2.845

2023影响因子

(CJCR)

  • 中文核心
  • EI
  • 中国科技核心
  • Scopus
  • CSCD
  • 英国科学文摘

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

独立RNN和胶囊网络的维吾尔语事件缺失元素填充

王县县 禹龙 田生伟 王瑞锦

王县县, 禹龙, 田生伟, 王瑞锦. 独立RNN和胶囊网络的维吾尔语事件缺失元素填充.自动化学报, 2021, 47(4): 903-912 doi: 10.16383/j.aas.c180655
引用本文: 王县县, 禹龙, 田生伟, 王瑞锦. 独立RNN和胶囊网络的维吾尔语事件缺失元素填充.自动化学报, 2021, 47(4): 903-912 doi: 10.16383/j.aas.c180655
Wang Xian-Xian, Yu Long, Tian Sheng-Wei, Wang Rui-Jin. Missing argument fllling of uyghur event based on independent recurrent neural network and capsule network. Acta Automatica Sinica, 2021, 47(4): 903-912 doi: 10.16383/j.aas.c180655
Citation: Wang Xian-Xian, Yu Long, Tian Sheng-Wei, Wang Rui-Jin. Missing argument fllling of uyghur event based on independent recurrent neural network and capsule network. Acta Automatica Sinica, 2021, 47(4): 903-912 doi: 10.16383/j.aas.c180655

独立RNN和胶囊网络的维吾尔语事件缺失元素填充

doi: 10.16383/j.aas.c180655
基金项目: 

国家自然科学基金 61662074

国家自然科学基金 61962057

国家自然科学基金 61563051

国家自然科学基金重点项目 U2003208

自治区重大科技项目 2020A03004-4

详细信息
    作者简介:

    王县县  新疆大学硕士研究生. 主要研究方向为自然语言处理. E-mail: sjzwangxianxian@163.com

    田生伟  新疆大学教授. 主要研究方向为自然语言处理. E-mail: tianshengwei@163.com

    王瑞锦  电子科技大学讲师. 主要研究方向为量子通信安全, 大数据分析及安全. E-mail: wrj8882003@163.com

    通讯作者:

    禹龙  新疆大学教授. 主要研究方向为计算机智能技术与计算机网络. 本文通信作者. E-mail: yul_xju@163.com

Missing Argument Filling of Uyghur Event Based on Independent Recurrent Neural Network and Capsule Network

Funds: 

National Natural Science Foundation of China 61662074

National Natural Science Foundation of China 61962057

National Natural Science Foundation of China 61563051

The Key Project of National Natural Science Foundation of China U2003208

Major science and Technology Projects in the Autonomous Region 2020A03004-4

More Information
    Author Bio:

    WANG Xian-Xian  Master student at Xinjiang University. His main research interest is natural language processing

    TIAN Sheng-Wei  Professor at Xinjiang University. His research interest covers natural language processing and computer intelligence technology

    WANG Rui-Jin  Lecturer at University of Electronic Science and Technology of China. His research interest covers quantum communication security, big data analysis and security

    Corresponding author: YU Long  Professor at Xinjiang University. Her research interest covers computer intelligence technology andcomputer networks. Corresponding author of this paper
  • 摘要: 提出了注意力机制独立循环神经网络和胶囊网络并行的维吾尔语事件缺失元素填充模型(Att IndRNN CapsNet).首先, 抽取18项事件和事件元素的内部特征, 作为结合注意力机制的独立循环神经网络模型的输入, 进一步获取高阶特征; 同时, 引入词嵌入技术将事件触发词和候选元素映射为词向量, 通过胶囊网络挖掘事件和事件元素的上下文语义特征; 然后, 将两种特征融合, 作为分类器的输入, 进而完成事件缺失元素的填充. 实验结果表明, 该方法用于维吾尔语事件缺失元素填充准确率为86.94 %, 召回率为84.14 %, 衡量模型整体性能的F1值为85.52 %, 从而证明了该方法在维吾尔语事件缺失元素填充上的有效性.
    Recommended by Associate Editor ZHAO Tie-Jun
    1)  本文责任编委 赵铁军
  • 图  1  模型结构图

