2.765

2022影响因子

(CJCR)

  • 中文核心
  • EI
  • 中国科技核心
  • Scopus
  • CSCD
  • 英国科学文摘

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

一种新的康复与代步外骨骼机器人研究

黄高 张伟民 MarcoCeccarelli 余张国 陈学超 孟非 黄强

黄高, 张伟民, MarcoCeccarelli, 余张国, 陈学超, 孟非, 黄强. 一种新的康复与代步外骨骼机器人研究. 自动化学报, 2016, 42(12): 1933-1942. doi: 10.16383/j.aas.2016.c160180
引用本文: 黄高, 张伟民, MarcoCeccarelli, 余张国, 陈学超, 孟非, 黄强. 一种新的康复与代步外骨骼机器人研究. 自动化学报, 2016, 42(12): 1933-1942. doi: 10.16383/j.aas.2016.c160180
HUANG Gao, ZHANG Wei-Min, MARCO Ceccarelli, YU Zhang-Guo, CHEN Xue-Chao, MENG Fei, HUANG Qiang. Research of a New Rehabilitation and Assisting Robot. ACTA AUTOMATICA SINICA, 2016, 42(12): 1933-1942. doi: 10.16383/j.aas.2016.c160180
Citation: HUANG Gao, ZHANG Wei-Min, MARCO Ceccarelli, YU Zhang-Guo, CHEN Xue-Chao, MENG Fei, HUANG Qiang. Research of a New Rehabilitation and Assisting Robot. ACTA AUTOMATICA SINICA, 2016, 42(12): 1933-1942. doi: 10.16383/j.aas.2016.c160180

一种新的康复与代步外骨骼机器人研究

doi: 10.16383/j.aas.2016.c160180
基金项目: 

国家自然科学基金 61321002

国际科技支撑计划 2015BAK35B01

国家111引智计划 B08043

国际科技支撑计划 2015BAF13B01

北京市科技计划项目 Z161100003116081

国家自然科学基金 61320106012

国家自然科学基金 61273348

国家高技术研究发展计划(863计划) 2014AA041602

国家高技术研究发展计划(863计划) 2015AA043202

北京市科技计划项目 v

国家自然科学基金 61533004

国家高技术研究发展计划(863计划) 2015AA042305

国家自然科学基金 61673069

国家自然科学基金 61375103

详细信息
    作者简介:

    黄高 北京理工大学机电学院智能机器人研究所博士研究生.2010年获得武汉轻工大学机械学院学士学位.主要研究方向为康复机器人系统设计技术.E-mail:huanggao@bit.edu.cn

    MarcoCeccarelli:Marco Ceccarelli 意大利卡西诺大学教授.1982年获得罗马大学机械工程专业学士学位, 1987年获得罗马大学博士学位.主要研究方向机器人机构设计与机械原理及机械工程历史.E-mail:ceccarelli@unicas.it

    余张国 北京理工大学机电学院智能机器人研究所副教授.1997年和2005年获得西南科技大学学士和硕士学位, 2009年获得北京理工大学博士学位.主要研究方向为仿生机器人.E-mail:yuzg@bit.edu.cn

    陈学超 北京理工大学机电学院讲师.2007年和2013年分别获得北京理工大学机械电子工程专业学士学位和博士学位.主要研究方向为仿生机器人和机器人动力学.E-mail:chenxuechao@bit.edu.cn

    孟非 北京理工大学机电学院博士后.2008年和2010年分别获得北京理工大学机械电子工程专业学士和硕士学位, 2016年获得北京理工大学机械工程专业博士学位.主要研究方向为电机驱动控制, 仿人机器人运动规划.E-mail:mfly0208@bit.edu.cn

    黄强 北京理工大学机电学院智能机器人研究所教授.1989年获得哈尔滨工业大学硕士学位, 1996年获日本早稻田大学博士学位.主要研究方向为仿人与仿生机器人, 康复机器人.E-mail:qhuang@bit.edu.cn

    通讯作者:

    张伟民 北京理工大学机电学院智能机器人研究所副教授.1999年获得北京理工大学学士学位, 2002年和2005年分别获得北京理工大学机电学院硕士学位和博士学位.主要研究方向为仿生机器人.本文通信作者.E-mail:zhwm@bit.edu.cn

Research of a New Rehabilitation and Assisting Robot

Funds: 

National Natural Science Foundation of China 61321002

Key Technologies Research and Development Program 2015BAK35B01

the National \111" Project B08043

Key Technologies Research and Development Program 2015BAF13B01

Beijing Municipal Science and Technology Project Z161100003116081

National Natural Science Foundation of China 61320106012

National Natural Science Foundation of China 61273348

National High Technology Research and Development Program of China (863 Program) 2014AA041602

