2.845

2023影响因子

(CJCR)

  • 中文核心
  • EI
  • 中国科技核心
  • Scopus
  • CSCD
  • 英国科学文摘

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

高速列车牵引整流器多类故障联合诊断方法

陶宏伟 彭涛 杨超 陈志文 桂卫华

陶宏伟, 彭涛, 杨超, 陈志文, 桂卫华. 高速列车牵引整流器多类故障联合诊断方法. 自动化学报, 2019, 45(12): 2294−2302 doi: 10.16383/j.aas.c190258
引用本文: 陶宏伟, 彭涛, 杨超, 陈志文, 桂卫华. 高速列车牵引整流器多类故障联合诊断方法. 自动化学报, 2019, 45(12): 2294−2302 doi: 10.16383/j.aas.c190258
Tao Hong-Wei, Peng Tao, Yang Chao, Chen Zhi-Wen, Gui Wei-Hua. Joint fault diagnosis method of multiclass faults for traction rectifier in high-speed train. Acta Automatica Sinica, 2019, 45(12): 2294−2302 doi: 10.16383/j.aas.c190258
Citation: Tao Hong-Wei, Peng Tao, Yang Chao, Chen Zhi-Wen, Gui Wei-Hua. Joint fault diagnosis method of multiclass faults for traction rectifier in high-speed train. Acta Automatica Sinica, 2019, 45(12): 2294−2302 doi: 10.16383/j.aas.c190258

高速列车牵引整流器多类故障联合诊断方法

doi: 10.16383/j.aas.c190258
基金项目: 国家自然科学基金(61490702, 61773407, 61621062, 61803390), 轨道交通节能控制与安全监测湖南省重点实验室(2017TP1002), 装备预研教育部联合基金(6141A02022110), 装备预研领域基金(61400030501), 博士后基金(2018M643000), 湖南省研究生科研创新项目(CX20190064, CX2018B041)资助
详细信息
    作者简介:

    陶宏伟:中南大学自动化学院博士研究生. 2014年获得中南大学学士学位. 主要研究方向为电力电子系统建模, 故障诊断与容错控制. E-mail: hongwei.tao@csu.edu.cn

    彭涛:中南大学自动化学院教授. 2005年获得中南大学博士学位. 主要研究方向为复杂系统的故障诊断与容错控制. E-mail: pandtao@csu.edu.cn

    杨超:中南大学自动化学院博士研究生. 2014年获得重庆科技学院学士学位. 主要研究方向为牵引传动控制系统的故障诊断与健康监测. 本文通信作者. E-mail: chaoyang@csu.edu.cn

    陈志文:中南大学自动化学院讲师. 2016年获得德国杜伊斯堡 − 埃森大学博士学位. 主要研究方向为基于模型和数据驱动的故障诊断技术. E-mail: zhiwen.chen@csu.edu.cn

    桂卫华:中国工程院院士, 中南大学自动化学院教授. 1981年获得中南矿冶学院硕士学位. 主要研究方向为复杂工业过程建模, 优化与控制应用, 故障诊断与分布式鲁棒控制. E-mail: gwh@csu.edu.cn

Joint Fault Diagnosis Method of Multiclass Faults for Traction Rectifier in High-speed Train

Funds: Supported by National Natural Science Foundation of China (61490702, 61773407, 61621062, 61803390), Key Laboratory of Energy Saving Control and Safety Monitoring for Rail Transportation (2017TP1002), Program of Joint Pre-research Foundation of the Chinese Ministry of Education (6141A02022110), General Program of Equipment Pre-research Field Foundation of China (61400030501), Postdoctoral Foundation (2018M643000), and Hunan Provincial Innovation Foundation For Postgraduate (CX20190064, CX2018B041)
  • 摘要: 提出了一种高速列车牵引整流器多类故障联合诊断方法. 首先, 基于三电平牵引整流器开路故障分析, 建立整流器所有功率器件开路故障以及正常运行的状态空间模型并构建相应状态观测器. 然后, 基于正常状态观测器进行故障检测, 检测到故障后, 基于故障观测器区分功率器件开路故障和网侧电流传感器故障, 进而诊断出功率器件开路故障位置和网侧电流传感器故障类型. 实时仿真结果验证了本文方法的正确性和有效性.
  • 图  1  三电平整流器拓扑结构

    Fig.  1  Topology of three-level rectifier

    图  2  三电平整流器开关等效电路

    Fig.  2  Switching equivalent circuit of three-level rectifier

    图  3  不同运行情况下三电平整流器开关等效电路

    Fig.  3  Switching equivalent circuit of three-level rectifier in different operation conditions

