2.793

2018影响因子

(CJCR)

  • 中文核心
  • EI
  • 中国科技核心
  • Scopus
  • CSCD
  • 英国科学文摘

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

能源互联网及其关键控制问题

孙秋野 滕菲 张化光

孙秋野, 滕菲, 张化光. 能源互联网及其关键控制问题. 自动化学报, 2017, 43(2): 176-194. doi: 10.16383/j.aas.2017.c160390
引用本文: 孙秋野, 滕菲, 张化光. 能源互联网及其关键控制问题. 自动化学报, 2017, 43(2): 176-194. doi: 10.16383/j.aas.2017.c160390
SUN Qiu-Ye, TENG Fei, ZHANG Hua-Guang. Energy Internet and Its Key Control Issues. ACTA AUTOMATICA SINICA, 2017, 43(2): 176-194. doi: 10.16383/j.aas.2017.c160390
Citation: SUN Qiu-Ye, TENG Fei, ZHANG Hua-Guang. Energy Internet and Its Key Control Issues. ACTA AUTOMATICA SINICA, 2017, 43(2): 176-194. doi: 10.16383/j.aas.2017.c160390

能源互联网及其关键控制问题

doi: 10.16383/j.aas.2017.c160390
基金项目: 

中央高校基础科研业务费 N140402001

国家自然科学基金 61433004

国家自然科学基金 61433004

国家电网公司科技项目 XT71-14-055

详细信息
    作者简介:

    滕菲 东北大学信息科学与工程学院博士研究生.主要研究方向为分布式控制技术及其在能源互联网, 微网, 配电网等领域相关应用.E-mail:brenda teng@163.com

    张化光 东北大学信息科学与工程学院教授.主要研究方向为自适应动态规划, 模糊控制, 网络控制, 混沌控制.E-mail:zhanghuaguang@mail.neu.edu.cn

    通讯作者:

    孙秋野 东北大学信息科学与工程学院教授.主要研究方向为网络控制技术, 分布式控制技术, 分布式优化分析及其在能源互联网, 微网, 配电网等领域相关应用.本文通信作者.E-mail:sunqiuye@mail.neu.edu.cn

  • 本文责任编委 魏庆来

Energy Internet and Its Key Control Issues

Funds: 

Fundamental Research Funds for the Central Universities N140402001

National Natural Science Foundation of China 61433004

National Natural Science Foundation of China 61433004

and Science and Technology Project of State Grid Corporation of China XT71-14-055

More Information
    Author Bio:

    Ph. D. candidate at the School of Information Science and Engineering, Northeastern University. Her research interest covers distributed control technology and its various applications in energy internet, microgrid, power distribution network

    Professor at the School of Information Science and Engineering, Northeastern University. His research interest covers adaptive dynamic programming, fuzzy control, network control, and chaos control

    Corresponding author: SUN Qiu-Ye Professor at the School of Information Science and Engineering, Northeastern University. His research interest covers network control technology, distributed control technology, distributed optimization analysis and various applications in energy internet, microgrid, power distribution network. Corresponding author of this paper
  • 摘要: 能源互联网是以电力网络、热力网络及天然气网络等能源网络为对象,以分布式协同控制技术、智能优化控制技术以及先进的信息通讯技术等为实施手段,通过各能源网络集成交互形成的新型复杂能源系统,具有泛在互联、对等开放、低碳高效、多源协同、安全可靠等特点.本文根据能源互联网前期已开展学术研究展开讨论,剖析能源互联网的内涵,分类并简要分析能源互联网的系统结构,针对能源互联网的建设目标及工程需求层面,归纳并提炼了能源互联网未来发展中面临的若干控制科学问题,包括分布式协同控制、能量调度管理、能量转换、信息处理、故障诊断等关键技术,最后对能源互联网发展所面临的主要挑战及未来可能的研究方向进行了总结和展望.
    1)  本文责任编委 魏庆来
  • 图  1  能源互联网发展历程

    Fig.  1  The development of energy internet

    图  2  广义能源互联网和狭义能源互联网的组成元素

    Fig.  2  The components of generalized energy internet and narrow energy internet

    图  3  四类能源互联网间的联系与区别

    Fig.  3  The connection and difference between the four types of energy internet

  • [1] Is energy internet the economic mode in future?[Online], available:http://www.Cet.com.cn/nypd/yw/1354443.sh-tml, October 30, 2014
    [2] The Economist. Building the energy internet[Online], ava-ilable:http://www.economist.com/node/2476988, May 11, 2004
    [3] Huang A Q, Crow M L, Heydt G T, Zheng J P, Dale S J. The future renewable electric energy delivery and management (FREEDM) system:the energy internet. Proceedings of the IEEE, 2011, 99(1):133-148 doi: 10.1109/JPROC.2010.2081330
    [4] Pasquale A, Michaela B. Finseny white paper[Online], available:http://www.fi-ppp-finseny.eu/finseny-white-pa-per/, April 24, 2012
    [5] Friedman T. Hot, Flat, and Crowded:Why We Need a Green Revolution and How It Can Renew America. New York:Farrar, Straus and Giroux, 2008.
    [6] Rifkin J. The Third Industrial Revolution:How Lateral Power Is Transforming Energy, the Economy, and the World. New York:Palgrave MacMillan, 2011.
    [7] 曹军威, 孙嘉平.能源互联网与能源系统.北京:中国电力出版社, 2016.

    Cao Jun-Wei, Sun Jia-Ping. Energy Internet and Energy Systems. Beijing:China Electric Power Press, 2016.
    [8] 刘振亚.全球能源互联网.北京:中国电力出版社, 2015.

    Liu Zhen-Ya. Global Energy Internet. Beijing:China Electric Power Press, 2015.
    [9] Promote the energy internet building[Online], available:http://energy.people.com.cn/n1/2016/0303/c7166128168-200.html, March 3, 2016
    [10] The government work report in 2015[Online], available:http://www.guancha.cn/politics/201503173125111.shtml, March 17, 2015
    [11] 慈松, 李宏佳, 陈鑫, 王强文.能源互联网重要基础支撑:分布式储能技术的探索与实践.中国科学:信息科学, 2014, 44(6):762-773 http://www.cnki.com.cn/Article/CJFDTOTAL-PZKX201406008.htm

    Ci Song, Li Hong-Jia, Chen Xin, Wang Qiang-Wen. The cornerstone of energy internet:research and practice of distributed energy storage technology. Science China:Information Sciences, 2014, 44(6):762-773 http://www.cnki.com.cn/Article/CJFDTOTAL-PZKX201406008.htm
    [12] 董朝阳, 赵俊华, 文福拴, 薛禹胜.从智能电网到能源互联网:基本概念与研究框架.电力系统自动化, 2014, 38(15):1-11 http://www.cnki.com.cn/Article/CJFDTOTAL-DLXT201415001.htm

    Dong Chao-Yang, Zhao Jun-Hua, Wen Fu-Shuan, Xue Yu-Sheng. From smart grid to energy internet:basic concept and research framework. Automation of Electric Power Systems, 2014, 38(15):1-11 http://www.cnki.com.cn/Article/CJFDTOTAL-DLXT201415001.htm
    [13] 孙秋野, 王冰玉, 黄博南, 马大中.狭义能源互联网优化控制框架及实现.中国电机工程学报, 2015, 35(18):4571-4580 http://www.cnki.com.cn/Article/CJFDTOTAL-ZGDC201518002.htm