National High Technology Research and Development Program of China (863 Program) 2015AA043202

Beijing Municipal Science and Technology Project v

National Natural Science Foundation of China 61533004

National High Technology Research and Development Program of China (863 Program) 2015AA042305

National Natural Science Foundation of China 61673069

National Natural Science Foundation of China 61375103

More Information
    Author Bio:

    Ph. D. candidate at the Intelligent Robotics Institute, School of Mechatronical Engineering, Beijing Institute of Technology, China. He received his bachelor degree from Wuhan Polytechnic University in 2010. His main research interest is rehabilitation robot system design technology

    Professor at University of Cassino and South Latium Via Di Biasio, Italy. He received mechanical engineering degree from the University La Sapienza of Rome, Italy, in 1982. He received his Ph. D. from the University La Sapienza of Rome, Italy in 1987. His research interest covers mechanism design, mechanics and design of robots, and history of mechanical engineering

    Associate professor at the Intelligent Robotics Institute, Beijing Institute of Technology, China. He received his bachelor and master degrees from Southwest University of Science and Technology, China in 1997 and 2005, respectively. He received his Ph. D. degree from Beijing Institute of Technology, China in 2009. His research interest covers bio-robots

    Lecturer at the School of Mechatronics Engineering, Beijing Institute of Technology, China. He received his bachelor and Ph. D. degrees in mechatronics engineering from the Beijing Institute of Technology, China in 2007 and 2013, respectively. His research interest covers humanoid robotics and robot dynamics

    Postdoctor at the Intelligent Robotics Institute, Beijing Institute of Technology, China. He received his bachelor, master, and Ph. D. degrees from Beijing Institute of Technology, China in 2008, 2010 and 2016, respectively. His research interest covers motor control and planning for biped robots

    Professor at the Intelligent Robotics Institute, Beijing Institute of Technology, China. He received his master degree from Harbin Institute of Technology, China in 1989 and Ph. D. degree from Waseda University in 1996. His research interest covers humanoid robot, bio-robots, and rehabilitation robot

    Corresponding author: ZHANG Wei-Min  Associate professor at the Intelligent Robotics Institute, School of Mechatronical Engineering, Beijing Institute of Technology, China. He received his bachelor, master and Ph. D. degrees from the School of Mechatronical Engineering, Beijing Institute of Technology, China in 1999, 2002 and 2005, respectively. His research interest covers bio-robots. Corresponding author of this paper
  • 摘要: 针对老年人及下肢障碍者康复训练与代步问题,本文提出一种新的康复与代步外骨骼机器人.本文首先详细介绍了机器人各部分组成及机构设计方案,通过下肢外骨骼与轮椅的有机结合,有效保持或恢复老年人、脑卒中患者下肢运动能力的同时,为患者提供一种方便的代步工具;运用脚蹬车运动制订康复训练策略,可保持下肢康复训练轨迹固定,保证患者安全;提出主从式操作方法及多模态康复训练控制流程提高使用者参与感.最后通过仿真与实验验证了所提康复系统的可行性与设计的正确性.
    1)  本文责任编委 王启宁
  • 图  1  脚蹬车运动一个周期中三阶段分布

    Fig.  1  Three phases of the crank cycle during the cycling action

    图  2  外骨骼康复机器人运动简图及设计参数

    Fig.  2  A kinematic sketch of proposed leg-exoskeleton assisted wheelchair system and its main design parameters

    图  3  康复机器人自由度分布

    Fig.  3  The distribution of the robot$'$s degrees of freedom (DOFs)

    图  4  机器人机构设计方案

    Fig.  4  The mechanical design of the robot

    图  5  外骨骼长度调节连杆

    Fig.  5  The length adjustment of the exoskeleton rod

    图  6  同步带轮关节机构设计

    Fig.  6  The mechanical design of synchronous pulley

    图  7  脚踏板关节机构设计

    Fig.  7  The mechanical design of pedal

    图  8  康复轮椅主从式操作方法示意图

    Fig.  8  A scheme for the slave-master actuation for the robot

    图  9  主从式控制器组成

    Fig.  9  The components of slave-master controller

    图  10  机器人康复训练控制流程

    Fig.  10  The robot$'$s control flow for the rehabilitation training

    图  11  ADAMS环境中机器人与人的模型及各旋转关节示意

    Fig.  11  An ADAMS model of the design in Fig. 4 with indication of parameters

    图  12  左右腿髋关节、膝关节、踝关节角度曲线(实线为左腿, 虚线为右腿)

