1994, 24(10): 1458−1473 doi: 10.1109/21.310529
    [44] Yang J B, Singh M G. An evidential reasoning approach for multiple-attribute decision making with uncertainty. IEEE Transactions on Systems, Man and Cybernetics: Systems, 1994, 24(1): 1−18 doi: 10.1109/21.259681
    [45] Yang J B, Liu J, Wang J, Sii H S, Wang H W. Belief rule-base inference methodology using the evidential reasoning approach-RIMER. IEEE Transactions on Systems, Man and Cybernetics: Systems, 2006, 36(2): 266−285 doi: 10.1109/TSMCA.2005.851270
    [46] Dempster A P. A generalization of bayesian inference. Journal of the Royal Statistical Society. Series B: Methodological, 1968, 30(2): 205−247
    [47] Shafer G. A Mathematical Theory of Evidence. Princeton University Press, 1976
    [48] Edwards W. Behavioral Decision Theory. Cambridge University Press, 1994
    [49] Schwarzer G, Vach W, Schumacher M. On the misuses of artificial neural networks for prognostic and diagnostic classification in oncology. Statistics in Medicine, 2000, 19(4): 541−561 doi: 10.1002/(SICI)1097-0258(20000229)19:4<541::AID-SIM355>3.0.CO;2-V
    [50] Liu J, Yang J B, Wang J, Sii H S, Wang Y M. Fuzzy rule-based evidential reasoning approach for safety analysis. International Journal of General Systems, 2004, 33(2): 183−204
    [51] Post E L. Introduction to a general theory of elementary propositions. American Journal of Mathematics, 1921, 43(3): 163−185 doi: 10.2307/2370324
    [52] 王宁, 孟宪尧. 输入采用一般模糊划分的T-S模糊控制系统稳定性分析. 自动化学报, 2009, 34(11): 1441−1445 doi: 10.3724/SP.J.1004.2008.01441

    Wang Ning, Meng Xian-Yao. Stability analysis of ts fuzzy control system with inputs using general fuzzy partition. Acta Automatica Sinica, 2009, 34(11): 1441−1445 doi: 10.3724/SP.J.1004.2008.01441
    [53] 张松涛, 任光. 基于分段模糊Lyapunov方法的离散模糊系统分析与设计. 自动化学报, 2006, 32(05): 813−818

