2.845

2023影响因子

(CJCR)

  • 中文核心
  • EI
  • 中国科技核心
  • Scopus
  • CSCD
  • 英国科学文摘

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

基于伪谱法的双摆吊车时间最优消摆轨迹规划策略

陈鹤 方勇纯 孙宁 钱彧哲

陈鹤, 方勇纯, 孙宁, 钱彧哲. 基于伪谱法的双摆吊车时间最优消摆轨迹规划策略. 自动化学报, 2016, 42(1): 153-160. doi: 10.16383/j.aas.2016.c150307
引用本文: 陈鹤, 方勇纯, 孙宁, 钱彧哲. 基于伪谱法的双摆吊车时间最优消摆轨迹规划策略. 自动化学报, 2016, 42(1): 153-160. doi: 10.16383/j.aas.2016.c150307
CHEN He, FANG Yong-Chun, SUN Ning, QIAN Yu-Zhe. Pseudospectral Method Based Time Optimal Anti-swing Trajectory Planning for Double Pendulum Crane Systems. ACTA AUTOMATICA SINICA, 2016, 42(1): 153-160. doi: 10.16383/j.aas.2016.c150307
Citation: CHEN He, FANG Yong-Chun, SUN Ning, QIAN Yu-Zhe. Pseudospectral Method Based Time Optimal Anti-swing Trajectory Planning for Double Pendulum Crane Systems. ACTA AUTOMATICA SINICA, 2016, 42(1): 153-160. doi: 10.16383/j.aas.2016.c150307

基于伪谱法的双摆吊车时间最优消摆轨迹规划策略

doi: 10.16383/j.aas.2016.c150307
基金项目: 

国家科技支撑计划 2013BAF07B03

国家自然科学基金 61503200

天津市自然科学基金 15JCQNJC03800

国家杰出青年科学基金 61325017

详细信息
    作者简介:

    陈鹤 南开大学机器人与信息自动化研究所博士研究生.主要研究方向为吊车系统,移动机器人控制.E-mail:chenh@mail.nankai.edu.cn

    孙宁 南开大学机器人与信息自动化研究所讲师.主要研究方向为陆地/船用吊车自动控制,轮式机器人自主控制,非线性控制与其在(欠驱动)机电系统中的应用.E-mail:sunn@nankai.edu.cn

    钱彧哲 南开大学机器人与信息自动化研究所博士生.主要研究方向为欠驱动船用吊车系统控制.E-mail:qianyzh@mail.nankai.edu.cn

    通讯作者:

    方勇纯 南开大学机器人与信息自动化研究所教授.主要研究方向为视觉伺服,微纳米控制系统,非线性控制,欠驱动系统控制.本文通信作者.E-mail:fangyc@nankai.edu.cn

Pseudospectral Method Based Time Optimal Anti-swing Trajectory Planning for Double Pendulum Crane Systems

Funds: 

National Science & Technology Pillar Program of China 2013BAF07B03

National Natural Science Foundation of China 61503200

Natural Science Foundation of Tianjin 15JCQNJC03800

National Science Fund for Distinguished Young Scholars of China 61325017

More Information
    Author Bio:

    Ph. D. candidate at the Institute of Robotics and Automatic Information System, Nankai University. His research interest covers control of crane systems and wheeled mobile robots

    Assistant professor at the Institute of Robotics and Automatic Information System (IRAIS), Nankai University. His research interest covers control of land/ship-mounted cranes, control of wheeled robots, and nonlinear control theory with applications to (underactuated) mechatronic systems

    Ph. D. candidate at the Institute of Robotics and Automatic Ingormatino Systems (IRAIS), Nankai University. Her main research interest is underactuated offshore boom crane system control