    图  4  多类故障联合诊断方法流程图

    Fig.  4  Flowchart of joint fault diagnosis method for multiclass faults

    图  5  实时仿真平台

    Fig.  5  Real-time simulation platform

    图  6  $S_{a1}$开路故障诊断结果

    Fig.  6  Results of fault diagnosis when open-circuit fault occurs in $S_{a1}$

    图  7  网侧电流传感器增益故障诊断结果

    Fig.  7  Results of fault diagnosis when gain fault occurs in grid current sensor

    图  8  网侧电流传感器偏移故障诊断结果

    Fig.  8  Results of fault diagnosis when offset fault occurs in grid current senso

    图  9  网侧电流传感器漂移故障诊断结果

    Fig.  9  Results of fault diagnosis when drift fault occurs in grid current sensor

    表  1  $ H(k) $与故障位置的关系

    Table  1  Relationship of $ H(k) $ and fault loaction

    $ H(k) $故障位置
    255电流传感器
    254$ S_{a1} $
    253$ S_{a2} $
    251$ S_{a3} $
    247$ S_{a4} $
    236$ S_{b1} $
    223$ S_{b2} $
    191$ S_{b3} $
    127$ S_{b4} $
    下载: 导出CSV

    表  2  变流器参数

    Table  2  Parameter of converter

    参数符号
    网侧电压有效值$u_{N}$1500 V
    变压器电感$L_{N}$2 mH
    变压器电阻$R_{N}$0.2 $\Omega$
    直流环节电压$u_{1},u_{2}$1 300 V
    支撑电容$C_{1},C_{2}$1 600 mF
    下载: 导出CSV

    表  3  牵引电机参数

    Table  3  Parameter of traction motor

    参数符号
    定子电阻$R_{s}$0.15 $\Omega$
    定子电感$L_{ls}$1.42 mH
    转子电阻$R_{r}$0.16 $\Omega$
    转子电感$L_{lr}$0.6 mH
    互感$L_{m}$25.4 mH
    额定电压$U_{\rm{rate}}$2 000 V
    额定频率$f_{\rm{rate}}$140 Hz
    额定转速$n_{\rm{rate}}$4 140 r/min
    额定输出功率$P_{\rm{rate}}$300 kW
    额定转差率$s_{\rm{rate}}$1.4 %
    下载: 导出CSV
  • [1] 周东华, 纪洪泉, 何潇. 高速列车信息控制系统的故障诊断技术. 自动化学报, 2018, 44(7): 1153−1164

    1 Zhou Dong-Hua, Ji Hong-Quan, He Xiao. Fault diagnosis techniques for the information control system of high-speed trains. Acta Automatica Sinica, 2018, 44(7): 1153−1164
    [2] 2 Steimel A. Electric railway traction in Europe. IEEE Industry Applications Magazine, 2002, 2(6): 6−17
    [3] 3 Yang X Y, Yang C H, Peng T, Chen Z W, Liu B, Gui W H. Hardware-in-the-Loop fault injection for traction control system. IEEE Journal of Emerging and Selected Topics in Power Electronics, 2018, 6(2): 697−706
    [4] 戴舜华. CRH 2型系列动车组牵引变流器介绍及故障分析. 铁道机车车辆, 2013, 33(2): 93−97 doi: 10.3969/j.issn.1008-7842.2013.02.21