    Sun Qiu-Ye, Wang Bing-Yu, Huang Bo-Nan, Ma Da-Zhong. The optimization control and implementation for the special energy internet. Proceedings of the CSEE, 2015, 35(18):4571-4580 http://www.cnki.com.cn/Article/CJFDTOTAL-ZGDC201518002.htm
    [14] The energy internet demonstration area construction in Lvliang[Online], available:http://www.sx.xinhuanet.com/dfzx/2014-11/13/c1113227683.htm, November 13, 2014
    [15] "Internet +" in Sichuan[Online], available:http://www.wccdaily.com.cn/shtml/hxdsb/20150616/290936.shtml, June 16, 2015
    [16] The demonstration area construction energy internet proposed by Xiexin[Online], available:http://business.sohu.com/20151109/n425741299.shtml, November 7, 2015
    [17] 余贻鑫, 栾文鹏.智能电网述评.中国电机工程学报, 2009, 29(34):1-8

    Yu Yi-Xin, Luan Wen-Peng. Smart grid and its implementations. Proceedings of the CSEE, 2009, 29(34):1-8
    [18] 梅生伟, 朱建全.智能电网中的若干数学与控制科学问题及其展望.自动化学报, 2013, 39(2):119-131 doi: 10.1016/S1874-1029(13)60014-2

    Mei Sheng-Wei, Zhu Jian-Quan. Mathematical and control scientific issues of smart grid and its prospects. Acta Automatica Sinica, 2013, 39(2):119-131 doi: 10.1016/S1874-1029(13)60014-2
    [19] 杨新法, 苏剑, 吕志鹏, 刘海涛, 李蕊.微电网技术综述.中国电机工程学报, 2014, 34(1):57-70 http://www.cnki.com.cn/Article/CJFDTOTAL-DGJS2015S1057.htm

    Yang Xin-Fa, Su Jian, Lv Zhi-Peng, Liu Hai-Tao, Li Rui. Overview on micro-grid technology. Proceedings of the CSEE, 2014, 34(1):57-70 http://www.cnki.com.cn/Article/CJFDTOTAL-DGJS2015S1057.htm
    [20] 曾鸣, 杨雍琦, 刘敦楠, 曾博, 欧阳邵杰, 林海英, 韩旭.能源互联网"源-网-荷-储"协调优化运营模式及关键技术.电网技术, 2016, 40(1):114-124 http://www.cnki.com.cn/Article/CJFDTOTAL-DWJS201601022.htm

    Zeng Ming, Yang Yong-Qi, Liu Dun-Nan, Zeng Bo, Ouyang Shao-Jie, Lin Hai-Ying, Han Xu. "Generation-grid-load-storage" coordinative optimal operation mode of energy internet and key technologies. Power System Technology, 2016, 40(1):114-124 http://www.cnki.com.cn/Article/CJFDTOTAL-DWJS201601022.htm
    [21] Liang H, Long W D. Future energy system in low-carbon community-energy internet. In:Proceedings of the 2011 International Conference on Computer Distributed Control and Intelligent Environmental Monitoring. Changsha, China:IEEE, 2011. 227-230 http://ieeexplore.ieee.org/abstract/document/5747803/
    [22] Favre-Perrod P. A vision of future energy networks. In:Proceedings of the 2005 Power Engineering Society Inaugural Conference and Exposition in Africa. Durban, Africa:IEEE, 2005. 13-17 http://ieeexplore.ieee.org/abstract/document/1611778/
    [23] 孙秋野, 滕菲, 张化光, 马大中.能源互联网动态协调优化控制体系构建.中国电机工程学报, 2015, 35(14):3667-3677 http://www.cnki.com.cn/Article/CJFDTOTAL-ZGDC201514023.htm

    Sun Qiu-Ye, Teng Fei, Zhang Hua-Guang, Ma Da-Zhong. Construction of dynamic coordinated optimization control system for energy internet. Proceedings of the CSEE, 2015, 35(14):3667-3677 http://www.cnki.com.cn/Article/CJFDTOTAL-ZGDC201514023.htm
    [24] 黄如, 叶乐, 廖怀林.可再生能源互联网中的微电子技术.中国科学:信息科学, 2014, 44(6):728-742 http://www.cnki.com.cn/Article/CJFDTOTAL-DZRU201605100.htm

    Huang Ru, Ye Le, Liao Huai-Lin. Microelectronics technologies in renewable energy internet. Science China:Information Sciences, 2014, 44(6):728-742 http://www.cnki.com.cn/Article/CJFDTOTAL-DZRU201605100.htm
    [25] 查亚兵, 张涛, 黄卓, 张彦, 刘宝龙, 黄生俊.能源互联网关键技术分析.中国科学:信息科学, 2014, 44(6):702-713 http://www.cnki.com.cn/Article/CJFDTOTAL-PZKX201406004.htm

    Zha Ya-Bing, Zhang Tao, Huang Zhuo, Zhang Yan, Liu Bao-Long, Huang Sheng-Jun. Analysis of energy internet key technologies. Science China:Information Sciences, 2014, 44(6):702-713 http://www.cnki.com.cn/Article/CJFDTOTAL-PZKX201406004.htm
    [26] 曹军威, 孟坤, 王继业, 杨明博, 陈震, 李文焯, 林闯.能源互联网与能源路由器.中国科学:信息科学, 2014, 44(6):714-727 http://www.cnki.com.cn/Article/CJFDTOTAL-PZKX201406005.htm

    Cao Jun-Wei, Meng Kun, Wang Ji-Ye, Yang Ming-Bo, Chen Zhen, Li Wen-Zhuo, Lin Chuang. An energy internet and energy routers. Science China:Information Sciences, 2014, 44(6):714-727 http://www.cnki.com.cn/Article/CJFDTOTAL-PZKX201406005.htm
    [27] Katz R H, Culler D E, Sanders S, Alspaugh S, Chen Y P, Dawson-Haggerty S, Dutta P, He M K, Jiang X F, Keys L, Krioukov A, Lutz K, Ortiz J, Mohan P, Reutzel E, Taneja J, Hsu J, Shankar S. An information-centric energy infrastructure:the Berkeley view. Sustainable Computing:Informatics and Systems, 2011, 1(1):7-22 doi: 10.1016/j.suscom.2010.10.001
    [28] Orecchini F, Santiangeli A. Beyond smart grids-the need of intelligent energy networks for a higher global efficiency through energy vectors integration. International Journal of Hydrogen Energy, 2011, 36(13):8126-8133 doi: 10.1016/j.ijhydene.2011.01.160
    [29] Keshav S, Rosenberg C. How internet concepts and technologies can help green and smarten the electrical grid. ACM SIGCOMM Computer Communication Review, 2011, 41(1):109-114 doi: 10.1145/1925861
    [30] Tsoukalas L H, Gao R. From smart grids to an energy internet:assumptions, architectures and requirements. In:Proceedings of the 3rd International Conference on Electric Utility Deregulation and Restructuring and Power Technologies. Nanjing, China:IEEE, 2008. 94-98 http://ieeexplore.ieee.org/abstract/document/4523385/
    [31] Cao J W, Yang M B. Energy internet-towards smart grid 2.0. In:Proceedings of the 4th International Conference on Networking and Distributed Computing. Los Angeles, USA:IEEE, 2013. 105-110
    [32] Kolesnikov A, Veselov G. Modern Applied Control Theory:Synergetic Approach in Control Theory. Moscow-Taganrog:TSURE Press, 2000.
    [33] 王兴平, 宋艳荣, 程兆林.切换网络下时变线性多智能体系统的指数同步.自动化学报, 2015, 41(8):1528-1532 http://www.aas.net.cn/CN/abstract/abstract18726.shtml

