2.845

2023影响因子

(CJCR)

  • 中文核心
  • EI
  • 中国科技核心
  • Scopus
  • CSCD
  • 英国科学文摘

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

基于误差补偿的复杂场景下背景建模方法

秦明 陆耀 邸慧军 吕峰

秦明, 陆耀, 邸慧军, 吕峰. 基于误差补偿的复杂场景下背景建模方法. 自动化学报, 2016, 42(9): 1356-1366. doi: 10.16383/j.aas.2016.c150857
引用本文: 秦明, 陆耀, 邸慧军, 吕峰. 基于误差补偿的复杂场景下背景建模方法. 自动化学报, 2016, 42(9): 1356-1366. doi: 10.16383/j.aas.2016.c150857
QIN Ming, LU Yao, DI Hui-Jun, LV Feng. An Error Compensation Based Background Modeling Method for Complex Scenarios. ACTA AUTOMATICA SINICA, 2016, 42(9): 1356-1366. doi: 10.16383/j.aas.2016.c150857
Citation: QIN Ming, LU Yao, DI Hui-Jun, LV Feng. An Error Compensation Based Background Modeling Method for Complex Scenarios. ACTA AUTOMATICA SINICA, 2016, 42(9): 1356-1366. doi: 10.16383/j.aas.2016.c150857

基于误差补偿的复杂场景下背景建模方法

doi: 10.16383/j.aas.2016.c150857
基金项目: 

国家自然科学基金 61175096

国家自然科学基金 61271374

高等学校博士学科点专项科研基金 2012110110034

国家自然科学基金 61273273

详细信息
    作者简介:

    秦明北京理工大学计算机学院博士研究生.主要研究方向为前景检测与动作识别.E-mail:050689@bit.edu.cn

    邸慧军北京理工大学计算机学院讲师.主要研究方向为计算机视觉, 模式识别, 机器学习.E-mail:ajon@bit.edu.cn

    吕峰北京理工大学计算机学院博士研究生.主要研究方向为目标跟踪与动作识别.E-mail:lvfeng@bit.edu.cn

    通讯作者:

    陆耀北京理工大学计算机学院教授.主要研究方向为神经网络, 图像和信号处理, 模式识别.本文通信作者.E-mail:vis_yl@bit.edu.cn

An Error Compensation Based Background Modeling Method for Complex Scenarios

Funds: 

National Natural Science Foundation of China 61175096

National Natural Science Foundation of China 61271374

Research Fund for the Doctoral Program of Higher Education of China 2012110110034

National Natural Science Foundation of China 61273273

More Information
    Author Bio:

    Ph. D. candidate at the School of Computer Science, Beijing Institute of Technology. His research interest covers foreground detection and action recognition

    Lecturer at the School of Computer Science, Beijing Institute of Technology. His research interest covers computer vision, pattern recognition and machine learning

    Ph. D. candidate at the School of Computer Science, Beijing Institute of Technology. His research interest covers object tracking and action recognition

    Corresponding author: Professor at the School of Computer Science, Beijing Institute of Technology. His research interest covers neural network, image and signal processing and pattern recognition. Corresponding author of this paper
  • 摘要: 在基于子空间学习的背景建模方法中,利用背景信息对前景误差进行补偿有助于建立准确的背景模型.然而,当动态背景(摇曳的树枝、波动的水面等)和复杂前景等干扰因素存在时,补偿过程的准确性和稳定性会受到一定的影响.针对这些问题,本文提出了一种基于误差补偿的增量子空间背景建模方法.该方法可以实现复杂场景下的背景建模.首先,本文在误差补偿的过程中考虑了前景的空间连续性约束,在补偿前景信息的同时减少了动态背景的干扰,提高了背景建模的准确性.其次,本文将误差估计过程归结为一个凸优化问题,并根据不同的应用场合设计了相应的精确求解算法和快速求解方法.再次,本文设计了一种基于Alpha通道的误差补偿策略,提高了算法对复杂前景的抗干扰能力.最后,本文构建了不依赖于子空间模型的背景模板,减少了由前景信息反馈引起的背景更新失效,提高了算法的鲁棒性.多项对比实验表明,本文算法在干扰因素存在的情况下仍然可以实现对背景的准确建模,表现出较强的抗扰性和鲁棒性.
  • 图  1  基于抗干扰误差补偿的背景建模算法流程示意图

    Fig.  1  The flow chart of the proposed robust error compensation based background modeling method

    图  2  前景的空间连续性约束

    Fig.  2  The spatial continuity constraint on foreground

    图  3  前景信息的正反馈问题

    Fig.  3  The positive feedback of foreground information

    图  4  二值分类函数与保留距离信息的分类策略

    Fig.  4  Comparison between binary classification function and distance information preservation based classification strategy

    图  5  前景信息的正反馈回路

    Fig.  5  The positive feedback loop of foreground information

    图  6  背景模板更新间隔p对算法平均性能的影响

    Fig.  6  The average F-score performance with respect to different parameter p

    图  7  本文算法的三个主要组成部分的有效性展示

    Fig.  7  The effectiveness of the main three components in the proposed algorithm