    Fig.  1  Model structure

    图  2  模型对比图

    Fig.  2  Comparison between our model and other models

    表  1  事件句1中的元素

    Table  1  Arguments in event sentence 1

    元素 对应内容 译文
    Time-Arg 2017年1月1日时间11时左右
    Place-Arg 南京雨花西路和共青团路交叉口
    Wrecker-Arg
    Suffer-Arg 母亲
    Tool-Arg 一辆货车
    下载: 导出CSV

    表  2  事件句2中的元素

    Table  2  Arguments in event sentence 2

    元素 对应内容 译文
    Agent-Arg 过路人
    Artifact-Arg 女子怀里9个月的婴儿
    Tool-Arg
    Origin-Arg
    Destination-Arg 南京市第一医院
    Time-Arg
    下载: 导出CSV

    表  3  模型最优参数表

    Table  3  Optimal parameters

    参数
    lr 0.005
    lrdr 0.1
    bs 16
    ep 50
    dr 0.3
    opt adam
    下载: 导出CSV

    表  4  不同样本对实验性能的影响(%)

    Table  4  Hyper parameters of experiment (%)

    样本种类 P R F1
    样本1 85.76 80.6 83.1
    样本2 86.94 84.14 85.52
    下载: 导出CSV

    表  5  本文模型与其他模型实验性能对比(%)

    Table  5  Comparison between our model and other models (%)

    模型 P R F1
    IndRNN 77.6 81.06 79.29
    CapsNet 79.51 85.84 82.55
    Att_IndRNN 78.13 82.54 80.27
    Att_CapsNet 81.63 84.74 83.16
    IndRNN_CapsNet 84.17 81.02 82.56
    Att_IndRNN_CapsNet 86.94 84.14 85.52
    下载: 导出CSV

    表  6  词向量对实验性能的影响(%)

    Table  6  Influence of word vector dimension (%)

    维度 P R F1
    10 78.3 83.58 80.85
    30 81.44 84.27 82.83
    50 86.94 84.14 85.52
    100 84.45 83.55 84
    150 80.17 80.09 81.12
    下载: 导出CSV

    表  7  不同种类特征对实验性能的影响(%)

    Table  7  Influence of different kinds of features

    特征 P R F1
    语义特征A 77.84 81.92 79.83
    语义特征B 78.85 83.66 81.18
    规则特征 74.66 77.87 76.23
    语义特征A +规则特征 81.17 86.44 83.72
    语义特征B +规则特征 86.94 84.14 85.52
    下载: 导出CSV

    表  8  独立特征与融合特征对实验性能的影响(%)

    Table  8  Influence of independent features and fusion features (%)

    模型 P R F1
    Att_IndRNNh+w_CapsNeth+w 82.7 83.61 83.15
    Att_IndRNNw_CapsNeth 76.6 86.87 81.41
    Att_IndRNNh_CapsNetw 86.94 84.14 85.52
    下载: 导出CSV

    表  9  独立循环神经网络层数对实验性能的影响(%)

    Table  9  Influence of the number of IndRNN (%)

    层数 P R F1
    1 81.89 83.96 82.96
    2 86.94 84.14 85.52
    3 82.56 81.38 81.96
    下载: 导出CSV
  • [1] Mann G S, Yarowsky D. Multi-field information extraction and cross-document fusion. In: Proceedings of the 43rd Annual Meeting on Association for Computational Linguistics. Ann Arbor, USA: ACL, 2005. 483-490
    [2] 姜吉发. 自由文本的信息抽取模式获取的研究[博士学位论文], 中国科学院研究生院(计算技术研究所), 2004

    Jiang Ji-Fa. A Research about the Pattern Acquisition for Free Text IE [Ph. D. dissertation], Graduate School of Chinese Academy of Sciences (Institute of Computing Technology), 2004
    [3] Patwardhan S, Riloff E. Effective information extraction with semantic affinity patterns and relevant regions. In: Proceedings of the 2007 Joint Conference on Empirical Methods in Natural Language Processing and Computational Natural Language Learning. Prague, Czech Republic: ACL, 2007. 717-727
    [4] Chen C, Ng V. Joint modeling for chinese event extraction with rich linguistic features. In: Proceedings of COLING 2012. Mumbai, India: ACL, 2012. 529-544
    [5] 余凯, 贾磊, 陈雨强, 徐伟. 深度学习的昨天, 今天和明天. 计算机研究与发展, 2013, 50(9): 1799-1804 https://www.cnki.com.cn/Article/CJFDTOTAL-JFYZ201309002.htm