    Wang Xing-Ping, Song Yan-Rong, Cheng Zhao-Lin. Exponential synchronization of time-varying linear multi-agent systems with switching topology. Acta Automatica Sinica, 2015, 41(8):1528-1532 http://www.aas.net.cn/CN/abstract/abstract18726.shtml
    [34] 周峰, 吴炎烜.基于有向网络的一致性跟踪算法.自动化学报, 2015, 41(1):180-185 http://www.aas.net.cn/CN/abstract/abstract18596.shtml

    Zhou Feng, Wu Yan-Xuan. Consensus tracking algorithms with directed network. Acta Automatica Sinica, 2015, 41(1):180-185 http://www.aas.net.cn/CN/abstract/abstract18596.shtml
    [35] 陈杨杨, 田玉平.多智能体沿多条给定路径编队运动的有向协同控制.自动化学报, 2009, 35(12):1541-1549 http://www.aas.net.cn/CN/abstract/abstract13614.shtml

    Chen Yang-Yang, Tian Yu-Ping. Directed coordinated control for multi-agent formation motion on a set of given curves. Acta Automatica Sinica, 2009, 35(12):1541-1549 http://www.aas.net.cn/CN/abstract/abstract13614.shtml
    [36] Ren F H, Zhang M J, Sutanto D. A multi-agent solution to distribution system management by considering distributed generators. IEEE Transactions on Power Systems, 2013, 28(2):1442-1451 doi: 10.1109/TPWRS.2012.2223490
    [37] Nordman M M, Lehtonen M. Distributed agent-based state estimation for electrical distribution networks. IEEE Transactions on Power Systems, 2005, 20(2):652-658 doi: 10.1109/TPWRS.2005.846102
    [38] Nagata T, Sasaki H. A multi-agent approach to power system restoration. IEEE Transactions on Power Systems, 2002, 17(2):457-462 doi: 10.1109/TPWRS.2002.1007918
    [39] Ren F H, Zhang M J, Soetanto D, Su X D. Conceptual design of a multi-agent system for interconnected power systems restoration. IEEE Transactions on Power Systems, 2012, 27(2):732-740 doi: 10.1109/TPWRS.2011.2177866
    [40] Teng F, Sun Q Y, Xie X P, Zhang H G, Ma D Z. A disaster-triggered life-support load restoration framework based on multi-agent consensus system. Neurocomputing, 2015, 170:339-352 doi: 10.1016/j.neucom.2015.01.087
    [41] Bidram A, Davoudi A, Lewis F L, Guerrero J M. Distributed cooperative secondary control of microgrids using feedback linearization. IEEE Transactions on Power Systems, 2013, 28(3):3462-3470 doi: 10.1109/TPWRS.2013.2247071
    [42] Liu W, Gu W, Sheng W X, Meng X L, Wu Z J, Chen W. Decentralized multi-agent system-based cooperative frequency control for autonomous microgrids with communication constraints. IEEE Transactions on Sustainable Energy, 2014, 5(2):446-456 doi: 10.1109/TSTE.2013.2293148
    [43] Xin H, Lu Z, Qu Z, Gan D, Qi D. Cooperative control strategy for multiple photovoltaic generators in distribution networks. IET Control Theory and Applications, 2011, 5(14):1617-1629 doi: 10.1049/iet-cta.2010.0538
    [44] Xin H H, Liu Y, Wang Z, Gan D Q, Yang T C. A new frequency regulation strategy for photovoltaic systems without energy storage. IEEE Transactions on Sustainable Energy, 2013, 4(4):985-993 doi: 10.1109/TSTE.2013.2261567
    [45] Sun Q Y, Han R K, Zhang H G, Zhou J G, Guerrero J M. A multiagent-based consensus algorithm for distributed coordinated control of distributed generators in the energy internet. IEEE Transactions on Smart Grid, 2015, 6(6):3006-3019 doi: 10.1109/TSG.2015.2412779
    [46] 辛斌, 陈杰, 彭志红.智能优化控制:概述与展望.自动化学报, 2013, 39(11):1831-1848 doi: 10.3724/SP.J.1004.2013.01831

    Xin Bin, Chen Jie, Peng Zhi-Hong. Intelligent optimized control:overview and prospect. Acta Automatica Sinica, 2013, 39(11):1831-1848 doi: 10.3724/SP.J.1004.2013.01831
    [47] 薛毅.最优化原理与方法.北京:北京工业大学出版社, 2001.

    Xue Yi. Optimization Theory and Method. Beijing:Press Beijing University of Technology, 2001.
    [48] Zhang H G, Jiang H, Luo Y H, Xiao G Y. Data-driven optimal consensus control for discrete-time multi-agent systems with unknown dynamics using reinforcement learning method. IEEE Transactions on Industrial Electronics, DOI: 10.1109/TIE.2016.2542134
    [49] Zhang H G, Feng T, Yang G H, Liang H J. Distributed cooperative optimal control for multiagent systems on directed graphs:an inverse optimal approach. IEEE Transactions on Cybernetics, 2015, 45(7):1315-1326 doi: 10.1109/TCYB.2014.2350511
    [50] Zhang H G, Feng T, Liang H J, Luo Y H. LQR-based optimal distributed cooperative design for linear discrete-time multiagent systems. IEEE Transactions on Neural Networks and Learning Systems, DOI:10.1109/TNNLS.2015. 2490072
    [51] 杨若黎, 吴沧浦.一种新的非线性规划神经网络模型.自动化学报, 1996, 22(3):293-300 http://www.aas.net.cn/CN/abstract/abstract17175.shtml

    Yang Ruo-Li, Wu Cang-Pu. A novel neural network model for nonlinear programming. Acta Automatica Sinica, 1996, 22(3):293-300 http://www.aas.net.cn/CN/abstract/abstract17175.shtml
    [52] 严洪森, 张晓东.最优递阶随机生产计划与控制.自动化学报, 2002, 28(1):83-89

    Yan Hong-Sen, Zhang Xiao-Dong. Optimal hierarchical stochastic production planning and control. Acta Automatica Sinica, 2002, 28(1):83-89
    [53] 张化光, 张欣, 罗艳红, 杨珺.自适应动态规划综述.自动化学报, 2013, 39(4):303-311 doi: 10.1016/S1874-1029(13)60031-2

    Zhang Hua-Guang, Zhang Xin, Luo Yan-Hong, Yang Jun. An overview of research on adaptive dynamic programming. Acta Automatica Sinica, 2013, 39(4):303-311 doi: 10.1016/S1874-1029(13)60031-2
    [54] 卫忠, 徐晓飞, 战德臣, 邓胜春.协同供应链多级库存控制的多目标优化模型及其求解方法.自动化学报, 2007, 33(2):181-187 doi: 10.1360/aas-007-0181

    Wei Zhong, Xu Xiao-Fei, Zhan De-Chen, Deng Sheng-Chun. Multi objective optimization model for collaborative multi-echelon inventory control in supply chain. Acta Automatica Sinica, 2007, 33(2):181-187 doi: 10.1360/aas-007-0181
    [55] 陈金水, 孙优贤.系统存在参数摄动时基于二次规划的一种故障诊断算法.自动化学报, 1997, 23(1):77-80 http://www.aas.net.cn/CN/abstract/abstract17084.shtml

