2.793

2018影响因子

(CJCR)

  • 中文核心
  • EI
  • 中国科技核心
  • Scopus
  • CSCD
  • 英国科学文摘

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

模板化的人体运动合成

夏贵羽 孙怀江

夏贵羽, 孙怀江. 模板化的人体运动合成. 自动化学报, 2015, 41(4): 758-771. doi: 10.16383/j.aas.2015.c140457
引用本文: 夏贵羽, 孙怀江. 模板化的人体运动合成. 自动化学报, 2015, 41(4): 758-771. doi: 10.16383/j.aas.2015.c140457
XIA Gui-Yu, SUN Huai-Jiang. Templated Human Motion Synthesis. ACTA AUTOMATICA SINICA, 2015, 41(4): 758-771. doi: 10.16383/j.aas.2015.c140457
Citation: XIA Gui-Yu, SUN Huai-Jiang. Templated Human Motion Synthesis. ACTA AUTOMATICA SINICA, 2015, 41(4): 758-771. doi: 10.16383/j.aas.2015.c140457

模板化的人体运动合成


DOI: 10.16383/j.aas.2015.c140457
详细信息
    作者简介:

    夏贵羽 南京理工大学博士研究生.2012年获得南京理工大学学士学位.主要研究方向为模式识别,人体运动捕获数据重用.E-mail:xiaguiyu1989@sina.com

    通讯作者: 孙怀江 南京理工大学计算机科学与工程学院教授.1995年获得西北工业大学博士学位.主要研究方向为神经网络与机器学习,人体运动分析与合成.本文通信作者.E-mail:sunhuaijiang@njust.edu.cn

