2.765

2022影响因子

(CJCR)

  • 中文核心
  • EI
  • 中国科技核心
  • Scopus
  • CSCD
  • 英国科学文摘

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

故障诊断与容错控制的一个新框架

周克敏

周克敏. 故障诊断与容错控制的一个新框架.自动化学报, 2021, 47(5): 1035-1042 doi: 10.16383/j.aas.c190004
引用本文: 周克敏. 故障诊断与容错控制的一个新框架.自动化学报, 2021, 47(5): 1035-1042 doi: 10.16383/j.aas.c190004
Zhou Ke-Min. A new framework for fault diagnosis and fault tolerant control. Acta Automatica Sinica, 2021, 47(5): 1035-1042 doi: 10.16383/j.aas.c190004
Citation: Zhou Ke-Min. A new framework for fault diagnosis and fault tolerant control. Acta Automatica Sinica, 2021, 47(5): 1035-1042 doi: 10.16383/j.aas.c190004

故障诊断与容错控制的一个新框架

doi: 10.16383/j.aas.c190004
基金项目: 

国家自然科学基金重点项目 60933006

国家自然科学基金重点项目 61433011

详细信息
    作者简介:

    周克敏  山东科技大学电气与自动化工程学院教授. 主要研究方向为鲁棒控制, 多目标优化, 滞环非线性系统鲁棒控制, 故障诊断与容错控制, 金融市场预测. E-mail: kmzhou@gmail.com

A New Framework for Fault Diagnosis and Fault Tolerant Control

Funds: 

Key Program of National Natural Science Foundation of China 60933006

Key Program of National Natural Science Foundation of China 61433011

More Information
    Author Bio:

    ZHOU Ke-Min  Professor at the College of Electrical and Automation Engineering, Shandong University of Science and Technology. His research interest covers robust control, multi-objective optimization, robust control of hysteresis nonlinear systems, fault diagnosis and fault tolerant control, and financial market prediction

  • 摘要: 讨论现有基于模型的故障诊断与容错控制方法的局限性, 并由此提出一个基于$\nu$- 间隙度量来处理故障诊断与容错控制的新框架. 并且, 讨论了如何在此框架下对故障进行分类和分级以及提出如何进行容错控制的一般性控制结构.
    Recommended by Associate Editor YANG Hao
    1)  本文责任编委 杨浩
  • 图  1  故障诊断标准模型

    Fig.  1  Standard model for fault diagnosis

    图  2  故障诊断滤波器的一般形式

    Fig.  2  The general form of fault diagnosis filter

    图  3  闭环故障诊断

    Fig.  3  Closed-loop fault diagnosis

    图  4  开环系统: 一个简单集成电路

    Fig.  4  Open-loop system: a simple IC

    图  5  闭环系统: 一个简单集成电路

    Fig.  5  Closed-loop system: a simple IC

    图  6  传统闭环系统

    Fig.  6  Traditional closed-loop system

    图  7  闭环系统$T_1$, $T_2$和$T_3$阶跃响应

    Fig.  7  Step responses of the closed-loop systems $T_1$, $T_2$ and $T_3$

    图  8  奈奎斯特轮廓

    Fig.  8  Nyquist contour

    图  9  故障按照对系统性能影响程度分级示意图

    Fig.  9  Illustrative diagram for fault classification according to its impact on system performance

    图  10  按$\nu$- 间隙度量分成故障等级示意图

    Fig.  10  Illustrative diagram for fault classification according to $\nu$-gap metric

    图  11  故障集合分类示意图

    Fig.  11  Illustrative diagram for fault type classification

    图  12  新故障诊断模型结构

    Fig.  12  New model structure for fault diagnosis

    图  13  容错控制的一般架构

    Fig.  13  The general framework for fault tolerant control

  • [1] Chen J, Patton R. Robust Model-Based Fault Diagnosis for Dynamic Systems. Springer, 1999.
    [2] Ding S X. Model-Based Fault Diagnosis Techniques -Design Schemes, Algorithms and Tools. 2nd Edition, Springer-Verlag, London, 2013.
    [3] Ding S X. Data-Driven Design of Fault Diagnosis and Fault-Tolerant Control Systems. Springer-Verlag, London, 2014.
    [4] Zhou K. Essentials of Robust Contro. Prentice-Hall, Englewood Cliffs, NJ, 1998.
    [5] Liu N, Zhou K. Optimal robust fault detection for linear discrete time systems. Journal of Control Science and Engineering, 2008, 2008(7): 1-16 http://ieeexplore.ieee.org/document/4434125/citations
    [6] Li X, Zhou K. A time domain approach to robust fault detection of linear time-varying systems. Automatica, 2009, 45(1): 94-102 doi: 10.1016/j.automatica.2008.07.017
    [7] Vinnicombe G. Uncertainty and Feedback: Hinf Loop-Shaping and the V-Gap Metric. World Scientific, 2000.
    [8] Zhou K, Ren Z. A new controller architecture for high performance, robust, adaptive, and fault tolerant control. IEEE Transactions on Automatic Control, 2001, 46(10): 1613-1618 doi: 10.1109/9.956059
    [9] Zhou K. A new approach to robust and fault tolerant control. Acta Automatica Sinca, 2005, 31(1): 43-55
    [10] 周克敏. 鲁棒控制: 回顾与展望(黄琳院士主编《中国学科发展战略: 控制科学》第十二章). 科学出版社, 2015.

    Zhou K M. Robust control: Retrospect and prospect, (Huang Lin as Editor-in-Chief of the Chinese Discipline Development Strategy: Control Science, Chapter 12), Science Press, 2015.
    [11] Ding S X, Yang, Y, Zhang Y, Li L. Data-driven realization of kernel and image representations and their application to fault detection and control system design. Automatica, 2014, 50: 2615-2623 doi: 10.1016/j.automatica.2014.08.022
    [12] Ding S X. Application of factorization and gap metric techniques to fault detection and isolation, Part Ⅰ and Part 2. IFAC Conference Paper Archive, 2015, 48(21): 113-124 http://www.sciencedirect.com/science/article/pii/S2405896315016420
    [13] Georgiou T T. On the computation of the gap metric. Systems and Control Letters, 1988, 11: 253-257 doi: 10.1016/0167-6911(88)90067-9
    [14] Georgiou T T, Smith M C. Optimal robustness in the gap metric. IEEE Transactions on Automatic Control, 1990, 35: 673-686 doi: 10.1109/9.53546
    [15] Koenings T, Krueger M, Luo H, Ding S X. A data-driven computation method for the gap metric and the optimal stability margin. IEEE Transactions on Automatic Control, 2018, 63(3): 805-810 doi: 10.1109/TAC.2017.2735023
  • 加载中
图(13)
计量
  • 文章访问数:  1076
  • HTML全文浏览量:  709
  • PDF下载量:  609
  • 被引次数: 0
出版历程
  • 收稿日期:  2019-01-03
  • 录用日期:  2019-05-19
  • 刊出日期:  2021-05-21

目录

    /

    返回文章
    返回