    Chen Jin-Shui, Sun You-Xian. A algorithm of fault detection for dynamic systems with bounded parameter perturbation based on quadratic programming. Acta Automatica Sinica, 1997, 23(1):77-80 http://www.aas.net.cn/CN/abstract/abstract17084.shtml
    [56] Zhang W, Xu Y L, Liu W X, Zang C Z, Yu H B. Distributed online optimal energy management for smart grids. IEEE Transactions on Industrial Informatics, 2015, 11(3):717-727 doi: 10.1109/TII.2015.2426419
    [57] Wood A J, Wollenberg B F. Power Generation, Operation, and Control. Hoboken, NJ, USA:Wiley, 2012.
    [58] Lin C E, Chen S T, Huang C L. A direct Newton-Raphson economic dispatch. IEEE Transactions on Power Systems, 1992, 7(3):1149-1154 doi: 10.1109/59.207328
    [59] Mohsenian-Rad A H, Leon-Garcia A. Optimal residential load control with price prediction in real-time electricity pricing environments. IEEE Transactions on Smart Grid, 2010, 1(2):120-133 doi: 10.1109/TSG.2010.2055903
    [60] Chiang C L. Genetic-based algorithm for power economic load dispatch. IET Generation, Transmission, and Distribution, 2007, 1(2):261-269 doi: 10.1049/iet-gtd:20060130
    [61] Sinha N, Chakrabarti R, Chattopadhyay P K. Evolutionary programming techniques for economic load dispatch. IEEE Transactions on Evolutionary Computation, 2003, 7(1):83-94 doi: 10.1109/TEVC.2002.806788
    [62] Kuo C C. A novel coding scheme for practical economic dispatch by modified particle swarm approach. IEEE Transactions on Power Systems, 2008, 23(4):1825-1835 doi: 10.1109/TPWRS.2008.2002297
    [63] Pantoja A, Quijano N. A population dynamics approach for the dispatch of distributed generators. IEEE Transactions on Industrial Electronics, 2011, 58(10):4559-4567 doi: 10.1109/TIE.2011.2107714
    [64] Saad W, Han Z, Poor H V, Basar T. Game-theoretic methods for the smart grid:an overview of microgrid systems, demand-side management, and smart grid communications. IEEE Signal Processing Magazine, 2012, 29(5):86-105 doi: 10.1109/MSP.2012.2186410
    [65] Zhang W, Liu W X, Wang X, Liu L M, Ferrese F. Online optimal generation control based on constrained distributed gradient algorithm. IEEE Transactions on Power Systems, 2015, 30(1):35-45 doi: 10.1109/TPWRS.2014.2319315
    [66] Guo F H, Wen C Y, Mao J F, Song Y D. Distributed economic dispatch for smart grids with random wind power. IEEE Transactions on Smart Grid, 2016, 7(3):1572-1583 doi: 10.1109/TSG.2015.2434831
    [67] Kolar J W, Ortiz G. Solid-state transformers. In:Proceedings of the 2014 Plenary Session Presentation at the IEEE International Power Electronics and Applications Conference and Exhibition. Shanghai, China:IEEE, 2014. 5-8
    [68] McMurray W. Power Converter Circuits Having a High Frequency Link, U.S. Patent 3517300, April 1968.
    [69] Brooks J L, Staab R I, Bowers J C, Nienhaus H A. Solid State Regulated Power Transformer with Waveform Conditioning Capability, U.S. Patent 4347474, September 1980. https://search.glgoo.com/patents/US4347474
    [70] Blume S, Biela J. Optimal transformer design for ultraprecise solid state modulators. IEEE Transactions on Plasma Science, 2013, 41(10):2691-2700 doi: 10.1109/TPS.2013.2280429
    [71] Bortis D, Biela J, Kolar J W. Transient behavior of solid-state modulators with matrix transformers. IEEE Transactions on Plasma Science, 2010, 38(10):2785-2792 doi: 10.1109/TPS.2010.2065243
    [72] She X, Huang A Q, Wang G Y. 3-D space modulation with voltage balancing capability for a cascaded seven-level converter in a solid-state transformer. IEEE Transactions on Power Electronics, 2011, 26(12):3778-3789 doi: 10.1109/TPEL.2011.2142422
    [73] She X, Yu X W, Wang F, Huang A Q. Design and demonstration of a 3.6-kV-120-V/10-kVA solid-state transformer for smart grid application. IEEE Transactions on Power Electronics, 2014, 29(8):3982-3996 doi: 10.1109/TPEL.2013.2293471
    [74] Ortiz G, Uemura H, Bortis D, Kolar J W, Apeldoorn O. Modeling of soft-switching losses of IGBTs in high-power high-efficiency dual-active-bridge DC/DC converters. IEEE Transactions on Electronics Devices, 2013, 60(2):587-597 doi: 10.1109/TED.2012.2223215
    [75] Martinez-Velasco J A, Alepuz S, González-Molina F, Martin-Arnedo J. Dynamic average modeling of a bidirectional solid state transformer for feasibility studies and real-time implementation. Electric Power Systems Research, 2014, 117:143-153 doi: 10.1016/j.epsr.2014.08.005
    [76] Zhang M R, Du Z C, Lin X Q, Chen J. Control strategy design and parameter selection for suppressing circulating current among SSTs in parallel. IEEE Transactions on Smart Grid, 2015, 6(4):1602-1609 doi: 10.1109/TSG.2015.2402835
    [77] Rodriguez-Bernuz J M, Prieto-Araujo E, Girbau-Llistuella F, Sumper A, Villafafila-Robles R, Vidal-Clos J A. Experimental validation of a single phase intelligent power router. Sustainable Energy, Grids and Networks, 2015, 4:1-15 doi: 10.1016/j.segan.2015.07.001
    [78] Qin H S, Kimball J W. Closed-loop control of DC-DC dual active bridge converters driving single-phase inverters. IEEE Transactions on Power Electronics, 2014, 29(2):1006-1017 doi: 10.1109/TPEL.2013.2257859
    [79] Ge J J, Zhao Z M, Yuan L Q, Lu T. Energy feed-forward and direct feed-forward control for solid-state transformer. IEEE Transactions on Power Electronics, 2015, 30(8):4042-4047 doi: 10.1109/TPEL.2014.2382613
    [80] Shi J J, Gou W, Yuan H, Zhao T F, Huang A Q. Research on voltage and power balance control for cascaded modular solid-state transformer. IEEE Transactions on Power Electronics, 2011, 26(4):1154-1166 doi: 10.1109/TPEL.2011.2106803
    [81] Zhao T F, Wang G Y, Bhattacharya S, Huang A Q. Voltage and power balance control for a cascaded H-bridge converter-based solid-state transformer. IEEE Transactions on Power Electronics, 2013, 28(4):1523-1532 doi: 10.1109/TPEL.2012.2216549
    [82] She X, Huang A Q, Ni X J. Current sensorless power balance strategy for DC/DC converters in a cascaded multilevel converter based solid state transformer. IEEE Transactions on Power Electronics, 2014, 29(1):17-22 doi: 10.1109/TPEL.2013.2256149
    [83] Hwang S H, Liu X H, Kim J M, Li H. Distributed digital control of modular-based solid-state transformer using DSP + FPGA. IEEE Transactions on Industrial Electronics, 2013, 60(2):670-680 doi: 10.1109/TIE.2012.2206354
    [84] 盛万兴, 刘海涛, 曾正, 吕志鹏, 谭骞, 段青, 冉立.一种基于虚拟电机控制的能量路由器.中国电机工程学报, 2015, 35(14):3541-3550 http://www.cnki.com.cn/Article/CJFDTOTAL-ZGDC201514009.htm