    Fig.  12  Angle curves of left and right legs at hip, knee, ankle (continuous line is for left foot and dot line is for right foot)

    图  13  左右腿髋关节、膝关节、踝关节角速度曲线(实线为左腿, 虚线为右腿)

    Fig.  13  Angular velocities of left and right legs at hip, knee, ankle (continuous line is for left foot and dot line is for right foot)

    图  14  左右腿髋关节、膝关节、踝关节接触力曲线(实线为左腿, 虚线为右腿)

    Fig.  14  Joint reaction forces at left and right legs at hip, knee, ankle (continuous line is for left foot and dot line is for right foot)

    图  15  康复机器人原理样机

    Fig.  15  A prototype of the rehabilitation robot

    图  16  实验过程中一周期内康复运动序列图及实验场景照片

    Fig.  16  Experimental scene photos with one cycle rehabilitation movement sequence diagram in the experimental process

    图  17  外骨骼运动特征分析实验

    Fig.  17  The experiment for characteristics analysis of the exoskeleton motion

    图  18  主从式运动速度曲线

    Fig.  18  The plots of master-slave motion

    表  1  外骨骼机器人机构设计参数

    Table  1  Speciflcations of the new leg-exoskeleton assisted wheelchair

    设计参数 数值
    自由度 2
    机器人重量(kg) 55
    高度(mm) 800
    长度(mm) 780
    宽度(mm) 609
    轮椅运行速度(m/s) 1~3
    θ2(°) -15~15
    θ3(°) -5~35
    θ4(°) 0~35
    L2 (mm) 380~430
    L3 (mm) 370~420
    下载: 导出CSV
  • [1] 吴玉韶, 党俊武.老龄蓝皮书:中国老龄产业发展报告(2014).北京:社会科学文献出版社, 2014. 70-88

    Wu Yu-Shao, Dang Jun-Wu. Blue Book for Aging:China Report of the Development on Siliver Industry (2014). Beijing:Social Sciences Academic Press, 2014. 70-88
    [2] 王陇德.中国脑卒中防治报告(2015).北京:中国协和医科大学出版社, 2015. 10-22

    Wang Long-De. Report on the Chinese Stroke Prevention (2015). Beijing:China Union Medical University Press, 2015. 10-22
    [3] 谭民, 王硕.机器人技术研究进展.自动化学报, 2013, 39(7):963-972 http://www.aas.net.cn/CN/abstract/abstract18124.shtml

    Tan Min, Wang Shuo. Research progress on robotics. Acta Automatica Sinica, 2013, 39(7):963-972 http://www.aas.net.cn/CN/abstract/abstract18124.shtml
    [4] 周媛, 王宁华.康复机器人概述.中国康复医学杂志, 2015, 30(4):400-403 http://www.cnki.com.cn/Article/CJFDTOTAL-ZGKF201504025.htm

    Zhou Yuan, Wang Ning-Hua. Rehabilitation robot:review. Chinese Journal of Rehabilitation Medicine, 2015, 30(4):400-403 http://www.cnki.com.cn/Article/CJFDTOTAL-ZGKF201504025.htm
    [5] Volpe B T, Krebs H I, Hogan N, Edelstein O T R L, Diels C, Aisen M. A novel approach to stroke rehabilitation:robot-aided sensorimotor stimulation. Neurology, 2000, 54(10):1938-1944 doi: 10.1212/WNL.54.10.1938
    [6] Ju M S, Lin C C K, Lin D H, Hwang I S, Chen S M. A rehabilitation robot with force-position hybrid fuzzy controller:hybrid fuzzy control of rehabilitation robot. IEEE Transactions on Neural Systems and Rehabilitation Engineering, 2005, 13(3):349-358 doi: 10.1109/TNSRE.2005.847354
    [7] 胡进, 侯增广, 陈翼雄, 张峰, 王卫群.下肢康复机器人及其交互控制方法.自动化学报, 2014, 40(11):2377-2390 http://www.aas.net.cn/CN/abstract/abstract18514.shtml