    Corresponding author: FANG Yong-Chun Professor at the Institute of Robotics and Automatic Information System (IRAIS), Nankai University. His research interest covers visual servoing, micro/nano control systems, nonlinear control, and underactuated systems control. Corresponding author of this paper
  • 摘要: 在工业生产过程中,桥式吊车系统经常会体现出双摆系统的特性,导致更多欠驱动状态量的出现,增大控制难度.基于此,论文提出了一种针对双摆桥式吊车系统的时间最优轨迹规划方法,可以得到全局时间最优且具有消摆能力的轨迹.具体而言,为方便地构造以时间为代价函数的优化问题,首先对系统运动学模型进行相应的变换;在此基础上,考虑包括两级摆角及台车速度和加速度上限值在内的多种约束,构造出相应的优化问题;然后,利用高斯伪谱法(Gauss-pseudospectral method, GPM)将该带约束的优化问题转化为更易于求解的非线性规划问题,且在转化过程中,可以非常方便地考虑轨迹约束.求解该非线性规划问题,即可得到时间最优的台车轨迹.不同于已有的大多数方法,该方法可获得全局时间最优的结果.最后,通过仿真与实验结果验证了这种时间最优轨迹规划方法具有满意的控制性能.
  • 图  1  双摆桥式吊车模型示意图

    Fig.  1  Schematic diagram of double pendulum crane

    图  2  高斯伪谱法流程图

    Fig.  2  Flowchart of the Gauss-pseudospectral method

    图  3  本文方法仿真结果(台车位置以及速度) (实线:仿真结果; 虚线: 目标位置 $x_f=0. 6~{\rm{m}}$ ; 点画线:台车速度约束 $v_{\max}=0. 3~{\rm{m/s}})$

    Fig.  3  Simulation results (trolley position and velocity)(Solid line: simulation results; Dashed line: target position $x_f=0. 6~{\rm{m}}$ ; Dotted-dashed line: trolley velocity constraint $v_{\max}=0. 3~{\rm{m/s}}$ )

    图  4  本文方法仿真结果(两级摆动对应的摆角及角速度) (实线: 仿真结果;虚线: 摆角约束 $\theta_{1\max}=\theta_{2\max}=2~{\rm{deg}}$ ;点画线: 角速度约束 $\omega_{1\max}=\omega_{2\max}=5~{\rm{deg/s}})$

    Fig.  4  Simulation results (first and second order swing angles and angular velocities) (Solid line: simulation results;Dashed line: swing angle constraint $\theta_{1\max}=\theta_{2\max}=2~{\rm{deg}}$ ; Dotted-dashed line:angular velocity constraint $\omega_{1\max}=\omega_{2\max}=5~{\rm{deg/s})}$

    图  5  轨迹规划与控制流程图

    Fig.  5  Flowchart of trajectory planning and tracking control

    图  6  本文方法实验结果(台车位置、 一级摆角、二级摆角) (实线: 实验结果; 虚线: 待跟踪最优轨迹; 点画线:摆角约束 $\theta_{1\max}=\theta_{2\max}=2~{\rm{deg})}$

    Fig.  6  Experimental results of proposed method (trolley position,first and second order swing angles) (Solid line:experimental results; Dashed line: planned trajectory; Dotted-dashed line: swing angle constraint $\theta_{1\max}=\theta_{2\max}=2~{\rm{deg}}$ )

    图  7  LQR方法实验结果(台车位置、 一级摆角、二级摆角) (实线:实验结果)

    Fig.  7  Experimental results of the LQR method (trolley position,first and second order swing angles) (Solid line:experimental results)

    图  8  文献[21]方法实验结果(台车位置、一级摆角、 二级摆角) (实线: 实验结果; 虚线: 待跟踪轨迹; 点画线:摆角约束 $\theta_{1\max}=\theta_{2\max}=2~{\rm{deg}}$ )

    Fig.  8  Experimental results of the method in [21] (trolley position,first and second order swing angles) (Solid line:experimental results; Dashed line: planned trajectory; Dotted-dashed line: swing angle constraint$\theta_{1\max}=\theta_{2\max}=2~{\rm{deg})