    Zhang Song-Tao, Ren Guang. Analysis and design of discrete fuzzy system based on piece wise fuzzy lyapunov approach. Acta Automatica Sinica, 2006, 32(05): 813−818
    [54] Chang L L, Zhou Z J, You Y, Yang L H. Belief rule based expert system for classification problems with new rule activation and weight calculation procedures. Information Sciences, 2015, 336: 75−91
    [55] Chang L L, Zhou Z J, Liao H C, Chen Y W, Tan X, Herrera F. Generic disjunctive belief-rule-base modeling, inferencing, and optimization. IEEE Transactions on Fuzzy Systems, 2019, 27(9): 1866−1880 doi: 10.1109/TFUZZ.2019.2892348
    [56] Chang L L, Jiang J, Sun J B, Chen Y W, Zhou Z J, Xu X B, Tang X. Disjunctive belief rule base spreading for threat level assessment with heterogeneous, insufficient, and missing information. Information Sciences, 2019, 476: 106−131 doi: 10.1016/j.ins.2018.10.004
    [57] Chang L L, Chen Y W, Hao Z Y, Zhou Z J, Xu X B, Tan X. Indirect disjunctive belief rule base modeling using limited conjunctive rules: two possible means. International Journal of Approximate Reasoning, 2019, 108: 1−20 doi: 10.1016/j.ijar.2019.02.006
    [58] Liu J, Martinez L, Wang Y. Extended belief rule base inference methodology. In: Proceedings of the 3rd International Conference on Intelligent System and Knowledge Engineering. Xia’meng, China: IEEE, 2008. 1415−1420
    [59] Liu J, Martinez L, Calzada A, Wang H. A novel belief rule base representation, generation and its inference methodology. Knowledge-Based Systems, 2013, 53: 129−141 doi: 10.1016/j.knosys.2013.08.019
    [60] Riid A. Transparent fuzzy systems: modelling and control[Ph. D. dissertation], Tallinn Technical University, 2002
    [61] De Oliveira J V. A design methodology for fuzzy system interfaces. IEEE Transactions on Fuzzy Systems, 1995, 3(4): 404−414 doi: 10.1109/91.481949
    [62] De Oliveira J V. Semantic constraints for membership function optimization. IEEE Transactions on Systems Man and Cybernetics, 1999, 29(1): 128−138 doi: 10.1109/3468.736369
    [63] Dubois D, Prade H. Fuzzy sets and systems: theory and applications, New York: Academic Press, 1980
    [64] Zwick R, Carlstein E, Budescu D V. Measures of similarity among fuzzy concepts: a comparative analysis. International Journal of Approximate Reasoning, 1987, 1(2): 221−242 doi: 10.1016/0888-613X(87)90015-6
    [65] Mencar C, Castellano G, Fanelli A M. Distinguishability quantification of fuzzy sets. Information Sciences, 2007, 177: 130−149 doi: 10.1016/j.ins.2006.04.008
    [66] Mencar C, Castellano G, Bargiela A, Fanelli A M, Similarity vs. possibility in measuring fuzzy sets distinguishability, In: Proceedings of the 5th International Conference on Recent Advances in Soft Computing, Nottingham, UK: Springer-Verlag, 2004: 354−359
    [67] Zhou S M, Gan J Q. Constructing accurate and parsimonious fuzzy models with distinguishable fuzzy sets based on an entropy measure. Fuzzy Sets and Systems, 2006, 157(8): 1057−1074 doi: 10.1016/j.fss.2005.08.004
    [68] Guillaume S. Designing fuzzy inference systems from data: An interpretability-oriented review. IEEE Transactions on Fuzzy Systems, 2001, 9(3): 426−443 doi: 10.1109/91.928739
    [69] Meesad P, Yen G G. Accuracy, comprehensibility and completeness evaluation of a fuzzy expert system. International Journal of Uncertainty Fuzziness and Knowledge Based Systems, 2008, 11(04): 445−466
    [70] Espinosa J, Vandewalle J. Constructing fuzzy models with linguistic integrity from numerical data-AFRELI algorithm. IEEE Transactions on Fuzzy Systems, 2000, 8(5): 591−600
    [71] Li G L, Zhou Z J, Hu C H, Chang L L, Zhou Z G, Zhao F J. A new safety assessment model for complex system based on the conditional generalized minimum variance and the belief rule base. Safety Science, 2017, 93: 108−120 doi: 10.1016/j.ssci.2016.11.011
    [72] Zhou Z J, Hu C H, Yang J B, Xu D L, Chen M Y, Zhou D H. A sequential learning algorithm for online constructing belief-rule-based systems. Expert Systems With Applications, 2010, 37(2): 1790−1799 doi: 10.1016/j.eswa.2009.07.067
    [73] Jin Y, Seelen W, Sendhoff B. On generating FC3 fuzzy rule systems from data using evolution strategies. IEEE Transactions on Cybernetics, 1999, 29(6): 829−845
    [74] Chang L L, Zhou Y, Jiang J, Li M J, Zhang X H. Structure learning for belief rule base expert system: A comparative study. Knowledge-Based Systems, 2013, 39: 159−172 doi: 10.1016/j.knosys.2012.10.016
    [75] Ding C, Peng H. Minimum redundancy feature selection from microarray gene expression data. Journal of Bioinformatics and Computational Biology, 2005, 3(2): 185−205 doi: 10.1142/S0219720005001004
    [76] 王应明, 杨隆浩, 常雷雷, 傅仰耿. 置信规则库规则约简的粗糙集方法. 控制与决策, 2014, 29(11): 1943−1950

    Wang Ying-Min, Yang Long-Hao, Chang Lei-Lei, Fu Yang-Gen. Rough set method for rule reduction in belief rule base. Control and Decision, 2014, 29(11): 1943−1950
    [77] 常雷雷, 李孟军, 鲁延京, 程贲, 张晓航. 基于主成分分析的置信规则库结构学习方法. 系统工程理论与实践, 2014, 34(5): 1297−1304 doi: 10.12011/1000-6788(2014)5-1297