    Hu Jin, Hou Zeng-Guang, Chen Yi-Xiong, Zhang Feng, Wang Wei-Qun. Lower limb rehabilitation robots and interactive control methods. Acta Automatica Sinica, 2014, 40(11):2377-2390 http://www.aas.net.cn/CN/abstract/abstract18514.shtml
    [8] Ueda Y, Misu S, Sawa R, Nakatsu N, Sugimoto T, Sugiyama K, Takamori K, Ono K, Seki K, Handa Y, Ono R. Cycling wheelchair provides enjoyable pedaling exercises with increased physiological indexes. Tohoku Journal of Experimental Medicine, 2016, 238(1):33-38 doi: 10.1620/tjem.238.33
    [9] Restorative Therapies. RT300 leg[Online], available:http://www.restorative-therapies.com/rt300leg, July 24, 2014
    [10] RECK-Technical GmbH & Co KG. MOTOmed[Online], available:http://www.motomed.com/en/models.html, July 24, 2014
    [11] Best K L, Routhier F, Miller W C. A description of manual wheelchair skills training:current practices in Canadian rehabilitation centers. Disability and Rehabilitation:Assistive Technology, 2015, 10(5):393-400 doi: 10.3109/17483107.2014.907367
    [12] Toro M L, Garcia Y, Ojeda A M, Dausey D J, Pearlman J. Quantitative exploratory evaluation of the frequency, causes and consequences of rehabilitation wheelchair breakdowns delivered at a paediatric clinic in Mexico. Disability, CBR & Inclusive Development, 2012, 23(3):48-64
    [13] 金文宇.基于UG的康复轮椅设计与仿真分析.机械, 2013, 40(12):67-69 http://www.cnki.com.cn/Article/CJFDTOTAL-MECH201312018.htm

    Jin Wen-Yu. Design and simulation analysis of rehabilitation wheelchair based on UG. Machinery, 2013, 40(12):67-69 http://www.cnki.com.cn/Article/CJFDTOTAL-MECH201312018.htm
    [14] Kim K, Payne K, Oh S, Hori Y. One-handed propulsion control of power-assisted wheelchair with advanced turning mode. In:Proceedings of the 13th International Workshop on Advanced Motion Control (AMC). Yokohama, Japan:IEEE, 2014. 633-638
    [15] Watanabe T, Murakami T, Handa Y. Preliminary tests of a prototype FES control system for cycling wheelchair rehabilitation. In:Proceedings of the 2013 International Conference on Rehabilitation Robotics (ICORR). Seattle, WA, USA:IEEE, 2013. 1-6
    [16] Watanabe T, Karasawa Y, Handa Y. A test of controlling different muscles in FES cycling with cycling wheelchair "Profhand". In:Proceedings of the 19th International Functional Electrical Stimulation Society Annual Conference (IFESS). Kuala Lumpur, Malaysia:IEEE, 2014:1-4
    [17] Karasawa Y, Watanabe T, Handa Y. A basic study on analyzing acceleration of crank rotation for evaluation of FES cycling with cycling wheelchair. Transactions of Japanese Society for Medical and Biological Engineering, 2014, 52(S):O-27-O-28 https://www.researchgate.net/publication/289722606_A_basic_study_on_analyzing_acceleration_of_crank_rotation_for_evaluation_of_FES_cycling_with_cycling_wheelchair
    [18] Esquenazi A, Talaty M, Packel A, Saulino M. The ReWalk powered exoskeleton to restore ambulatory function to individuals with thoracic-level motor-complete spinal cord injury. American Journal of Physical Medicine & Rehabilitation, 2012, 91(11):911-921 https://www.researchgate.net/publication/232532271_The_ReWalk_Powered_Exoskeleton_to_Restore_Ambulatory_Function_to_Individuals_with_Thoracic-Level_Motor-Complete_Spinal_Cord_Injury
    [19] Zeilig G, Weingarden H, Zwecker M. Safety and tolerance of the ReWalk exoskeleton suit for ambulation by people with complete spinal cord injury:a pilot study. The Journal of Spinal Cord Medicine, 2012, 35(2):96-101 doi: 10.1179/2045772312Y.0000000003
    [20] Talaty M, Esquenazi A, Briceno J E. Differentiating ability in users of the ReWalk powered exoskeleton:an analysis of walking kinematics. In:Proceedings of the 2013 IEEE International Conference on Rehabilitation Robotics (ICORR). Seattle, WA, USA:IEEE, 2013. 1-5
    [21] Ueba T, Hamada O, Ogata T, Inoue T, Shiota E, Sankai Y. Feasibility and safety of acute phase rehabilitation after stroke using the hybrid assistive limb robot suit. Neurologia Medico-Chirurgica, 2013, 53(5):287-290 doi: 10.2176/nmc.53.287
    [22] Nilsson A, Vreede K S, Häglund V, Kawamoto H, Sankai Y, Borg J. Gait training early after stroke with a new exoskeleton-the hybrid assistive limb:a study of safety and feasibility. Journal of Neuroengineering and Rehabilitation, 2014, 11(1):1-11 doi: 10.1186/1743-0003-11-1
    [23] 佟丽娜, 侯增广, 彭亮, 王卫群, 陈翼雄, 谭民.基于多路sEMG时序分析的人体运动模式识别方法.自动化学报, 2014, 40(5):810-821 http://www.aas.net.cn/CN/abstract/abstract18349.shtml