    Sheng Wan-Xing, Liu Hai-Tao, Zeng Zheng, Lv Zhi-Peng, Tan Qian, Duan Qing, Ran Li. An energy hub based on virtual-machine control. Proceedings of the CSEE, 2015, 35(14):3541-3550 http://www.cnki.com.cn/Article/CJFDTOTAL-ZGDC201514009.htm
    [85] Yu X W, She X, Ni X J, Huang A Q. System integration and hierarchical power management strategy for a solid-state transformer interfaced microgrid system. IEEE Transactions on Power Electronics, 2014, 29(8):4414-4425 doi: 10.1109/TPEL.2013.2289374
    [86] Yu X W, She X, Zhou X H, Huang A Q. Power management for DC microgrid enabled by solid-state transformer. IEEE Transactions on Smart Grid, 2014, 5(2):954-965 doi: 10.1109/TSG.2013.2277977
    [87] Zhang H G, Zhou J G, Sun Q Y, Guerrero J M, Ma D Z. Data-driven control for interlinked AC/DC microgrids via model-free adaptive control and dual-droop control. IEEE Transactions on Smart Grid, DOI: 10.1109/TSG.2015.2500269
    [88] Geidl M, Koeppel G, Favre-Perrod P, Klockl B, Andersson G, Frohlich K. Energy hubs for the future. IEEE Power and Energy Magazine, 2007, 5(1):24-30 doi: 10.1109/MPAE.2007.264850
    [89] Geidl M, Andersson G. Optimal power flow of multiple energy carriers. IEEE Transactions on Power Systems, 2007, 22(1):145-155 doi: 10.1109/TPWRS.2006.888988
    [90] Geidl M. Integrated Modeling and Optimization of Multi-Carrier Energy Systems[Ph.D. dissertation], Graz University of Technology, Zürich, 2007.
    [91] Schulze M, Friedrich L, Gautschi M. Modeling and optimization of renewables:applying the energy hub approach. In:Proceedings of the 2008 IEEE International Conference on Sustainable Energy Technologies. Singapore, Singapore:IEEE, 2008. 83-88
    [92] Ahčin P, Šikić M. Simulating demand response and energy storage in energy distribution systems. In:Proceedings of the 2010 International Conference on Power System Technology. Hangzhou, China:IEEE, 2010. 1-7 http://ieeexplore.ieee.org/abstract/document/5666564/
    [93] Geidl M, Andersson G. Optimal coupling of energy infrastructures. In:Proceedings of the 2007 IEEE Lausanne Power Technologies. Lausanne, Switzerland:IEEE, 2007. 1398-1403 http://ieeexplore.ieee.org/abstract/document/4538520/
    [94] Salimi M, Ghasemi H, Adelpour M, Vaez-Zadeh S. Optimal planning of energy hubs in interconnected energy systems:a case study for natural gas and electricity. IET Generation, Transmission and Distribution, 2015, 9(8):695-707 doi: 10.1049/iet-gtd.2014.0607
    [95] Ren H B, Gao W J, Ruan Y J. Optimal sizing for residential CHP system. Applied Thermal Engineering, 2008, 28(5-6):514-523 doi: 10.1016/j.applthermaleng.2007.05.001
    [96] Sheikhi A, Rayati M, Ranjbar A M. Energy hub optimal sizing in the smart grid; machine learning approach. In:Proceedings of the 2015 IEEE Power and Energy Society Innovative Smart Grid Technologies Conference. Washington, DC, USA:IEEE, 2015. 1-5
    [97] Kienzle F, Ahcin P, Andersson G. Valuing investments in multi-energy conversion, storage, and demand-side management systems under uncertainty. IEEE Transactions on Sustainable Energy, 2011, 2(2):194-202 doi: 10.1109/TSTE.2011.2106228
    [98] Zhang X P, Shahidehpour M, Alabdulwahab A, Abusorrah A. Optimal expansion planning of energy hub with multiple energy infrastructures. IEEE Transactions on Smart Grid, 2015, 6(5):2302-2311 doi: 10.1109/TSG.2015.2390640
    [99] 王毅, 张宁, 康重庆.能源互联网中能量枢纽的优化规划与运行研究综述及展望.中国电机工程学报, 2015, 35(22):5669-5681 http://www.cnki.com.cn/Article/CJFDTOTAL-ZGDC201522001.htm

    Wang Yi, Zhang Ning, Kang Chong-Qing. Review and prospect of optimal planning and operation of energy hub in energy internet. Proceedings of the CSEE, 2015, 35(22):5669-5681 http://www.cnki.com.cn/Article/CJFDTOTAL-ZGDC201522001.htm
    [100] Shahmohammadi A, Dalvand M M, Ghazizadeh M S, Salemnia A. Energy hubs' structural and operational linear optimization with energy storage elements. In:Proceedings of the 2nd International Conference on Electric Power and Energy Conversion Systems. Sharjah, United Arab Emirates:IEEE, 2011. 1-6
    [101] Pazouki S, Haghifam M R, Olamaei J. Economical scheduling of multi carrier energy systems integrating renewable, energy storage and demand response under energy hub approach. In:Proceedings of the 2013 Smart Grid Conference. Tehran, Iran:IEEE, 2013. 80-84 http://ieeexplore.ieee.org/abstract/document/6733803/
    [102] Parisio A, Del Vecchio C, Velotto G. Robust optimization of operations in energy hub. In:Proceedings of the 50th IEEE Conference on Decision and Control and European Control Conference. Orlando, FL, USA:IEEE, 2011. 4943-4948 http://ieeexplore.ieee.org/abstract/document/6161251/
    [103] Rastegar M, Fotuhi-Firuzabad M, Lehtonen M. Home load management in a residential energy hub. Electric Power Systems Research, 2015, 119:322-328 doi: 10.1016/j.epsr.2014.10.011
    [104] Pazouki S, Haghifam M, Pazouki S. Short term economical scheduling in an energy hub by renewable and demand response. In:Proceedings of the 3rd International Conference on Electric Power and Energy Conversion Systems. Istanbul, Turkey:IEEE, 2013. 1-6 http://ieeexplore.ieee.org/abstract/document/6713024/
    [105] 徐宪东, 贾宏杰, 靳小龙, 余晓丹, 穆云飞.区域综合能源系统电/气/热混合潮流算法研究.中国电机工程学报, 2015, 35(14):3634-3642 http://www.cnki.com.cn/Article/CJFDTOTAL-ZGDC201514019.htm