    Chang Lei-Lei, Li Meng-Jun, Lu Yan-Jing, Cheng Ben, Zhang Xiao-Hang. Structure learning for belief rule base using principal component analysis. System Engineering Theory and Practice, 2014, 34(5): 1297−1304 doi: 10.12011/1000-6788(2014)5-1297
    [78] Chang L L, Zhou Z J, Chen Y W, Xu X B, Sun J B, Liao T J, Tan X. Akaike Information Criterion-based conjunctive belief rule base learning for complex system modeling. Knowledge-Based Systems, 2018, 161: 47−64 doi: 10.1016/j.knosys.2018.07.029
    [79] Hodges J, Bridges S, Sparrow C, Wooley B, Tang B, Jun C. The development of an expert system for the characterization of containers of contaminated waste. Expert System with Application, 1999, 17(3): 167−181 doi: 10.1016/S0957-4174(99)00032-9
    [80] Walley P. Measures of uncertainty in expert systems. Artificial Intelligence, 1996, 83(1): 1−58 doi: 10.1016/0004-3702(95)00009-7
    [81] Walley P. Statistical Reasoning With Imprecise Probabilities. New York: Chapman and Hall, 1991.
    [82] Russell A. Theory of probability. Cambridge University Press, 1928
    [83] Chapman V. Making decisions. Nurs Stand, 1995, 10(8): 2−8
    [84] Pearl J. Probabilistic reasoning in intelligent systems: networks of plausible inference. Journal of Philosophy, 1991, 88(8): 117−124
    [85] Nilsson N J. Probabilistic logic. Artificial Intelligent, 1986, 28: 71−87 doi: 10.1016/0004-3702(86)90031-7
    [86] Duda R O, Reboh R. AI and decision making: the prospector experience. Artificial Intelligence Applications for Business, 1984, 21: 111−147
    [87] Lauritzen S L, Spiegelhalter D J. Local computations with probabilities on graphical structures and their application to expert systems. Journal of the Royal Statistical Society. Series B: Methodological, 1998, 50(2): 157−224
    [88] David J. Bayesian analysis in expert systems. Statistical Science, 1993, 8(3): 277−283 doi: 10.1214/ss/1177010898
    [89] Pearl J. Reasoning with belief functions: an analysis of compatibility. International Journal of Approximate Reasoning, 1990, 4: 363−389 doi: 10.1016/0888-613X(90)90013-R
    [90] Halpem J Y, Fagin R. Two views of belief: belief as generalized probability and belief as evidence. Artificial Intelligent, 1992, 5: 275−317
    [91] Shafer G. Constructive probability. Synrhese, 1981, 48: 1−60
    [92] Shafer G. Belief functions and parametric models. Journal of the Royal Statistical Society, 1982, 44(3): 322−352
    [93] Shafer G. Perspectives on the theory and practice of belief functions. International Journal of Approximate Reasoning, 1990, 4: 323−362 doi: 10.1016/0888-613X(90)90012-Q
    [94] Tzvieli A. Possibility theory: an approach to computerized processing of uncertainty. Journal of the American Society for Information Science, 1990, 41(2): 153−154
    [95] Yager R R. An introduction to applications of possibility theory. Human systems Management, 1982, 3(4): 246−269 doi: 10.3233/HSM-1982-3404
    [96] Dubois D, Prade H. Possibility Theory, Plenum Press, New York, 1988
    [97] Smith C A. Consistency in statistical inference and decision. Journal of the Royal Statistical Society Series B-Methodological, 1961, 23(1): 1−25
    [98] Jaffray J. Bayesian updating and belief functions. IEEE Transactions on Systems Man and Cybernetics, 1992, 22(5): 1144−1152 doi: 10.1109/21.179852
    [99] Wang Y M, Yang J B, Xu D L. Environmental impact assessment using the evidential reasoning approach. European Journal of Operational Research, 2006, 174(3): 1885−1913 doi: 10.1016/j.ejor.2004.09.059
    [100] Penareyes C A, Sipper M. Fuzzy CoCo: a cooperative-coevolutionary approach to fuzzy modeling. IEEE Transactions on Fuzzy Systems, 2001, 9(5): 727−737 doi: 10.1109/91.963759
    [101] Guillaume S, Charnomordic B. Generating an interpretable family of fuzzy partitions from data. IEEE Transactions on Fuzzy Systems, 2004, 12(3): 324−335 doi: 10.1109/TFUZZ.2004.825979
    [102] Yang J B, Liu J, Xu D L, Wang J, Wang H. Optimization models for training belief rule based systems. IEEE Transactions on Systems, Man, and Cybernetics, 2007, 37(4): 569−585 doi: 10.1109/TSMCA.2007.897606
