2.765

2022影响因子

(CJCR)

  • 中文核心
  • EI
  • 中国科技核心
  • Scopus
  • CSCD
  • 英国科学文摘

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

水上无人系统研究进展及其面临的挑战

张卫东 刘笑成 韩鹏

张卫东, 刘笑成, 韩鹏. 水上无人系统研究进展及其面临的挑战. 自动化学报, 2020, 46(5): 847−857 doi: 10.16383/j.aas.c190363
引用本文: 张卫东, 刘笑成, 韩鹏. 水上无人系统研究进展及其面临的挑战. 自动化学报, 2020, 46(5): 847−857 doi: 10.16383/j.aas.c190363
Zhang Wei-Dong, Liu Xiao-Cheng, Han Peng. Progress and challenges of overwater unmanned systems. Acta Automatica Sinica, 2020, 46(5): 847−857 doi: 10.16383/j.aas.c190363
Citation: Zhang Wei-Dong, Liu Xiao-Cheng, Han Peng. Progress and challenges of overwater unmanned systems. Acta Automatica Sinica, 2020, 46(5): 847−857 doi: 10.16383/j.aas.c190363

水上无人系统研究进展及其面临的挑战

doi: 10.16383/j.aas.c190363
基金项目: 国家重点研发计划(2017YFE0128500)资助
详细信息
    作者简介:

    张卫东:上海交通大学自动化系教授, 国家杰出青年科学基金获得者, 德国洪堡学者, 上海市优秀学科带头人, 现任上海高校船舶自动化工程研究中心主任. 曾荣获IEEE CCTA最佳论文奖和IET CTA优秀论文奖. 研究方向为海洋机器人和工业控制. 本文通信作者.E-mail: wdzhang@sjtu.edu.cn

    刘笑成:上海交通大学自动化系博士研究生. 2016年获得上海交通大学硕士学位. 主要研究方向为船舶动力定位系统, 轨迹跟踪与避碰.E-mail: liuxc@sjtu.edu.cn

    韩鹏:上海交通大学自动化系博士研究生. 2019年获得四川大学学士学位. 主要研究方向为无人机、无人艇协同控制.E-mail: han_ipac@sjtu.edu.cn

Progress and Challenges of Overwater Unmanned Systems

Funds: Supported by National Key Research and Development Program of China (2017YFE0128500)
  • 摘要: 水上无人系统主要包括无人艇和无人机, 是未来执行水上救援、搜救和监测等任务的主要手段. 本文综述了近年来国内外在水上无人系统方面的最新研究进展, 包括企业界和学术界在无人艇和无人机方面的探索和实践, 介绍了水上无人系统研究在环境感知、航迹规划、避障和同质/异质自主体编队协同和海上弱小目标识别方面的研究成果, 分析讨论了不同方向的研究特点和面临的挑战.
  • [1] 国务院. 关于印发《中国制造2025》的通知[Online], available: http://www.gov.cn/zhengce/content/2015-05/19/content_9784.htm, May 8, 2015
    [2] 国务院. 关于印发新一代人工智能发展规划的通知, [Online], available: http://www.gov.cn/zhengce/content/2017-07/20/content_5211996.htm, July 8, 2017
    [3] 王石, 张建强, 杨舒卉, 张博伦. 国内外无人艇发展现状及典型作战应用研究. 火力与指挥控制, 2019, 44(2): 11−15 doi: 10.3969/j.issn.1002-0640.2019.02.003

    Wang Shi, Zhang Jian-Qiang, Yang Shu-Hui, Zhang Bo-Lun. Research on development status and combat applications of USVs in worldwide. Fire Control & Command Control, 2019, 44(2): 11−15 doi: 10.3969/j.issn.1002-0640.2019.02.003
    [4] Peng Y, Yang Y, Cui J X, Li X M, Pu H Y, Gu J, et al. Development of the USV ‘JingHai-I’ and sea trials in the southern Yellow Sea. Ocean Engineering, 2017, 131: 186−196 doi: 10.1016/j.oceaneng.2016.09.001
    [5] 苏宁远, 陈小龙, 关键, 牟效乾, 刘宁波. 基于卷积神经网络的海上微动目标检测与分类方法. 雷达学报, 2018, 7(5): 565−573

    Su Ning-Yuan, Chen Xiao-Long, Guan Jian, Mou Xiao-Qian, Liu Ning-Bo. Detection and classification of maritime target with micro-motion based on CNNs. Journal of Radars, 2018, 7(5): 565−573
    [6] 房广江, 赵敏, 郭航宇, 林亮. 低照度下的海上目标识别与跟踪. 机械制造与自动化, 2016, 45(2): 217−219, 227 doi: 10.3969/j.issn.1671-5276.2016.02.060