    Xu Xian-Dong, Jia Hong-Jie, Jin Xiao-Long, Yu Xiao-Dan, Mu Yun-Fei. Study on hybrid heat-gas-power flow algorithm for integrated community energy system. Proceedings of the CSEE, 2015, 35(14):3634-3642 http://www.cnki.com.cn/Article/CJFDTOTAL-ZGDC201514019.htm
    [106] Shabanpour-Haghighi A, Seifi A R. Energy flow optimization in multicarrier systems. IEEE Transactions on Industrial Informatics, 2015, 11(5):1067-1077 doi: 10.1109/TII.2015.2462316
    [107] Moeini-Aghtaie M, Dehghanian P, Fotuhi-Firuzabad M, Abbaspour A. Multiagent genetic algorithm:an online probabilistic view on economic dispatch of energy hubs constrained by wind availability. IEEE Transactions on Sustainable Energy, 2014, 5(2):699-708 doi: 10.1109/TSTE.2013.2271517
    [108] Krause T, Kienzle F, Liu Y, Andersson G. Modeling interconnected national energy systems using an energy hub approach. In:Proceedings of the 2011 IEEE Trondheim PowerTech. Trondheim, Norway:IEEE, 2011. 1-7 http://ieeexplore.ieee.org/abstract/document/6713024/
    [109] Moeini-Aghtaie M, Abbaspour A, Fotuhi-Firuzabad M, Hajipour E. A decomposed solution to multiple-energy carriers optimal power flow. IEEE Transactions on Power Systems, 2014, 29(2):707-716 doi: 10.1109/TPWRS.2013.2283259
    [110] Pazouki S, Haghifam M R, Moser A. Uncertainty modeling in optimal operation of energy hub in presence of wind, storage and demand response. International Journal of Electrical Power and Energy Systems, 2014, 61:335-345 doi: 10.1016/j.ijepes.2014.03.038
    [111] 贾宏杰, 王丹, 徐宪东, 余晓丹.区域综合能源系统若干问题研究.电力系统自动化, 2015, 39(7):198-207 http://www.cnki.com.cn/Article/CJFDTOTAL-DLXT201507033.htm

    Jia Hong-Jie, Wang Dan, Xu Xian-Dong, Yu Xiao-Dan. Research on some key problems related to integrated energy systems. Automation of Electric Power Systems, 2015, 39(7):198-207 http://www.cnki.com.cn/Article/CJFDTOTAL-DLXT201507033.htm
    [112] Philip A, David B, Edward L, Martin T, Shyam S S. Cyber-Physical Systems[Online], available:http://cyber-physicalsystems.org/, January 18, 2017
    [113] 王中杰, 谢璐璐.信息物理融合系统研究综述.自动化学报, 2011, 37(10):1157-1166 http://www.aas.net.cn/CN/abstract/abstract17604.shtml

    Wang Zhong-Jie, Xie Lu-Lu. Cyber-physical systems:a survey. Acta Automatica Sinica, 2011, 37(10):1157-1166 http://www.aas.net.cn/CN/abstract/abstract17604.shtml
    [114] 温景容, 武穆清, 宿景芳.信息物理融合系统.自动化学报, 2012, 38(4):507-517 doi: 10.3724/SP.J.1004.2012.00507

    Wen Jing-Rong, Wu Mu-Qing, Su Jing-Fang. Cyber-physical system. Acta Automatica Sinica, 2012, 38(4):507-517 doi: 10.3724/SP.J.1004.2012.00507
    [115] Facchinetti T, Vedova M L D. Real-time modeling for direct load control in cyber-physical power systems. IEEE Transactions on Industrial Informatics, 2011, 7(4):689-698 doi: 10.1109/TII.2011.2166787
    [116] Xin S J, Guo Q L, Sun H B, Zhang B M, Wang J H, Chen C. Cyber-physical modeling and cyber-contingency assessment of hierarchical control systems. IEEE Transactions on Smart Grid, 2015, 6(5):2375-2385 doi: 10.1109/TSG.2014.2387381
    [117] Pasqualetti F, Dörfler F, Bullo F. Attack detection and identification in cyber-physical systems. IEEE Transactions on Automatic Control, 2013, 58(11):2715-2729 doi: 10.1109/TAC.2013.2266831
    [118] Li H S, Lai L F, Poor H V. Multicast routing for decentralized control of cyber physical systems with an application in smart grid. IEEE Journal on Selected Areas in Communications, 2012, 30(6):1097-1107 doi: 10.1109/JSAC.2012.120708
    [119] Ilic M D, Xie L, Khan U A, Moura J M F. Modeling of future cyber-physical energy systems for distributed sensing and control. IEEE Transactions on Systems, Man, and Cybernetics, Part A:Systems and Humans, 2010, 40(4):825-838 doi: 10.1109/TSMCA.2010.2048026
    [120] Sridhar S, Hahn A, Govindarasu M. Cyber-physical system security for the electric power grid. Proceedings of the IEEE, 2012, 100(1):210-224 doi: 10.1109/JPROC.2011.2165269
    [121] 郭庆来, 辛蜀骏, 王剑辉, 孙宏斌.由乌克兰停电事件看信息能源系统综合安全评估.电力系统自动化, 2016, 40(5):145-147 http://www.cnki.com.cn/Article/CJFDTOTAL-DLXT201605022.htm

    Guo Qing-Lai, Xin Shu-Jun, Wang Jian-Hui, Sun Hong-Bin. Comprehensive security assessment for a cyber physical energy system:a lesson from Ukraine's blackout. Automation of Electric Power Systems, 2016, 40(5):145-147 http://www.cnki.com.cn/Article/CJFDTOTAL-DLXT201605022.htm
    [122] Pasqualetti F, Dorfler F, Bullo F. Control-theoretic methods for cyber-physical security:geometric principles for optimal cross-layer resilient control systems. IEEE Control Systems, 2015, 35(1):110-127 doi: 10.1109/MCS.2014.2364725
    [123] 周子冠, 白晓民, 李再华, 许婧, 李晓珺, 李惠玲.采用知识网格技术的智能输电网故障诊断方法.中国电机工程学报, 2010, 30(4):8-15 http://www.cnki.com.cn/Article/CJFDTOTAL-ZGDC201004003.htm

    Zhou Zi-Guan, Bai Xiao-Min, Li Zai-Hua, Xu Jing, Li Xiao-Jun, Li Hui-Ling. Novel fault diagnosis approach of smart transmission grid based on knowledge grid technology. Proceedings of the CSEE, 2010, 30(4):8-15 http://www.cnki.com.cn/Article/CJFDTOTAL-ZGDC201004003.htm
    [124] 陈星莺, 顾欣欣, 余昆, 刘皓明, 王平.城市电网自愈控制体系结构.电力系统自动化, 2009, 33(24):38-42) http://www.cnki.com.cn/Article/CJFDTOTAL-DLXT200924010.htm

    Chen Xing-Ying, Gu Xin-Xin, Yu Kun, Liu Hao-Ming, Wang Ping. Architecture for self-healing control of urban power grid. Automation of Electric Power Systems, 2009, 33(24):38-42 http://www.cnki.com.cn/Article/CJFDTOTAL-DLXT200924010.htm
    [125] Amin S M, Giacomoni A M. Smart grid, safe grid. IEEE Power Energy Magazine, 2012, 10(1):33-40 doi: 10.1109/MPE.2011.943112
    [126] Guo W X, Wen F S, Ledwich G, Liao Z W, He X Z, Liang J H. An analytic model for fault diagnosis in power systems considering malfunctions of protective relays and circuit breakers. IEEE Transactions on Power Delivery, 2010, 25(3):1393-1401 doi: 10.1109/TPWRD.2010.2048344
    [127] Lin X N, Ke S H, Li Z T, Weng H L, Han X H. A fault diagnosis method of power systems based on improved objective function and genetic algorithm-tabu search. IEEE Transactions on Power Delivery, 2010, 25(3):1268-1274 doi: 10.1109/TPWRD.2010.2044590
    [128] 姚俊峰, 梅炽, 彭小奇.混沌遗传算法(CGA) 的应用研究及其优化效率评价.自动化学报, 2002, 28(6):935-942 http://www.aas.net.cn/CN/abstract/abstract15629.shtml