    [103] Xu D L, Liu J, Yang J B, Liu G P, Wang J, Jenkinson I, Ren Jun. Inference and learning methodology of belief-rule-based expert system for pipeline leak detection. Expert Systems with Applications, 2007, 32(1): 103−113 doi: 10.1016/j.eswa.2005.11.015
    [104] Zhou Z J, Hu C H, Yang J B, Xu D L, Zhou D H. Online updating belief-rule-based systems using the RIMER approach. IEEE Transactions on Systems, Man, and Cybernetics: Systems, 2011, 41(6): 1225−1243 doi: 10.1109/TSMCA.2011.2147312
    [105] Chang L L, Zhou Z J, Chen Y W, Liao T J, Hu Y, Yang L H. Belief Rule Base Structure and Parameter Joint Optimization Under Disjunctive Assumption for Nonlinear Complex System Modeling. IEEE Transactions on Systems Man and Cybernetics, 2018, 48(9): 1542−1554 doi: 10.1109/TSMC.2017.2678607
    [106] Ying M. Perturbation of fuzzy reasoning. IEEE Transactions on Fuzzy Systems, 1999, 7(5): 625−629 doi: 10.1109/91.797985
    [107] Cai K Y. Robustness of fuzzy reasoning and δ-equalities of fuzzy sets. IEEE Transactions on Fuzzy Systems, 2001, 9(5): 738−750 doi: 10.1109/91.963760
    [108] Chen Y W, Yang J B, Xu D L, Yang S L. On the inference and approximation properties of belief rule based systems. Information Sciences, 2013, 234: 121−135 doi: 10.1016/j.ins.2013.01.022
    [109] Yuan Y F, Feldhamer S, Gafni A, Fyfe F, Ludwin D. The development and evaluation of a fuzzy logic expert system for renal transplantation assignment: Is this a useful tool? European Journal of Operational Research, 2002, 142(1): 152−173 doi: 10.1016/S0377-2217(01)00271-5
    [110] Kong G L, Xu D L, Liu X B, Yang J B. Applying a belief rule-base inference methodology to a guideline-based clinical decision support system. Expert Systems, 2009, 26(5): 391−408 doi: 10.1111/j.1468-0394.2009.00500.x
    [111] Zhou Z G, Liu F, Jiao L C, Zhou Z J, Yang J B, Gong M G, Zhang X P. A bi-level belief rule-based decision support system for diagnosis of lymph node metastasis in gastric cancer. Knowledge-Based Systems, 2013, 54: 128−136 doi: 10.1016/j.knosys.2013.09.001
    [112] Hossain M S, Rahaman S, Mustafa R, Andersson K. A belief rule-based expert system to assess suspicion of acute coronary syndrome (ACS) under uncertainty. Soft Computing, 2018, 22: 7571−7586 doi: 10.1007/s00500-017-2732-2
    [113] Zalnezhad E, Sarhan A A D M, Hamdi M. Prediction of TiN coating adhesion strength on aerospace AL7075-T6 alloy using fuzzy rule based system. International Journal of Precision Engineering and Manufacturing, 2012, 13(8): 1453−1459 doi: 10.1007/s12541-012-0191-3
    [114] Zalnezhad E, Sarhan A A D. A fuzzy logic predictive model for better surface roughness of Ti-TiN coating on AL7075-T6 alloy for longer fretting fatigue life. Measurement, 2014, 49: 256−265 doi: 10.1016/j.measurement.2013.11.042
    [115] Chen Y W, Poon S H, Yang J B, Xu D L, Zhang D X, Acomb S. Belief rule-based system for portfolio optimisation with nonlinear cash-flows and constraints. European Journal of Operational Research, 2012, 223(3): 775−784 doi: 10.1016/j.ejor.2012.07.008
    [116] Xie G, Van S, Tang Z. A PHM system for AEW radar based on AOPS-LSSVM prognostic algorithm and expert knowledge database. In: Proceedings of Prognostics and System Health Management Conference. Machao, China: IEEE, 2010. 1−6
    [117] Ishibashi R, Junior C L. GFRBS-PHM: A Genetic Fuzzy Rule-Based System for PHM with improved interpretability. In: IEEE Conference on Prognostics and Health Management. Gaithersburg, USA: IEEE, 2013. 1−7
    [118] Zhou Z J, Hu C H, Hu G Y, Han X X, Zhang B C, Chen Y W. Hidden behavior prediction of complex systems under testing influence based on semi-quantitative information and belief rule base. IEEE Transactions on Fuzzy Systems, 2015, 23(6): 2371−2386 doi: 10.1109/TFUZZ.2015.2426207
    [119] Hu G Y, Zhou Z J, Zhang B C, Yin X J, Gao Z, Zhou Z G. A method for predicting the network security situation based on hidden BRB model and revised CMA-ES algorithm. Applied Soft Computing, 2016, 48: 404−418 doi: 10.1016/j.asoc.2016.05.046
    [120] 牛培峰, 丁希生. 两层模糊控制在循环流化床床温控制系统中的应用. 燕山大学学报, 2008, 32(2): 124−128 doi: 10.3969/j.issn.1007-791X.2008.02.007