    Fang Guang-Jiang, Zhao Min, Guo Hang-Yu, Lin Liang. Target recognition and tracking under low illumination on sea. Machine Building & Automation, 2016, 45(2): 217−219, 227 doi: 10.3969/j.issn.1671-5276.2016.02.060
    [7] 周治国, 钟一鸣, 屈崇. 无人艇的水面图像去雾技术研究与实现. 第十二届全国信号和智能信息处理与应用学术会议论文集. 杭州, 中国: 中国高科技产业化研究会智能信息处理产业化分会, 2018. 240−243
    [8] 张树怀, 董超, 李彬, 田联房, 陈泽创. 多目标舰船自动跟踪方法研究. 中国海洋大学学报, 2017, 47(2): 128−136

    Zhang Shu-Huai, Dong Chao, Li Bin, Tian Lian-Fang, Chen Ze-Chuang. The automatic tracking method for multi-shipstracking based on TLD. Periodical of Ocean University of China, 2017, 47(2): 128−136
    [9] 王博. 无人艇光视觉感知研究发展综述. 舰船科学技术, 2019, 41(12): 44−49 doi: 10.3404/j.issn.1672-7649.2019.12.010

    Wang Bo. Review of development in perception of unmanned surface vehicle based on optical vision. Ship Science and Technology, 2019, 41(12): 44−49 doi: 10.3404/j.issn.1672-7649.2019.12.010
    [10] 庄佳园, 张磊, 孙寒冰, 苏玉民. 应用改进随机树算法的无人艇局部路径规划. 哈尔滨工业大学学报, 2015, 47(1): 112−117

    Zhuang Jia-Yuan, Zhang Lei, Sun Han-Bing, Su Yu-Min. Improved rapidly exploring random tree algorithm application in unmanned surface vehicle local path planning. Journal of Harbin Institute of Technology, 2015, 47(1): 112−117
    [11] Kim H, Kim D, Shin J U, Kim H, Myung H. Angular rate-constrained path planning algorithm for unmanned surface vehicles. Ocean Engineering, 2014, 84: 37−44 doi: 10.1016/j.oceaneng.2014.03.034
    [12] 范云生, 赵永生, 石林龙, 张月. 基于电子海图栅格化的无人水面艇全局路径规划. 中国航海, 2017, 40(1): 47−52, 113 doi: 10.3969/j.issn.1000-4653.2017.01.011

    Fan Yun-Sheng, Zhao Yong-Sheng, Shi Lin-Long, Zhang Yue. Global path planning for unmanned surface Vehicle based on grid model of electronic chart. Navigation of China, 2017, 40(1): 47−52, 113 doi: 10.3969/j.issn.1000-4653.2017.01.011
    [13] Carvalhosa S, Aguiar A P, Pascoal A. Cooperative motion control of multiple autonomous marine vehicles: collision avoidance in dynamic environments. In: Proceedings of the 7th IFAC Symposium on Intelligent Autonomous Vehicles, 2010. Lecce, Italy, 2010. 282−287
    [14] Cheng Y, Zhang W D. Concise deep reinforcement learning obstacle avoidance for underactuated unmanned marine vessels. Neurocomputing, 2018, 272: 63−73 doi: 10.1016/j.neucom.2017.06.066
    [15] He Y X, Jin Y, Huang L W, Xiong Y, Chen P F, Mou J M. Quantitative analysis of COLREG rules and seamanship for autonomous collision avoidance at open sea. Ocean Engineering, 2017, 140: 281−291 doi: 10.1016/j.oceaneng.2017.05.029
    [16] 吴博, 文元桥, 吴贝, 周思杨, 肖长诗. 水面无人艇避障方法回顾与展望. 武汉理工大学学报(交通科学与工程版), 2016, 40(3): 456−461

    Wu Bo, Wen Yuan-Qiao, Wu Bei, Zhou Si-Yang, Xiao Chang-Shi. Review and expectation on collision avoidance method of unmanned surface vessel. Journal of Wuhan University of Technology (Transportation Science & Engineering), 2016, 40(3): 456−461
    [17] Curcio J, Leonard J, Patrikalakis A. SCOUT — a low cost autonomous surface platform for research in cooperative autonomy. In: Proceedings of Oceans 2005. Washington, USA: IEEE, 2005. 725−729
    [18] 沈佳颖. 多无人艇一致性自主编队控制研究 [硕士学位论文], 哈尔滨工程大学, 中国, 2019