    Tong Li-Na, Hou Zeng-Guang, Peng Liang, Wang Wei-Qun, Chen Yi-Xiong, Tan Min. Multi-channel sEMG time series analysis based human motion recognition method. Acta Automatica Sinica, 2014, 40(5):810-821 http://www.aas.net.cn/CN/abstract/abstract18349.shtml
    [24] 彭亮, 侯增广, 王卫群.康复机器人的同步主动交互控制与实现.自动化学报, 2015, 41(11):1837-1846 http://www.aas.net.cn/CN/abstract/abstract18759.shtml

    Peng Liang, Hou Zeng-Guang, Wang Wei-Qun. Synchronous active interaction control and its implementation for a rehabilitation robot. Acta Automatica Sinica, 2015, 41(11):1837-1846 http://www.aas.net.cn/CN/abstract/abstract18759.shtml
    [25] Wang H B, Shi X H, Liu H T, Li L, Hou Z G, Yu H N. Design, kinematics, simulation, and experiment for a lower-limb rehabilitation robot. Proceedings of the Institution of Mechanical Engineers, Part I:Journal of Systems and Control Engineering, 2011, 225(6):860-872 doi: 10.1177/0959651811408978
    [26] Yang C J, Niu B, Chen Y. Adaptive neuro-fuzzy control based development of a wearable exoskeleton leg for human walking power augmentation. In:Proceedings of the 2005 IEEE/ASME International Conference on Advanced Intelligent Mechatronics. Monterey, CA, USA:IEEE, 2005. 467-472
    [27] 姜洪源, 马长波, 陆念力, 敖宏瑞.功能性电刺激脚踏车训练系统建模及仿真分析.系统仿真学报, 2010, 22(10):2459-2463 http://www.cnki.com.cn/Article/CJFDTOTAL-XTFZ201010047.htm

    Jiang Hong-Yuan, Ma Chang-Bo, Lu Nian-Li, Ao Hong-Rui. Modeling and simulation on FES cycling training system. Journal of System Simulation, 2010, 22(10):2459-2463 http://www.cnki.com.cn/Article/CJFDTOTAL-XTFZ201010047.htm
    [28] 边辉, 赵铁石, 田行斌, 李丹, 潘旺.生物融合式康复机构及其应用.机器人, 2010, 32(4):470-477 doi: 10.3724/SP.J.1218.2010.00470

    Bian Hui, Zhao Tie-Shi, Tian Xing-Bin, Li Dan, Pan Wang. Rehabilitation facility with biological integration and application. Robot, 2010, 32(4):470-477 doi: 10.3724/SP.J.1218.2010.00470
    [29] Huang G, Ceccarelli M, Zhang W M, Liu H X, Tian Y, She H T, Fukuda T, Huang Q. A pedal-actuated wheelchair with a leg exoskeleton. In:Proceedings of the 14th IFToMM World Congress. Taipei, China:IFToMM, 2015. http://www.iftomm2015.tw/IFToMM2015CD/PDF/OS13-127.pdf
    [30] So R C H, Ng J K F, Ng G Y F. Muscle recruitment pattern in cycling:a review. Physical Therapy in Sport, 2005, 6(2):89-96 doi: 10.1016/j.ptsp.2005.02.004
    [31] Feland J B, Myrer J W, Schulthies S S, Fellingham G W, Measom G W. The effect of duration of stretching of the hamstring muscle group for increasing range of motion in people aged 65 years or older. Physical Therapy, 2001, 81(5):1110-1117
    [32] Ziegler R G, Hoover R N, Nomura A M Y, West D W, Wu A H, Pike M C, Lake A J, Horn-Ross P L, Kolonel L N, Siiteri P K, Fraumeni J F Jr. Relative weight, weight change, height, and breast cancer risk in Asian-American women. Journal of the National Cancer Institute, 1996, 88(10):650-660 doi: 10.1093/jnci/88.10.650
    [33] Hawkins D, Hull M L. A method for determining lower extremity muscle-tendon lengths during flexion/extension movements. Journal of Biomechanics, 1990, 23(5):487-494 doi: 10.1016/0021-9290(90)90304-L
  • 加载中
图(18) / 表(1)
计量
  • 文章访问数:  2689
  • HTML全文浏览量:  636
  • PDF下载量:  1181
  • 被引次数: 0
出版历程
  • 收稿日期:  2016-03-03
  • 录用日期:  2016-10-14
  • 刊出日期:  2016-12-01

目录

    /

    返回文章
    返回