| [1] | Babenko B, Yang M H, Belongie S. Robust object tracking with online multiple instance learning. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2011, 33(8):1619-1632 | 
		
				| [2] | Wang Li-Jia, Jia Song-Min, Li Xiu-Zhi, Wang Shuang. Person following for mobile robot using improved multiple instance learning. Acta Automatica Sinica, 2014, 40(12):2916-2925(王丽佳, 贾松敏, 李秀智, 王爽. 基于改进在线多示例学习算法的机器人目标跟踪. 自动化学报, 2014, 40(12):2916-2925) | 
		
				| [3] | [3] Ross D A, Lim J, Lin R S, Yang M H. Incremental learning for robust visual tracking. International Journal of Computer Vision, 2008, 77(1-3):125-141 | 
		
				| [4] | [4] Zhang K H, Zhang L, Yang M H. Fast compressive tracking. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2014, 36(10):2002-2015 | 
		
				| [5] | [5] Kwon J, Lee K M. Visual tracking decomposition. In:Proceedings of the 2010 IEEE Conference on Computer Vision and Pattern Recognition (CVPR). San Francisco, CA, USA:IEEE, 2010. 1269-1276 | 
		
				| [6] | [6] Kalal Z, Mikolajczyk K, Matas J. Tracking-learning-detection. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2012, 34(7):1409-1422 | 
		
				| [7] | Li Zhen-Xing, Liu Jin-Mang, Li Song, Bai Dong-Ying, Ni Peng. Group targets tracking algorithm based on box particle filter. Acta Automatica Sinica, 2015, 41(4):785-798(李振兴, 刘进忙, 李松, 白东颖, 倪鹏. 基于箱式粒子滤波的群目标跟踪算法. 自动化学报, 2015, 41(4):785-798) | 
		
				| [8] | [8] Zhou X Z, Lu Y, Lu J W, Zhou J. Abrupt motion tracking via intensively adaptive Markov chain Monte Carlo sampling. IEEE Transactions on Image Processing, 2012, 21(2):789-801 | 
		
				| [9] | [9] Zhou T F, Lu Y, Di H J. Nearest neighbor field driven stochastic sampling for abrupt motion tracking. In:Proceedings of the 2014 International Conference on Multimedia and Expo (ICME). Chengdu China:IEEE, 2014. 1-6 | 
		
				| [10] | Grabner H, Matas J, Van Gool L, Cattin P. Tracking the invisible:learning where the object might be. In:Proceedings of the 2010 IEEE Conference on Computer Vision and Pattern Recognition (CVPR). San Francisco, CA, USA:IEEE, 2010. 1285-1292 | 
		
				| [11] | Dinh T B, Vo N, Medioni G. Context tracker:exploring supporters and distracters in unconstrained environments. In:Proceedings of the 2011 IEEE Conference on Computer Vision and Pattern Recognition (CVPR). Colorado Springs, CO, USA:IEEE, 2011. 1177-1184 | 
		
				| [12] | Wen L Y, Cai Z W, Zhen L, Dong Y, Li S Z. Online spatio-temporal structural context learning for visual tracking. In:Proceedings of the 2012 European Conference on Computer Vision (ECCV). Florence, Italy:Springer, 2012. 716-729 | 
		
				| [13] | Yang M, Wu Y, Hua G. Context-aware visual tracking. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2009, 31(7):1195-1209 | 
		
				| [14] | Zhang K H, Zhang L, Liu Q S, Zhang D, Yang M H. Fast visual tracking via dense spatio-temporal context learning. In:Proceedings of the 2014 European Conference on Computer Vision (ECCV). Czech Republic:Springer, 2014. 127-141 | 
		
				| [15] | Sundaram N, Brox T, Keutzer K. Dense point trajectories by GPU-accelerated large displacement optical flow. In:Proceedings of the 2010 European Conference on Computer Vision (ECCV). Florence, Italy:Springer, 2010. 438-451 | 
		
				| [16] | Nourani-Vatani N, Borges P V K, Roberts J M. A study of feature extraction algorithms for optical flow tracking. In:Proceedings of the 2012 Australasian Conference on Robotics and Automation. Victoria University of Wellington, New Zealand, 2012. | 
		
				| [17] | Kalal Z, Mikolajczyk K, Matas J. Forward-backward error:automatic detection of tracking failures. In:Proceedings of the 2012 International Conference on Pattern Recognition (ICPR). Istanbul Turkey:IEEE, 2010. 2756-2759 | 
		
				| [18] | Wu Y, Lim J, Yang M H. Online object tracking:a benchmark. In:Proceedings of the 2013 IEEE Conference on Computer Vision and Pattern Recognition (CVPR). Portland, OR, USA:IEEE, 2013. 2411-2418 | 
		
				| [19] | Zhang K H, Zhang L, Yang M H. Real-time compressive tracking. In:Proceedings of the 2012 European Conference on Computer Vision (ECCV). Florence, Italy:Springer, 2012. 864-877 | 
		
				| [20] | Zhang T X, Ghanem B, Liu S, Ahuja N. Robust visual tracking via multi-task sparse learning. In:Proceedings of the 2012 IEEE Conference on Computer Vision and Pattern Recognition (CVPR). Providence, RI, USA:IEEE, 2012. 2042-2049 | 
		
				| [21] | Laura S L, Erik L M. Distribution fields for tracking. In:Proceedings of the 2012 IEEE Conference on Computer Vision and Pattern Recognition (CVPR). Providence, RI, USA:IEEE, 2012. 1910-1917 | 
		
				| [22] | Grabner H, Grabner M, Bischof H. Real-time tracking via on-line boosting. In:Proceedings of the 2006 British Machine Vision Conference. 2006, 47-56 | 
		
				| [23] | Oron S, Bar-Hillel A, Levi D, Avidan S. Locally orderless tracking. In:Proceedings of the 2012 IEEE Conference on Computer Vision and Pattern Recognition (CVPR). Providence, RI, USA:IEEE, 2012. 1940-1947 | 
		
				| [24] | Adam A, Rivlin E, Shimshoni I. Robust fragments-based tracking using the integral histogram. In:Proceedings of the 2006 IEEE Conference on Computer Vision and Pattern Recognition (CVPR). IEEE, 2006. 798-805 | 
		
				| [25] | Bao C L, Wu Y, Ling H B, Ji H. Real time robust L1 tracker using accelerated proximal gradient approach. In:Proceedings of the 2012 IEEE Conference on Computer Vision and Pattern Recognition (CVPR). Providence, RI, USA:IEEE, 2012. 1830-1837 |