    4 Dai Shun-Hua. Introduction and failure analysis of traction converter for CRH 2 EMUs. Railway Locomotive and Car, 2013, 33(2): 93−97 doi: 10.3969/j.issn.1008-7842.2013.02.21
    [5] 5 Yang S Y, Xiang D W, Bryant A, Mawby P, Ran L, Tavner P. Condition monitoring for device reliability in power electronic converters: a review. IEEE Transactions on Power Electronics, 2010, 25(11): 2734−2752 doi: 10.1109/TPEL.2010.2049377
    [6] 6 Tao H W, Peng T, Yang C, Chen Z W, Yang C H, Gui W H. Open-circuit fault analysis and modeling for power converter based on single arm model. Electronics, 2019, 8(6): 633 doi: 10.3390/electronics8060633
    [7] 7 Lu B, Sharma S K. A literature review of IGBT fault diagnostic and protection methods for power inverters. IEEE Transactions on Industry Applications, 2009, 45(5): 1770−1777 doi: 10.1109/TIA.2009.2027535
    [8] 8 Peng T, Tao H W, Yang C, Chen Z W, Yang C H, Gui W H, Karimi H R. A uniform modeling method based on open-circuit faults analysis for NPC-three-level converter. IEEE Transactions on Circuits and Systems II: Express Briefs, 2019, 66(3): 457−461 doi: 10.1109/TCSII.2018.2856862
    [9] 9 Huang Z J, Wang Z S, Zhang H G. A diagnosis algorithm for multiple open-circuited faults of microgrid inverters based on main fault component analysis. IEEE Transactions on Energy Conversion, 2018, 33(3): 925−937 doi: 10.1109/TEC.2018.2822481
    [10] 10 Zhao H S, Cheng L L. Open-circuit faults diagnosis in back-to-back converters of DF wind turbine. IET Renewable Power Generation, 2017, 11(4): 417−424 doi: 10.1049/iet-rpg.2016.0150
    [11] 11 Li Z, Peng T, Zhang P F, Han H, Yang J. Fault diagnosis and fault-tolerant control of photovoltaic micro-inverter. Journal of Central South University, 2016, 23(9): 2284−2295 doi: 10.1007/s11771-016-3286-7
    [12] 12 Xie D, Ge X L. A state estimator-based approach for opencircuit fault diagnosis in single-phase cascaded H-bridge rectifiers. IEEE Transactions on Industry Applications, 2019, 55(2): 1608−1618 doi: 10.1109/TIA.2018.2873533
    [13] 13 Wu F, Zhao J. Current similarity analysis based opencircuit fault diagnosis for two-level three-phase PWM rectifier. IEEE Transactions on Power Electronic, 2017, 32(5): 3935−3945 doi: 10.1109/TPEL.2016.2587339
    [14] 14 Youssef A B, El Khil S K, Slama-Belkhodja I. State observer-based sensor fault detection and isolation, and fault tolerant control of a single-phase PWM rectifier for electric railway traction. IEEE Transactions on Power Electronics, 2013, 28(12): 5842−5853 doi: 10.1109/TPEL.2013.2257862
    [15] 15 Wang X Q, Wang Z, Xu Z X, Cheng M, Wang W, Hu Y H. Comprehensive diagnosis and tolerance strategies for electrical faults and sensor faults in dual three-phase PMSM drives. IEEE Transactions on Power Electronics, 2019, 34(7): 6669−6684 doi: 10.1109/TPEL.2018.2876400
    [16] 16 Chen Z W, Yang C H, Peng T, Dan H B, Li C G, Gui W H. A cumulative canonical correlation analysis-based sensor precision degradation detection method. IEEE Transactions on Industrial Electronics, 2019, 66(8): 6321−6330 doi: 10.1109/TIE.2018.2873100
    [17] 17 Gou B, Ge X L, Wang S L, Feng X Y, Kuo J B, Haberler T G. An open-switch fault diagnosis method for singlephase PWM rectifier using a model-based approach in high-speed railway electrical traction drive system. IEEE Transactions on Power Electronics, 2016, 31(5): 3816−3826 doi: 10.1109/TPEL.2015.2465299
    [18] 18 Ge X L, Pu J K, Gou B, Liu Y C. An open-circuit fault diagnosis approach for single-phase three-level neutralpoint-clamped converters. IEEE Transactions on Power Electronics, 2018, 33(3): 2559−2570 doi: 10.1109/TPEL.2017.2691804
    [19] 19 Wu F, Zhao J. A real-time multiple open-circuit fault diagnosis method in voltage-source-inverter fed vector controlled drives. IEEE Transactions on Power Electronics, 2016, 31(2): 1425−1437 doi: 10.1109/TPEL.2015.2422131
    [20] 苟斌, 蒲俊楷, 葛兴来, 冯晓云. 基于状态观测器的单相整流系统传感器故障诊断与容错控制方法. 铁道学报, 2017, 39(2): 44−51 doi: 10.3969/j.issn.1001-8360.2017.02.007

    20 Gou Bin, Pu Jun-Kai, Ge Xing-Lai, Feng Xiao-Yun. A fault diagnosis and fault-Tolerant control method based on state observer for sensor in single-phase PWM rectifiers. Journal of the China Railway Society, 2017, 39(2): 44−51 doi: 10.3969/j.issn.1001-8360.2017.02.007
    [21] 于冰, 蒋生成, 王高林, 赵文龙, 徐殿国. 基于状态观测器的感应电机速度传感器故障诊断及容错控制. 中国电机工程学报, 2012, 32(18): 123−130

    21 Yu Bing, Jiang Sheng-Cheng, Wang Gao-Lin, Zhao Wen-Long, Xu Dian-Guo. Fault diagnosis and tolerant control for speed sensors based on state observers in induction motor drives. Proceedings of the CSEE, 2012, 32(18): 123−130
    [22] 22 Yang C H, Yang C, Peng T, Yang X Y, Gui W H. A fault-injection strategy for traction drive control systems. IEEE Transactions on Industrial Electronics, 2017, 6(7): 5719−5727
  • 加载中
图(9) / 表(3)
计量
  • 文章访问数:  2280
  • HTML全文浏览量:  728
  • PDF下载量:  206
  • 被引次数: 0
出版历程
  • 收稿日期:  2019-03-27
  • 录用日期:  2019-07-30
  • 刊出日期:  2019-12-01

目录

    /

    返回文章
    返回