  • [1] Liu Y, Yu H N. A survey of underactuated mechanical systems. IET Control Theory & Applications, 2013, 7(7):921-935 https://www.researchgate.net/profile/Hongnian_Yu/publication/260586292_A_survey_of_underactuated_mechanical_systems/links/02e7e535974fe51e60000000.pdf
    [2] Tuan L A, Lee S G, Dang V H, Moon S, Kim B. Partial feedback linearization control of a three-dimensional overhead crane. International Journal of Control, Automation and Systems, 2013, 11(4):718-727 doi: 10.1007/s12555-012-9305-z
    [3] Tuan L A, Kim G H, Kim M Y, Lee S G. Partial feedback linearization control of overhead cranes with varying cable lengths. International Journal of Precision Engineering and Manufacturing, 2012, 13(4):501-507 doi: 10.1007/s12541-012-0065-8
    [4] Singhose W, Kim D, Kenison M. Input shaping control of double-pendulum bridge crane oscillations. ASME Journal of Dynamic Systems, Measurement, and Control, 2008, 130(3):034504 doi: 10.1115/1.2907363
    [5] Blackburn D, Singhose W, Kitchen J, Patrangenaru V, Lawrence J, Kamoi T, Taura A. Command shaping for nonlinear crane dynamics. Journal of Vibration and Control, 2010, 16(4):477-501 doi: 10.1177/1077546309106142
    [6] 王伟, 易建强, 赵冬斌, 刘殿通. 桥式吊车系统的分级滑模控制方法. 自动化学报, 2004, 30(5):784-788 http://www.aas.net.cn/CN/abstract/abstract16252.shtml

    Wang Wei, Yi Jian-Qiang, Zhao Dong-Bin, Liu Dian-Tong. Hierarchical sliding-mode control method for overhead cranes. Acta Automatica Sinica, 2004, 30(5):784-788 http://www.aas.net.cn/CN/abstract/abstract16252.shtml
    [7] Xi Z, Hesketh T. Discrete time integral sliding mode control for overhead crane with uncertainties. IET Control Theory & Applications, 2010, 4(10):2071-2081 http://ieeexplore.ieee.org/xpl/articleDetails.jsp?reload=true&arnumber=5611727&contentType=Journals+%26+Magazines
    [8] 胡洲, 王志胜, 甄子洋. 带输入饱和的欠驱动吊车非线性信息融合控制. 自动化学报, 2014, 40(7):1522-1527 http://www.aas.net.cn/CN/abstract/abstract18422.shtml

    Hu Zhou, Wang Zhi-Sheng, Zhen Zi-Yang. Nonlinear information fusion control for underactuated cranes with input saturation. Acta Automatica Sinica, 2014, 40(7):1522-1527 http://www.aas.net.cn/CN/abstract/abstract18422.shtml
    [9] Sun N, Fang Y C, Zhang X B. Energy coupling output feedback control of 4-DOF underactuated cranes with saturated inputs. Automatica, 2013, 49(5):1318-1325 doi: 10.1016/j.automatica.2013.01.039
    [10] Sun N, Fang Y C. New energy analytical results for the regulation of underactuated overhead cranes:an end-effector motion-based approach. IEEE Transactions on Industrial Electronics, 2012, 59(12):4723-4734 doi: 10.1109/TIE.2012.2183837
    [11] Nakazono K, Ohnishi K, Kinjo H, Yamamoto T. Load swing suppression for rotary crane system using direct gradient descent controller optimized by genetic algorithm. Transactions of the Institute of Systems, Control and Information Engineers, 2011, 22(8):303-310
    [12] Zhao Y, Gao H J. Fuzzy-model-based control of an overhead crane with input delay and actuator saturation. IEEE Transactions on Fuzzy Systems, 2012, 20(1):181-186 doi: 10.1109/TFUZZ.2011.2164083
    [13] Uchiyama N, Ouyang H M, Sano S. Simple rotary crane dynamics modeling and open-loop control for residual load sway suppression by only horizontal boom motion. Mechatronics, 2013, 23(8):1223-1236 doi: 10.1016/j.mechatronics.2013.09.001
    [14] Sun N, Fang Y, Zhang X, Yuan Y. Transportation task-oriented trajectory planning for underactuated overhead cranes using geometric analysis. IET Control Theory & Applications, 2012, 6(10):1410-1423 http://ieeexplore.ieee.org/iel5/4079545/6257070/06257077.pdf
    [15] 孙宁, 方勇纯, 王鹏程, 张雪波. 欠驱动三维桥式吊车系统自适应跟踪控制器设计. 自动化学报, 2010, 36(9):1287-1294 doi: 10.3724/SP.J.1004.2010.01287