    Niu Pei-Feng, Din Xi-Sheng. Application of double-deck fuzzy control to bed temperature control system of circulated fluidized-bed. Journal of Yanshan University, 2008, 32(2): 124−128 doi: 10.3969/j.issn.1007-791X.2008.02.007
    [121] 张海, 周德云, 佟明安. 基于规则控制的快速高度跟踪算法. 火力与指挥控制, 1999, 24(3): 21−26 doi: 10.3969/j.issn.1002-0640.1999.03.004

    Zhang Hai, Zhou De-Yun, Tong Ming-An. A quick altitude following algorithm based on rules control. Fire Control and Command Control, 1999, 24(3): 21−26 doi: 10.3969/j.issn.1002-0640.1999.03.004
    [122] Raskin V, Taylor J M. Fuzziness, uncertainty, vagueness, possibility, and probability in natural language. IEEE Conference on Norbert Wiener in the 21st Century. Boston, MA, USA: IEEE, 2014. 1−6
    [123] Jin Y. Generating distinguishable, complete, consistent and compact fuzzy systems using evolutionary algorithms. Studies in Fuzziness and Soft Computing, 2003, 5: 100−118
    [124] Voorbraak F. A computationally efficient approximation of Dempster-Shafer theory. International Journal of Man-machine Studies, 1989, 30(5): 525−536 doi: 10.1016/S0020-7373(89)80032-X
    [125] Zhou Z H, Feng J. Deep forest: towards an alternative to deep neural networks. In: Proceedings of the 26th International Joint Conference on Artificial Intelligence. Melbourne, Australia: Impacting the world of Science, 2017. 3553−3559
    [126] 廖贵敏. 基于故障树模型的知识表达方法综述. 电脑与信息技术, 2000, 1: 6−8

    Liao Gui-Ming. A survey of knowledge representation methods based on fault tree model. Computer and Information Technology, 2000, 1: 6−8
    [127] Tang D, Yang J B, Chin K S, Wong S Y, Liu X B. A methodology to generate a belief rule base for customer perception risk analysis in new product development. Expert Systems with Applications, 2011, 38(5): 5373−5383 doi: 10.1016/j.eswa.2010.10.018
  • 加载中
计量
  • 文章访问数:  86
  • HTML全文浏览量:  17
  • 被引次数: 0
出版历程

目录

    /

    返回文章
    返回