    Shen Jia-Ying. Research on Autonomous Formation Control of Unmanned Surface Vehicles [Master thesis], Harbin Engineering University, China, 2019
    [19] Qin Z H, Lin Z, Yang D M, Li P. A task-based hierarchical control strategy for autonomous motion of an unmanned surface vehicle swarm. Applied Ocean Research, 2017, 65: 251−261 doi: 10.1016/j.apor.2017.04.013
    [20] Peymani E, Fossen T I. Leader-follower formation of marine craft using constraint forces and Lagrange multipliers. In: Proceedings of the 51st IEEE Conference on Decision and Control. Maui, USA: IEEE, 2012. 2447−2452
    [21] Redding J, Amin J, Bošković J D, Jackson J. Collaborative mission planning, autonomy and control technology (COMPACT) for unmanned surface vehicles. In: Proceedings of the 2009 AIAA Guidance, Navigation, and Control Conference. Chicago, USA: AIAA, 2009. 1−23
    [22] Gomes J, Urbano P, Christensen A L. Evolution of swarm robotics systems with novelty search. Swarm Intelligence, 2013, 7(2–3): 115−144 doi: 10.1007/s11721-013-0081-z
    [23] Peng Z H, Wang J, Wang D. Distributed maneuvering of autonomous surface vehicles based on neurodynamic optimization and fuzzy approximation. IEEE Transactions on Control Systems Technology, 2018, 26(3): 1083−1090 doi: 10.1109/TCST.2017.2699167
    [24] Dong W, Farrell J A. Formation control of multiple underactuated surface vessels. IET Control Theory & Applications, 2008, 2(12): 1077−1085
    [25] 王飚, 李博, 高敏, 秦立成. 无人船的协同控制策略综述. 中国水运, 2019, 19(2): 3−5
    [26] 报告大厅. 国内外无人机发展现状分析[Online], available: http://www.chinabgao.com/k/wurenji/29886.html, November 6, 2017
    [27] Nawaz H, Ali H M, Massan S U R. Applications of unmanned aerial vehicles: a review. 3C Tecnología, 2019, 85−105
    [28] 闫东, 周乃恩. 彩虹无人机系列应用及展望. 软件, 2018, 39(9): 117−122 doi: 10.3969/j.issn.1003-6970.2018.09.024

    Yan Dong, Zhou Nai-En. The applications and prospects of CH UAV systems. Computer Engineering & Software, 2018, 39(9): 117−122 doi: 10.3969/j.issn.1003-6970.2018.09.024
    [29] 曹翔. 军民融合形势下无人机产融结合发展趋势分析. 军民两用技术与产品, 2017, (10): 4−5 doi: 10.3969/j.issn.1009-8119.2017.10.004
    [30] Eliker K, Zhang G Q, Grouni S, Zhang W D. An optimization problem for quadcopter reference flight trajectory generation. Journal of Advanced Transportation, 2018: Article No. 6574183
    [31] Nikolos I K, Valavanis K P, Tsourveloudis N C, Kostaras A N. Evolutionary algorithm based offline/online path planner for UAV navigation. IEEE Transactions on Systems, Man, and Cybernetics, Part B (Cybernetics), 2003, 33(6): 898−912 doi: 10.1109/TSMCB.2002.804370
    [32] Ren T Z, Zhou R, Xia J, Dong Z N. Three-dimensional path planning of UAV based on an improved A* algorithm. In: Proceedings of the 2016 IEEE Chinese Guidance, Navigation and Control Conference. Nanjing, China: IEEE, 2016. 140−145
    [33] 程泽新, 李东生, 高杨. 基于蝗虫算法的无人机三维航迹规划. 飞行力学, 2019, 37(2): 46−50, 55

    Cheng Ze-Xin, Li Dong-Sheng, Gao Yang. UAV three-dimensional path planning based on the grasshopper algorithm. Flight Dynamics, 2019, 37(2): 46−50, 55
    [34] 王生印, 龙腾, 王祝, 蔡祺生. 基于即时修复式稀疏A*算法的动态航迹规划. 系统工程与电子技术, 2018, 40(12): 2714−2721 doi: 10.3969/j.issn.1001-506X.2018.12.14