    Sun Ning, Fang Yong-Chun, Wang Peng-Cheng, Zhang Xue-Bo. Adaptive trajectory tracking control of underactuated 3-dimensional overhead crane systems. Acta Automatica Sinica, 2010, 36(9):1287-1294 doi: 10.3724/SP.J.1004.2010.01287
    [16] Sun N, Fang Y C, Zhang Y D, Ma B J. A novel kinematic coupling-based trajectory planning method for overhead cranes. IEEE/ASME Transactions on Mechatronics, 2012, 17(1):166-173 doi: 10.1109/TMECH.2010.2103085
    [17] Wang P C, Fang Y C, Jiang Z Y. A direct swing constraint-based trajectory planning method for underactuated overhead cranes. Acta Automatica Sinica, 2014, 40(11):2414-2419 doi: 10.1016/S1874-1029(14)60397-9
    [18] Vaughan J, Kim D, Singhose W. Control of tower cranes with double-pendulum payload dynamics. IEEE Transactions on Control Systems Technology, 2010, 18(6):1345-1358
    [19] Singhose W, Kim D. Manipulation with tower cranes exhibiting double-pendulum oscillations. In:Proceedings of the 2007 IEEE International Conference on Robotics and Automation. Roma, Italy:IEEE, 2007. 4550-4555
    [20] Masoud Z, Alhazza K, Abu-Nada E, Majeed M. A hybrid command-shaper for double-pendulum overhead cranes. Journal of Vibration and Control, 2014, 20(1):24-37 doi: 10.1177/1077546312461371
    [21] 孙宁, 方勇纯, 钱彧哲. 带有状态约束的双摆效应吊车轨迹规划. 控制理论与应用, 2014, 31(7):974-980 http://www.cnki.com.cn/Article/CJFDTOTAL-KZLY201407019.htm

    Sun Ning, Fang Yong-Chun, Qian Yu-Zhe. Motion planning for cranes with double pendulum effects subject to state constraints. Control Theory and Applications, 2014, 31(7):974-980 http://www.cnki.com.cn/Article/CJFDTOTAL-KZLY201407019.htm
    [22] 郭卫平, 刘殿通. 二级摆型吊车系统动态及基于无源的控制. 系统仿真学报, 2008, 20(18):4945-4948 http://www.cnki.com.cn/Article/CJFDTOTAL-XTFZ200818045.htm

    Guo Wei-Ping, Liu Dian-Tong. Double-pendulum-type crane dynamics and passivity based control. Journal of System Simulation, 2008, 20(18):4945-4948 http://www.cnki.com.cn/Article/CJFDTOTAL-XTFZ200818045.htm
    [23] Xu B, Huang X Y, Wang D W, Sun F C. Dynamic surface control of constrained hypersonic flight models with parameter estimation and actuator compensation. Asian Journal of Control, 2014, 16(1):162-174 doi: 10.1002/asjc.2014.16.issue-1
    [24] Xu B. Robust adaptive neural control of flexible hypersonic flight vehicle with dead-zone input nonlinearity. Nonlinear Dynamics, 2015, 80(3):1509-1520 doi: 10.1007/s11071-015-1958-8
    [25] Garg D, Patterson M, Hager W W, Rao A V, Benson D A, Huntington G T. A unified framework for the numerical solution of optimal control problems using pseudospectral methods. Automatica, 2010, 46(11):1843-1851 doi: 10.1016/j.automatica.2010.06.048
    [26] Gill P E, Murray W, Saunders M A. SNOPT:an SQP algorithm for large-scale constrained optimization. SIAM Review, 2005, 47:99-131 doi: 10.1137/S0036144504446096
  • 加载中
图(8)
计量
  • 文章访问数:  2305
  • HTML全文浏览量:  373
  • PDF下载量:  1004
  • 被引次数: 0
出版历程
  • 收稿日期:  2015-05-18
  • 录用日期:  2015-11-02
  • 刊出日期:  2016-01-01

目录

    /

    返回文章
    返回