    图  8  不同前景检测算法的前景掩膜结果

    Fig.  8  The foreground masks obtained from different foreground detection algorithms

    表  1  本文算法与其他算法的F-score得分(%)

    Table  1  The F-score results (%) of the proposed method and the other methods

    DPGMM RPCA GoDec GRASTA LRFSO RFDSA DECOLOR Ours(fast) Ours(accurate)
    Bootstrap 60.24 61.19 60.91 59.45 56.68 68.41 69.74 62.54 69.68
    Campus 75.67 29.19 24.26 18.38 36.08 67.79 74.59 42.59 69.47
    Curtain 82.03 54.97 63.03 78.91 79.35 89.76 87.35 87.00 90.34
    Escalator 50.55 56.77 47.33 38.24 48.01 63.53 75.00 49.18 76.61
    Fountain 70.49 68.81 70.31 63.86 70.58 75.44 87.87 78.74 80.15
    ShoppingMall 65.22 70.03 66.53 68.96 54.46 74.07 65.58 71.78 75.40
    WaterSurface 90.90 48.48 66.56 78.34 76.69 87.96 54.27 89.21 89.43
    Hall 54.84 51.75 51.15 53.49 49.08 66.73 55.88 68.16 68.85
    Average 68.74 55.14 56.26 57.45 58.8 74.21 71.29 68.65 77.50
    FPS N/A 9.97 20.28 62.90 0.02 2.66 1.88 35.34 3.12
    下载: 导出CSV
  • [1] 霍东海, 杨丹, 张小洪, 洪明坚.一种基于主成分分析的Codebook背景建模算法.自动化学报, 2012, 38(4): 591-600 doi: 10.3724/SP.J.1004.2012.00591

    Huo Dong-Hai, Yang Dan, Zhang Xiao-Hong, Hong Ming-Jian. Principal component analysis based codebook background modeling algorithm. Acta Automatica Sinica, 2012, 38(4): 591-600 doi: 10.3724/SP.J.1004.2012.00591
    [2] 储珺, 杨樊, 张桂梅, 汪凌峰.一种分步的融合时空信息的背景建模.自动化学报, 2014, 40(4): 731-743 http://www.aas.net.cn/CN/abstract/abstract18339.shtml

    Chu Jun, Yang Fan, Zhang Gui-Mei, Wang Ling-Feng. A stepwise background subtraction by fusion spatio-temporal information. Acta Automatica Sinica, 2014, 40(4): 731-743 http://www.aas.net.cn/CN/abstract/abstract18339.shtml
    [3] 王永忠, 梁彦, 潘泉, 程咏梅, 赵春晖.基于自适应混合高斯模型的时空背景建模.自动化学报, 2009, 35(4): 371-378 http://www.aas.net.cn/CN/abstract/abstract15852.shtml

    Wang Yong-Zhong, Liang Yan, Pan Quan, Cheng Yong-Mei, Zhao Chun-Hui. Spatiotemporal background modeling based on adaptive mixture of Gaussians. Acta Automatica Sinica, 2009, 35(4): 371-378 http://www.aas.net.cn/CN/abstract/abstract15852.shtml
    [4] Stauffer C, Grimson W E L. Adaptive background mixture models for real-time tracking. In: Proceedings of the 14th IEEE Conference on Computer Vision and Pattern Recognition. Fort Collins, USA: IEEE, 1999. 246-252
    [5] Elgammal A M, Harwood D, Davis L S. Non-parametric model for background subtraction. In: Proceedings of the 6th European Conference on Computer Vision. Dublin, Ireland: Springer-Verlag, 2000. 751-767
    [6] Candés E, Li X D, Ma Y, Wright J. Robust principal component analysis? Journal of the ACM, 2011, 58(3): Article No. 11 http://cn.bing.com/academic/profile?id=2145962650&encoded=0&v=paper_preview&mkt=zh-cn
    [7] Zhou T Y, Tao D C. GoDec: randomized low-rank & sparse matrix decomposition in noisy case. In: Proceedings of the 28th International Conference on Machine Learning. Bellevue, USA: ACM, 2011. 33-40
    [8] Dikmen M, Huang T S. Robust estimation of foreground in surveillance videos by sparse error estimation. In: Proceedings of the 19th International Conference on Pattern Recognition. Tampa, USA: IEEE, 2008. 1-4
    [9] Xue G J, Song L, Sun J, Wu M. Foreground estimation based on robust linear regression model. In: Proceedings of the 18th International Conference on Image Processing. Brussels, Belgium: IEEE, 2011. 3269-3272
    [10] Xue G J, Song L, Sun J. Foreground estimation based on linear regression model with fused sparsity on outliers. IEEE Transactions on Circuits and Systems for Video Technology, 2013, 23(8): 1346-1357 doi: 10.1109/TCSVT.2013.2243053
    [11] Qin M, Lu Y, Di H J, Huang W. Background basis selection from multiple clustering on local neighborhood structure. In: Proceedings of the 2015 IEEE International Conference on Multimedia and Expo. Torino, Italy: IEEE, 2015. 1-6 http://cn.bing.com/academic/profile?id=2096642693&encoded=0&v=paper_preview&mkt=zh-cn
    [12] Seo J W, Kim S D. Recursive on-line (2D)2PCA and its application to long-term background subtraction. IEEE Transactions on Multimedia, 2014, 16(8): 2333-2344 doi: 10.1109/TMM.2014.2353772
    [13] He J, Balzano L, Szlam A. Incremental gradient on the Grassmannian for online foreground and background separation in subsampled video. In: Proceedings of the 2012 IEEE Conference on Computer Vision and Pattern Recognition. Providence, USA: IEEE, 2012. 1568-1575
    [14] Wang L, Wang M, Wen M, Zhuo Q, Wang W Y. Background subtraction using incremental subspace learning. In: Proceedings of the 2007 IEEE International Conference on Image Processing. San Antonio, USA: IEEE, 2007. V-45-V-48 http://cn.bing.com/academic/profile?id=2096642693&encoded=0&v=paper_preview&mkt=zh-cn
    [15] 蒋建国, 金玉龙, 齐美彬, 詹曙.基于稀疏表达残差的自然场景运动目标检测.电子学报, 2015, 43(9): 1738-1744 http://www.cnki.com.cn/Article/CJFDTOTAL-DZXU201509009.htm