    Wang Sheng-Yin, Long Teng, Wang Zhu, Cai Qi-Sheng. Dynamic path planning using anytime repairing sparse A* algorithm. Systems Engineering and Electronics, 2018, 40(12): 2714−2721 doi: 10.3969/j.issn.1001-506X.2018.12.14
    [35] Aggarwal S, Kumar N. Path planning techniques for unmanned aerial vehicles: a review, solutions, and challenges. Computer Communications, 2020, 149: 270−299 doi: 10.1016/j.comcom.2019.10.014
    [36] Liu Y Y, Rajappa S, Montenbruck J M, Stegagno P, Bülthoff H, Allgöwer F, et al. Robust nonlinear control approach to nontrivial maneuvers and obstacle avoidance for quadrotor UAV under disturbances. Robotics and Autonomous Systems, 2017, 98: 317−332 doi: 10.1016/j.robot.2017.08.011
    [37] Sasongko R A, Rawikara S S, Tampubolon H J. UAV obstacle avoidance algorithm based on ellipsoid geometry. Journal of Intelligent & Robotic Systems, 2017, 88(2–4): 567−581
    [38] Krämer M S, Kuhnert K D. Multi-Sensor fusion for UAV collision avoidance. In: Proceedings of the 2018 International Conference on Mechatronics Systems and Control Engineering. Amsterdam, Netherlands: ACM, 2018. 5−12
    [39] 张午阳, 章伟, 宋芳, 龙林. 基于深度学习的四旋翼无人机单目视觉避障方法. 计算机应用, 2019, 39(4): 1001−1005 doi: 10.11772/j.issn.1001-9081.2018091952

    Zhang Wu-Yang, Zhang Wei, Song Fang, Long Lin. Monocular vision obstacle avoidance method for quadcopter based on deep learning. Journal of Computer Applications, 2019, 39(4): 1001−1005 doi: 10.11772/j.issn.1001-9081.2018091952
    [40] 唐博文, 王智文, 胡振寰. 基于事件驱动的无人机强化学习避障研究. 广西科技大学学报, 2019, 30(1): 96−102, 117

    Tang Bo-Wen, Wang Zhi-Wen, Hu Zhen-Huan. Research on Obstacle avoidance for UAV using reinforcement learning based on event driven. Journal of Guangxi University of Science and Technology, 2019, 30(1): 96−102, 117
    [41] 樊邦奎. 基于椋鸟飞行原理的无人机集群技术研究. 全国集群智能与协同控制大会. 北京, 中国: 中国指挥与控制学会, 2019.
    [42] He L L, Bai P, Liang X L, Zhang J Q, Wang W J. Feedback formation control of UAV swarm with multiple implicit leaders. Aerospace Science and Technology, 2018, 72: 327−334 doi: 10.1016/j.ast.2017.11.020
    [43] Kim M H, Baik H, Lee S. Response threshold model based UAV search planning and task allocation. Journal of Intelligent & Robotic Systems, 2014, 75(3−4): 625−640
    [44] Saska M, Baca T, Thomas J, Chudoba J, Preucil L, Krajnik T, et al. System for deployment of groups of unmanned micro aerial vehicles in GPS-denied environments using onboard visual relative localization. Autonomous Robots, 2017, 41(4): 919−944 doi: 10.1007/s10514-016-9567-z
    [45] Aghdam A S, Menhaj M B, Barazandeh F, Abdollahi F. Cooperative load transport with movable load center of mass using multiple quadrotor UAVs. In: Proceedings of the 4th International Conference on Control, Instrumentation, and Automation. Qazvin, Iran: IEEE, 2016. 23−27
    [46] 张佳龙, 闫建国, 吕茂隆. 鲁棒PI控制方法在无人机编队飞行稳定性中的应用. 飞行力学, 2019, 37(3): 38−42, 63

    Zhang Jia-Long, Yan Jian-Guo, Lv Mao-Long. Application of robust PI control method on the stability of the UAV formation flight. Flight Dynamics, 2019, 37(3): 38−42, 63
    [47] 段海滨, 邱华鑫, 陈琳, 魏晨. 无人机自主集群技术研究展望. 科技导报, 2018, 36(21): 90−98

    Duan Hai-Bin, Qiu Hua-Xin, Chen Lin, Wei Chen. Prospects on unmanned aerial vehicle autonomous swarm technology. Science & Technology Review, 2018, 36(21): 90−98
    [48] Huang S N, Teo R S H, Tan K K. Collision avoidance of multi unmanned aerial vehicles: a review. Annual Reviews in Control, 2019, 48: 147−164 doi: 10.1016/j.arcontrol.2019.10.001
    [49] Sanchez-Lopez J L, Pestana J, Saripalli S, Campoy P. An approach toward visual autonomous ship board landing of a VTOL UAV. Journal of Intelligent & Robotic Systems, 2014, 74(1–2): 113−127
    [50] García-Pulido J A, Pajares G, Dormido S, De La Cruz J M. Recognition of a landing platform for unmanned aerial vehicles by using computer vision-based techniques. Expert Systems with Applications, 2017, 76: 152−165 doi: 10.1016/j.eswa.2017.01.017
    [51] 刘刚. 基于视觉导航小型无人机自主着陆控制策略研究与应用 [硕士学位论文], 南京航空航天大学, 中国, 2014