    Yu Kai, Jia Lei, Chen Yu-Qiang, Xu Wei. Deep learning: yesterday, today, and tomorrow. Journal of Computer Research and Development, 2013, 50(9): 1799-1804 https://www.cnki.com.cn/Article/CJFDTOTAL-JFYZ201309002.htm
    [6] 林奕欧, 雷航, 李晓瑜, 吴佳. 自然语言处理中的深度学习: 方法及应用. 电子科技大学学报, 2017, 46(6): 913-919 doi: 10.3969/j.issn.1001-0548.2017.06.021

    Lin Yi-Ou, Lei Hang, LI Xiao-Yu, Wu Jia. Deep learning in NLP: Methods and applications. Journal of University of Electronic Science and Technology of China, 2017, 46(6): 913-919 doi: 10.3969/j.issn.1001-0548.2017.06.021
    [7] 奚雪峰, 周国栋. 面向自然语言处理的深度学习研究. 自动化学报, 2016, 42(10): 1445-1465 doi: 10.16383/j.aas.2016.c150682

    Xi Xue-Feng, Zhou Guo-Dong. A survey on deep learning for natural language processing. Acta Automatica Sinica, 2016, 42(10): 1445-1465 doi: 10.16383/j.aas.2016.c150682
    [8] Chen Y B, Xu L H, Liu K, Zeng D L, Zhao J. Event extraction via dynamic multi-pooling convolutional neural networks. In: Proceedings of the 53rd Annual Meeting of the Association for Computational Linguistics and the 7th International Joint Conference on Natural Language Processing. Beijing, China: ACL, 2015. 167-176
    [9] Chang C Y, Teng Z, Zhang Y. Expectation-regulated neural model for event mention extraction. In: Proceedings of the 2016 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies. San Diego, USA: ACL, 2016. 400-410
    [10] Zeng Y, Yang H H, Feng Y S, Wang Z, Zhao D Y. A convolution BiLSTM neural network model for Chinese event extraction. In: Proceedings of the International Conference on Computer Processing of Oriental Languages. Cham, Switzerland: Springer, 2016. 275-287
    [11] 田生伟, 胡伟, 禹龙, 吐尔根·依布拉音, 赵建国, 李圃. 结合注意力机制的Bi-LSTM维吾尔语事件时序关系识别. 东南大学学报(自然科学版), 2018, 48(03): 393-399 https://www.cnki.com.cn/Article/CJFDTOTAL-DNDX201803004.htm

    Tian Sheng-Wei, Hu Wei, Yu long, Turglm Ibrahim, Zhao Jian-Guo, Li Pu. Temporal relation identification of Uyghur event based on Bi-LSTM with attention mechanism. Journal of Southeast University (Natural Science Edition), 2018, 48(03): 393-399 https://www.cnki.com.cn/Article/CJFDTOTAL-DNDX201803004.htm
    [12] 黎红, 禹龙, 田生伟, 吐尔根·依布拉音, 赵建国. 基于DCNNs-LSTM模型的维吾尔语突发事件识别研究. 中文信息学报, 2018, 32(6): 52-61

    Li Hong, Yu Long, Tian Sheng-Wei, Turglm Ibrahim. Uyghur emergency event extraction based on DCNNs-LSTM model. Journal of Chinese Information Processing, 2018, 32(6): 52-61
    [13] Gupta P, Ji H. Predicting unknown time arguments based on cross-event propagation. In: Proceedings of the ACL-IJCNLP 2009 Conference Short Papers. Suntec, Singapore: ACL, 2009. 369-372
    [14] Huang R, Riloff E. Peeling back the layers: detecting event role fillers in secondary contexts. In: Proceedings of the 49th Annual Meeting of the Association for Computational Linguistics: Human Language Technologies-Volume 1. Portland, USA: ACL, 2011. 1137-1147
    [15] 侯立斌, 李培峰, 朱巧明, 钱培德. 基于跨事件理论的缺失事件角色填充研究. 计算机科学, 2012, 39(7): 200-204 doi: 10.3969/j.issn.1002-137X.2012.07.045