    Jiang Jian-Guo, Jin Yu-Long, Qi Mei-Bin, Zhan Shu. Moving target detection in natural scene based on sparse representation of residuals. Acta Electronica Sinica, 2015, 43(9): 1738-1744 http://www.cnki.com.cn/Article/CJFDTOTAL-DZXU201509009.htm
    [16] Xu Z F, Gu I Y H, Shi P F. Recursive error-compensated dynamic eigenbackground learning and adaptive background subtraction in video. Optical Engineering, 2008, 47(5): 525-534 http://cn.bing.com/academic/profile?id=2055138117&encoded=0&v=paper_preview&mkt=zh-cn
    [17] Boyd S, Parikh N, Chu E, Peleato B, Eckstein J. Distributed optimization and statistical learning via the alternating direction method of multipliers. Foundations and TrendsoledR in Machine Learning, 2011, 3(1): 1-122 http://cn.bing.com/academic/profile?id=2164278908&encoded=0&v=paper_preview&mkt=zh-cn
    [18] Donoho D L. De-noising by soft-thresholding. IEEE Transactions on Information Theory, 1995, 41(3): 613-627 doi: 10.1109/18.382009
    [19] Ross D A, Lim J, Lin R-S, Yang M H. Incremental learning for robust visual tracking. International Journal of Computer Vision, 2008, 77(1-3): 125-141 doi: 10.1007/s11263-007-0075-7
    [20] Guo X J, Wang X G, Yang L, Cao X C, Ma Y. Robust foreground detection using smoothness and arbitrariness constraints. In: Proceedings of the 13th European Conference on Computer Vision. Zurich, Switzerland: Springer, 2014. 535-550 http://cn.bing.com/academic/profile?id=242805321&encoded=0&v=paper_preview&mkt=zh-cn
    [21] Wang L C, You Y, Lian H. A simple and efficient algorithm for fused LASSO signal approximator with convex loss function. Computational Statistics, 2013, 28(4): 1699-1714 doi: 10.1007/s00180-012-0373-6
    [22] Sun D Q, Roth S, Black M J. A quantitative analysis of current practices in optical flow estimation and the principles behind them. International Journal of Computer Vision, 2014, 106(2): 115-137 doi: 10.1007/s11263-013-0644-x
    [23] Porter T, Duff T. Compositing digital images. In: Proceedings of the 11th Annual Conference on Computer Graphics and Interactive Techniques. Minneapolis, USA: ACM, 1984. 253-259 http://www.oalib.com/references/17182941
    [24] Li L Y, Huang W M, Gu I Y H, Tian Q. Statistical modeling of complex backgrounds for foreground object detection. IEEE Transactions on Image Processing, 2004, 13(11): 1459-1472 doi: 10.1109/TIP.2004.836169
    [25] Haines T S F, Tao X. Background subtraction with Dirichlet process mixture models. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2014, 36(4): 670-683 doi: 10.1109/TPAMI.2013.239
    [26] Zhou X W, Yang C, Yu W C. Moving object detection by detecting contiguous outliers in the low-rank representation. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2013, 35(3): 597-610 doi: 10.1109/TPAMI.2012.132
  • 加载中
图(8) / 表(1)
计量
  • 文章访问数:  1592
  • HTML全文浏览量:  285
  • PDF下载量:  1118
  • 被引次数: 0
出版历程
  • 收稿日期:  2015-12-18
  • 录用日期:  2016-04-20
  • 刊出日期:  2016-09-01

目录

    /

    返回文章
    返回