    Yao Jun-Feng, Mei Chi, Peng Xiao-Qi. The application research of the chaos genetic algorithm (CGA) and its evaluation of optimization efficiency. Acta Automatica Sinica, 2002, 28(6):935-942 http://www.aas.net.cn/CN/abstract/abstract15629.shtml
    [129] 王丽芳, 曾建潮.基于微粒群算法与模拟退火算法的协同进化方法.自动化学报, 2006, 32(4):630-635 http://www.aas.net.cn/CN/abstract/abstract15602.shtml

    Wang Li-Fang, Zeng Jian-Chao. A cooperative evolutionary algorithm based on particle swarm optimization and simulated annealing algorithm. Acta Automatica Sinica, 2006, 32(4):630-635 http://www.aas.net.cn/CN/abstract/abstract15602.shtml
    [130] Shahsavari A, Mazhari S M, Fereidunian A, Lesani H. Fault indicator deployment in distribution systems considering available control and protection devices:a multi-objective formulation approach. IEEE Transactions on Power Systems, 2014, 29(5):2359-2369 doi: 10.1109/TPWRS.2014.2303933
    [131] Yao W, Chen X Q, Zhao Y, van Tooren M. Concurrent subspace width optimization method for RBF neural network modeling. IEEE Transactions on Neural Networks and Learning Systems, 2012, 23(2):247-259 doi: 10.1109/TNNLS.2011.2178560
    [132] Cauvin, J M, Le Guillou C, Solaiman B, Robaszkiewicz M, Le Beux P, Roux C. Computer-assisted diagnosis system in digestive endoscopy. IEEE Transactions on Information Technology in Biomedicine, 2003, 7(4):256-262 doi: 10.1109/TITB.2003.823293
    [133] Ye F M, Zhang Z B, Chakrabarty K, Gu X L. Board-level functional fault diagnosis using artificial neural networks, support-vector machines, and weighted-majority voting. IEEE Transactions on Computer-Aided Design of Integrated Circuits and Systems, 2013, 32(5):723-736 doi: 10.1109/TCAD.2012.2234827
    [134] Wang L, Chen Q, Gao Z J, Niu L, Zhao Y S, Ma Z G, Wu D J. Knowledge representation and general Petri net models for power grid fault diagnosis. IET Generation, Transmission, and Distribution, 2015, 9(9):866-873
    [135] 董春玲, 张勤.用于不确定性故障诊断的权重逻辑推理算法研究.自动化学报, 2014, 40(12):2766-2781 http://www.aas.net.cn/CN/abstract/abstract18556.shtml

    Dong Chun-Ling, Zhang Qin. Research on weighted logical inference for uncertain fault diagnosis. Acta Automatica Sinica, 2014, 40(12):2766-2781 http://www.aas.net.cn/CN/abstract/abstract18556.shtml
    [136] 周东华, 史建涛, 何潇.动态系统间歇故障诊断技术综述.自动化学报, 2014, 40(2):161-171 http://www.aas.net.cn/CN/abstract/abstract18279.shtml

    Zhou Dong-Hua, Shi Jian-Tao, He Xiao. Review of intermittent fault diagnosis techniques for dynamic systems. Acta Automatica Sinica, 2014, 40(2):161-171 http://www.aas.net.cn/CN/abstract/abstract18279.shtml
    [137] 王静, 胡益, 侍洪波.基于GMM的间歇过程故障检测.自动化学报, 2015, 41(5):899-905 http://www.aas.net.cn/CN/abstract/abstract18664.shtml

    Wang Jing, Hu Yi, Shi Hong-Bo. Fault detection for batch processes based on Gaussian mixture model. Acta Automatica Sinica, 2015, 41(5):899-905 http://www.aas.net.cn/CN/abstract/abstract18664.shtml
    [138] Khatib E J, Barco R, Gómez-Andrades A, Serrano I. Diagnosis based on genetic fuzzy algorithms for LTE self-healing. IEEE Transactions on Vehicular Technology, 2015, 65(3):1639-1651 https://www.researchgate.net/publication/276916542_Diagnosis_Based_on_Genetic_Fuzzy_Algorithms_for_LTE_Self-Healing
    [139] Zimmerman A T, Lynch J P. A parallel simulated annealing architecture for model updating in wireless sensor networks. IEEE Sensors Journal, 2009, 9(11):1503-1510 doi: 10.1109/JSEN.2009.2019323
    [140] Koutsoukis N C, Manousakis N M, Georgilakis P S, Korres G N. Numerical observability method for optimal phasor measurement units placement using recursive Tabu search method. IET Generation, Transmission, and Distribution, 2013, 7(4):347-356 doi: 10.1049/iet-gtd.2012.0377
    [141] 白建华, 辛颂旭, 刘俊, 郑宽.中国实现高比例可再生能源发展路径研究.中国电机工程学报, 2015, 35(14):3699-3705 http://www.cnki.com.cn/Article/CJFDTOTAL-ZGDC201514027.htm

    Bai Jian-Hua, Xin Song-Xu, Liu Jun, Zheng Kuan. Roadmap of realizing the high penetration renewable energy in China. Proceedings of the CSEE, 2015, 35(14):3699-3705 http://www.cnki.com.cn/Article/CJFDTOTAL-ZGDC201514027.htm
    [142] 张显, 王锡凡.短期电价预测综述.电力系统自动化, 2006, 30(3):92-101

    Zhang Xian, Wang Xi-Fan. Review of the short-term electricity price forecasting. Automation of Electric Power Systems, 2006, 30(3):92-101
    [143] 钟伟才, 刘静, 焦李成.多智能体遗传算法用于线性系统逼近.自动化学报, 2004, 30(6):933-938 http://www.aas.net.cn/CN/abstract/abstract16265.shtml

    Zhong Wei-Cai, Liu Jing, Jiao Li-Cheng. Optimal approximation of linear systems by multi-agent genetic algorithm. Acta Automatica Sinica, 2004, 30(6):933-938 http://www.aas.net.cn/CN/abstract/abstract16265.shtml
    [144] 周晓君, 阳春华, 桂卫华, 董天雪.带可变随机函数和变异算子的粒子群优化算法.自动化学报, 2014, 40(7):1339-1347 doi: 10.1016/S1874-1029(14)60015-X

    Zhou Xiao-Jun, Yang Chun-Hua, Gui Wei-Hua, Dong Tian-Xue. A particle swarm optimization algorithm with variable random functions and mutation. Acta Automatica Sinica, 2014, 40(7):1339-1347 doi: 10.1016/S1874-1029(14)60015-X
    [145] Mandal P, Senjyu T, Urasaki N, Funabashi T, Srivastava A K. A novel approach to forecast electricity price for PJM Using neural network and similar days method. IEEE Transactions on Power Systems, 2007, 22(4):2058-2065 doi: 10.1109/TPWRS.2007.907386
    [146] Chen X, Dong Z Y, Meng K, Xu Y, Wong K P, Ngan H W. Electricity price forecasting with extreme learning machine and bootstrapping. IEEE Transactions on Power Systems, 2012, 27(4):2055-2062 doi: 10.1109/TPWRS.2012.2190627
    [147] Bajpai P, Singh S N. Fuzzy adaptive particle swarm optimization for bidding strategy in uniform price spot market. IEEE Transactions on Power Systems, 2007, 22(4):2152-2160 doi: 10.1109/TPWRS.2007.907445
    [148] 韩敏, 许美玲, 任伟杰.多元混沌时间序列的相关状态机预测模型研究.自动化学报, 2014, 40(5):822-829 http://www.aas.net.cn/CN/abstract/abstract18350.shtml