    Hou Li-Bin, Li Pei-Feng, Zhu Qiao-Ming, Qian Pei-De. Using cross-event inference to fill missing event argument. Computer Science, 2012, 39(7): 200-204 doi: 10.3969/j.issn.1002-137X.2012.07.045
    [16] 赵文娟, 刘忠宝, 王永芳. 基于句法依存分析的事件角色填充研究. 情报科学, 2017, 35(07): 65-69 https://www.cnki.com.cn/Article/CJFDTOTAL-QBKX201707012.htm

    Zhao Wen-Juan, Liu Zhong-Bao, Wang Yong-Fang. Research on event role annotation based on syntactic dependency analysis. Information Science, 2017, 35(07): 65-69 https://www.cnki.com.cn/Article/CJFDTOTAL-QBKX201707012.htm
    [17] Yin Q Y, Zhang Y, Zhang W N, Liu T, Wang W. Zero pronoun resolution with attention-based neural network. In: Proceedings of the 27th International Conference on Computational Linguistics. Santa Fe, USA: ACL, 2018. 13-23
    [18] 冯冲, 康丽琪, 石戈, 黄河燕. 融合对抗学习的因果关系抽取. 自动化学报, 2018, 44(05): 811-818 doi: 10.16383/j.aas.2018.c170481

    Feng Chong, Kang Li-Qi, Shi Ge, Huang He-Yan. Causality extraction with GAN. Acta Automatica Sinica, 2018, 44(05): 811-818 doi: 10.16383/j.aas.2018.c170481
    [19] 付剑锋. 面向事件的知识处理研究[博士学位论文], 上海大学, 中国, 2010

    Fu Jian-Feng. Research on Event-Oriented Knowledge Processing [Ph. D. dissertation], Shanghai University, China, 2010
    [20] Lakew S M, Cettolo M, Federico M. NA Comparison of Transformer and Recurrent Neural Networks on Multilingual Neural Machine Translation [Online], available: https://arxiv.org/pdf/1806.06957.pdf, June 20, 2018
    [21] Li S, Li W, Cook C, Zhu C, Gao Y B. Independently recurrent neural network (indrnn): building a longer and deeper RNN. In: Proceedings of the 2018 IEEE Conference on Computer Vision and Pattern Recognition. Salt Lake City, USA: IEEE, 2018. 5457-5466
    [22] Sabour S, Frosst N, Hinton G E. Dynamic routing between capsules. In: Proceedings of the Advances in Neural Information Processing Systems. Long Beach, USA: Curran Associates, Inc., 2017. 3856-3866
    [23] Zhao W, Ye J B, Yang M, Lei Z Y, Zhang S F, Zhao Z. Investigating Capsule Networks with Dynamic Routing for Text Classification [Online], available: https://arxiv.org/pdf/1804.00538.pdf, September 3, 2018
    [24] 贺宇, 潘达, 付国宏. 基于自动编码特征的汉语解释性意见句识别. 北京大学学报(自然科学版), 2015, 51(2): 234-240 https://www.cnki.com.cn/Article/CJFDTOTAL-BJDZ201502006.htm

    He Yu, Pan Da, Fu Guo-Hong. Chinese explanatory opinionated sentence recognition based on auto-encoding features. Acta Scientiarum Naturalium Universitatis Pekinensis, 2015, 51(2): 234-240 https://www.cnki.com.cn/Article/CJFDTOTAL-BJDZ201502006.htm
    [25] Mikolov T, Sutskever I, Chen K, Corrado G S, Distributed representations of words and phrases and their compositionality. In: Proceedings of the Advances in Neural Information Processing Systems. Lake Tahoe, USA: Curran Associates, Inc., 2013. 3111-3119
  • 加载中
图(2) / 表(9)
计量
  • 文章访问数:  773
  • HTML全文浏览量:  181
  • PDF下载量:  114
  • 被引次数: 0
出版历程
  • 收稿日期:  2018-10-09
  • 录用日期:  2019-01-22
  • 刊出日期:  2021-04-23

目录

    /

    返回文章
    返回