    Liu Gang. Control Strategy and Application for Vision-based Autonomous Landing of Micro Aircraft Vehicles [Master thesis], Nanjing University of Aeronautics and Astronautics, China, 2014
    [52] 赵文一. 无人机视觉辅助自主降落系统研究 [硕士学位论文], 哈尔滨工业大学, 中国, 2018

    Zhao Wen-Yi. Research on Vision-based Autonomous Landing System of UAV [Master thesis], Harbin Institute of Technology, China, 2018
    [53] Chen X D, Phang S K, Shan M, Chen B M. System integration of a vision-guided UAV for autonomous landing on moving platform. In: Proceedings of the 12th IEEE International Conference on Control and Automation. Kathmandu, Nepal: IEEE, 2016. 761−766
    [54] 任向阳, 王杰, 马天磊, 朱晓东, 白珂, 王佳奇. 红外弱小目标检测技术综述. 郑州大学学报(理学版), 2020, DOI: 10.13705/j.issn.1671-6841.2019557

    Ren Xiang-Yang, Wang Jie, Ma Tian-Lei, Zhu Xiao-Dong, Bai Ke, Wang Jia-Qi. Review on infrared dim and small target detection Technology. Journal of Zhengzhou University (Natural Science Edition), 2020, DOI: 10.13705/j.issn.1671-6841.2019557
    [55] 张利军, 刘勍. 图像弱小目标检测方法及其进展. 自动化与仪器仪表, 2015, (4): 189−190, 193
    [56] 刘让, 王德江, 贾平, 周达标, 丁鹏. 红外图像弱小目标探测技术综述. 激光与光电子学进展, 2016, 53(5): Article No.050004

    Liu Rang, Wang De-Jiang, Jia Ping, Zhou Da-Biao, Ding Peng. Overview on small target detection technology in infrared image. Laser & Optoelectronics Progress, 2016, 53(5): Article No.050004
    [57] 韩鹏, 耿增显, 刘宏, 韩红蓉. 无人机视觉识别与移动追踪技术综述. 飞航导弹, 2018, (10): 24−28
    [58] Kanellakis C, Nikolakopoulos G. Survey on computer vision for UAVs: current developments and trends. Journal of Intelligent & Robotic Systems, 2017, 87(1): 141−168
    [59] 宋盛. 红外与激光双模复合探测关键技术研究 [博士学位论文], 中国科学院上海技术物理研究所, 中国, 2017

    Song Sheng. Research on Key Technologies of Infrared and Laser Dual-mode Compound Detection [Ph. D. dissertation], Shanghai Institute of Technical Physics, Chinese Academy of Sciences, China, 2017
    [60] 张国亮. 红外多光谱多个弱小运动目标的检测与跟踪技术研究 [博士学位论文], 哈尔滨工业大学, 中国, 2016

    Zhang Guo-Liang. Research on Techniques of Detection and Tracking of multiple Dim Moving Targets from IR Multispectral Image [Ph. D. dissertation], Harbin Institute of Technology, China, 2016
    [61] 顾宪松, 高昆, 朱振宇, 张鑫, 韩璐. 多源红外弱小目标灰色关联融合识别方法. 激光与红外, 2018, 48(10): 1258−1263 doi: 10.3969/j.issn.1001-5078.2018.10.011

    Gu Xian-Song, Gao Kun, Zhu Zhen-Yu, Zhang Xin, Han Lu. Fusion recognition based on grey relativity for multi-source infrared dim target. Laser & Infrared, 2018, 48(10): 1258−1263 doi: 10.3969/j.issn.1001-5078.2018.10.011
    [62] Yao Y, Hao Y H, Wang H Y. Small infrared target detection based on spatio-temporal fusion saliency. In: Proceedings of 2017 IEEE 17th International Conference on Communication Technology. Chengdu, China: IEEE, 2017. 1497−1502
    [63] Toet A, Wu T. Small maritime target detection through false color fusion. In: Proceedings of Optics and Photonics in Global Homeland Security IV. Orlando, Florida, United States: SPIE, 2008. Article No.69450V
  • 加载中
计量
  • 文章访问数:  7641
  • HTML全文浏览量:  8316
  • PDF下载量:  1212
  • 被引次数: 0
出版历程
  • 收稿日期:  2019-05-13
  • 录用日期:  2020-03-25
  • 网络出版日期:  2020-06-01
  • 刊出日期:  2020-06-01

目录

    /

    返回文章
    返回