    Han Min, Xu Mei-Ling, Ren Wei-Jie. Research on multivariate chaotic time series prediction using mRSM model. Acta Automatica Sinica, 2014, 40(5):822-829 http://www.aas.net.cn/CN/abstract/abstract18350.shtml
    [149] 伦淑娴, 林健, 姚显双.基于小世界回声状态网的时间序列预测.自动化学报, 2015, 41(9):1669-1679 http://www.aas.net.cn/CN/abstract/abstract18740.shtml

    Lun Shu-Xian, Lin Jian, Yao Xian-Shuang. Time series prediction with an improved echo state network using small world network. Acta Automatica Sinica, 2015, 41(9):1669-1679 http://www.aas.net.cn/CN/abstract/abstract18740.shtml
    [150] 曹莹, 苗启广, 刘家辰, 高琳. AdaBoost算法研究进展与展望.自动化学报, 2013, 39(6):745-758 doi: 10.1016/S1874-1029(13)60052-X

    Cao Ying, Miao Qi-Guang, Liu Jia-Chen, Gao Lin. Advance and prospects of AdaBoost algorithm. Acta Automatica Sinica, 2013, 39(6):745-758 doi: 10.1016/S1874-1029(13)60052-X
    [151] 茹常剑, 魏瑞轩, 戴静, 沈东, 张立鹏.基于纳什议价的无人机编队自主重构控制方法.自动化学报, 2013, 39(8):1349-1359 http://www.aas.net.cn/CN/abstract/abstract18166.shtml

    Ru Chang-Jian, Wei Rui-Xuan, Dai Jing, Shen Dong, Zhang Li-Peng. Autonomous reconfiguration control method for UAV's formation based on Nash bargain. Acta Automatica Sinica, 2013, 39(8):1349-1359 http://www.aas.net.cn/CN/abstract/abstract18166.shtml
    [152] 郑毅, 李少远.网络信息模式下分布式系统协调预测控制.自动化学报, 2013, 39(11):1778-1786 doi: 10.3724/SP.J.1004.2013.01778

    Zheng Yi, Li Shao-Yuan. Networked cooperative distributed model predictive control for dynamic coupling systems. Acta Automatica Sinica, 2013, 39(11):1778-1786 doi: 10.3724/SP.J.1004.2013.01778
    [153] Barroso L A, Carneiro R D, Granville S, Pereira M V, Fampa M H C. Nash equilibrium in strategic bidding:a binary expansion approach. IEEE Transactions on Power Systems, 2006, 21(2):629-638 doi: 10.1109/TPWRS.2006.873127
    [154] Molina J P, Zolezzi J M, Contreras J, Rudnick H, Reveco M J. Nash-Cournot equilibria in hydrothermal electricity markets. IEEE Transactions on Power Systems, 2011, 26(3):1089-1101 doi: 10.1109/TPWRS.2010.2077313
    [155] Belgana A, Rimal B P, Maier M. Open energy market strategies in microgrids:a Stackelberg game approach based on a hybrid multiobjective evolutionary algorithm. IEEE Transactions on Smart Grid, 2015, 6(3):1243-1252 doi: 10.1109/TSG.2014.2363119
    [156] 谭拂晓, 刘德荣, 关新平, 罗斌.基于微分对策理论的非线性控制回顾与展望.自动化学报, 2014, 40(1):1-15 http://www.aas.net.cn/CN/abstract/abstract18261.shtml

    Tan Fu-Xiao, Liu De-Rong, Guan Xin-Ping, Luo Bin. Review and perspective of nonlinear systems control based on differential games. Acta Automatica Sinica, 2014, 40(1):1-15 http://www.aas.net.cn/CN/abstract/abstract18261.shtml
    [157] 潘红光, 高海南, 孙耀, 张英, 丁宝苍.基于多优先级稳态优化的双层结构预测控制算法及软件实现.自动化学报, 2014, 40(3):405-414 http://www.aas.net.cn/CN/abstract/abstract18305.shtml

    Pan Hong-Guang, Gao Hai-Nan, Sun Yao, Zhang Ying, Ding Bao-Cang. The algorithm and software implementation for double-layered model predictive control based on multi-priority rank steady-state optimization. Acta Automatica Sinica, 2014, 40(3):405-414 http://www.aas.net.cn/CN/abstract/abstract18305.shtml
    [158] Wei W, Liu F, Mei S W. Energy pricing and dispatch for smart grid retailers under demand response and market price uncertainty. IEEE Transactions on Smart Grid, 2015, 6(3):1364-1374 doi: 10.1109/TSG.2014.2376522
    [159] Wang Y P, Saad W, Han Z, Poor H V, Başar T. A game-theoretic approach to energy trading in the smart grid. IEEE Transactions on Smart Grid, 2014, 5(3):1439-1450 doi: 10.1109/TSG.2013.2284664
    [160] 袁勇, 王飞跃.不完全信息议价博弈的序贯均衡分析与计算实验.自动化学报, 2016, 42(5):724-734 http://www.aas.net.cn/CN/abstract/abstract18862.shtml

    Yuan Yong, Wang Fei-Yue. Sequential equilibrium analysis and computational experiments of a Bargaining game with incomplete information. Acta Automatica Sinica, 2016, 42(5):724-734 http://www.aas.net.cn/CN/abstract/abstract18862.shtml
    [161] Lee W, Xiang L, Schober R, Wong V W S. Direct electricity trading in smart grid:a Coalitional game analysis. IEEE Journal on Selected Areas in Communications, 2014, 32(7):1398-1411 doi: 10.1109/JSAC.2014.2332112
    [162] Lee J, Guo J, Choi J K, Zukerman M. Distributed energy trading in microgrids:a game-theoretic model and its equilibrium analysis. IEEE Transactions on Industrial Electronics, 2015, 62(6):3524-3533 http://ieeexplore.ieee.org/abstract/document/7001088/
    [163] 赵敏, 沈沉, 刘锋, 黄秀琼.基于博弈论的多微电网系统交易模式研究.中国电机工程学报, 2015, 35(4):848-857 http://www.cnki.com.cn/Article/CJFDTOTAL-ZGDC201504011.htm

    Zhao Min, Shen Chen, Liu Feng, Huang Xiu-Qiong. A game-theoretic approach to analyzing power trading possibilities in multi-microgrids. Proceedings of the CSEE, 2015, 35(4):848-857 http://www.cnki.com.cn/Article/CJFDTOTAL-ZGDC201504011.htm
    [164] Yang P, Tang G G, Nehorai A. A game-theoretic approach for optimal time-of-use electricity pricing. IEEE Transactions on Power Systems, 2013, 28(2):884-892 doi: 10.1109/TPWRS.2012.2207134
  • 加载中
图(3)
计量
  • 文章访问数:  1908
  • HTML全文浏览量:  726
  • PDF下载量:  2181
  • 被引次数: 0
出版历程
  • 收稿日期:  2016-05-11
  • 录用日期:  2016-08-31
  • 刊出日期:  2017-02-01

目录

    /

    返回文章
    返回