Templated Human Motion Synthesis

More Information
  • 摘要: 为解决现有运动合成方法中控制方式过于复杂的问题,提出一种模板化的运动合成模型,旨在降低运动合成技术的应用门槛.利用稀疏主成分分析(Sparse principal component analysis, SPCA)、Group lasso和Exclusive group lasso对人体运动进行建模,使其对应的每一个低维参数只依赖于少数几个人体关节,构成人体运动的一个内在自由度(Degree of freedom, DOF),并具有直观语义;同时,每个关节被尽量少的低维参数所控制,以减少低维参数对彼此所控制的自由度的交叉影响.实验表明,通过直观地修改低维参数,就能够实时地控制每个参数对应的摆臂幅度、踢腿高度、跳跃距离等运动属性.这种模板学习、模板定制的两步方法,有效地降低了运动合成控制的复杂度,即便非专业人员也可以用其进行艺术创作.
  • [1] Zhang Li-Ge, Bi Shu-Sheng, Gao Jin-Lei. Human motion data acquiring and analyzing method for humanoid robot motion designing. Acta Automatica Sinica, 2010, 36(1):107-112(张利格, 毕树生, 高金磊. 仿人机器人复杂动作设计中人体运动数据提取及分析方法. 自动化学报, 2010, 36(1):107-112)
    [2] [2] Kovar L, Gleicher M, Pighin F. Motion graphs. ACM Transactions on Graphics(TOG), 2002, 21(3):473-482
    [3] [3] Kovar L, Gleicher M. Flexible automatic motion blending with registration curves. In:Proceedings of the 2003 ACM SIGGRAPH/Eurographics Symposium on Computer Animation. Switzerland:Eurographics Association, 2003. 214-224
    [4] [4] Min J Y, Chen Y L, Chai J X. Interactive generation of human animation with deformable motion models. ACM Transactions on Graphics(TOG), 2009, 29(1):Article No.9
    [5] [5] Kwon T, Shin S Y. Motion modeling for on-line locomotion synthesis. In:Proceedings of the 2005 ACM SIGGRAPH/Eurographics Symposium on Computer Animation. Los Angeles, CA, USA:ACM, 2005. 29-38
    [6] [6] Heck R, Gleicher M. Parametric motion graphs. In:Proceedings of the 2007 Symposium on Interactive 3D Graphics and Games. Seattle, Washington, USA:ACM, 2007. 129-136
    [7] [7] Kovar L, Gleicher M. Automated extraction and parameterization of motions in large data sets. ACM Transactions on Graphics, 2004, 23(3):559-568
    [8] [8] Park S I, Shin H J, Kim T H, Shin S Y. On-line motion blending for real-time locomotion generation. Computer Animation and Virtual Worlds, 2004, 15(3-4):125-138
    [9] Li Jin-Dan, Mao Tian-Lu, Wang Zhao-Qi, Liu Jin-Gang. Motion graph construction based on parametric motion synthesis. Computer Simulation, 2009, 26(3):208-212(李锦丹, 毛天露, 王兆其, 刘金刚. 基于参数化运动合成的运动图构建及其应用. 计算机仿真, 2009, 26(3):208-212)
    [10] Shin H J, Lee J. Motion synthesis and editing in low-dimensional spaces. Computer Animation and Virtual Worlds, 2006, 17(3-4):219-227
    [11] Wang Yu-Jie, Xiao Jun, Wei Bao-Gang. 3D human motion synthesis based on nonlinear manifold learning. Journal of Image and Graphics, 2010, 15(6):936-943(王宇杰, 肖俊, 魏宝刚. 基于非线性流形学习的3维人体运动合成. 中国图象图形学报, 2010, 15(6):936-943)
    [12] Liu H, He F, Cai X T, Chen X, Chen Z. Human motion synthesis using window-based local principal component analysis. In:Proceedings of the 12th International Conference on Computer-Aided Design and Computer Graphics(CAD/Graphics). Washington D.C., USA:IEEE, 2011. 282-287
    [13] Zou H, Hastie T, Tibshirani R. Sparse principal component analysis. Journal of Computational and Graphical Statistics, 2006, 15(2):265-286
    [14] Yuan M, Lin Y. Model selection and estimation in regression with grouped variables. Journal of the Royal Statistical Society:Series B(Statistical Methodology), 2006, 68(1):49-67
    [15] Chen X Y, Yuan X T, Yan S C, Tang J H, Rui Y, Chua T S. Towards multi-semantic image annotation with graph regularized exclusive group lasso. In:Proceedings of the 19th ACM International Conference on Multimedia. New York, NY, USA:ACM, 2011. 263-272
    [16] Gleicher M, Shin H J, Kovar L, Jepsen A. Snap-together motion:assembling run-time animations. In:Proceedings of the ACM SIGGRAPH 2008 Classes. New York:ACM, 2008:Article No.52
    [17] Kwon T, Shin S Y. Motion modeling for on-line locomotion synthesis. In:Proceedings of the 2005 ACM SIGGRAPH/Eurographics Symposium on Computer Animation. New York, NY, USA:ACM, 2005. 29-38
    [18] Safonova A, Hodgins J K, Pollard N S. Synthesizing physically realistic human motion in low-dimensional, behavior-specific spaces. ACM Transactions on Graphics(TOG), 2004, 23(3):514-521
    [19] Li Chun-Peng, Wang Zhao-Qi, Xia Shi-Hong. Motion synthesis for virtual human using functional data analysis. Journal of Software, 2009, 20(6):1664-1672(李淳芃, 王兆其, 夏时洪. 人体运动的函数数据分析与合成. 软件学报, 2009, 20(6):1664-1672)
    [20] Liu Geng-Dai, Xu Ming-Liang, Zhang Ming-Min. Human motion synthesis based on independent spatio-temporal feature space. Chinese Journal of Computers, 2011, 34(3):464-472(刘更代, 徐明亮, 张明敏. 基于独立时空特征空间的人体运动合成. 计算机学报, 2011, 34(3):464-472)
    [21] Lan Rong-Yi, Sun Huai-Jiang. Style analysis and human locomotion synthesis based on inverse kinematics and reconstructive ICA. Acta Automatica Sinica, 2014, 40(6):1135-1147(蓝荣祎, 孙怀江. 基于逆运动学和重构式ICA的人体运动风格分析与合成. 自动化学报, 2014, 40(6):1135-1147)
    [22] Lan Rong-Yi, Sun Huai-Jiang. A sparse semantic parametric model for interactive motion synthesis. Journal of Computer-Aided Design Computer Graphics, 2013, 25(3):341-349(蓝荣祎, 孙怀江. 人体运动的稀疏语义参数化模型与交互式合成. 计算机辅助设计与图形学学报, 2013, 25(3):341-349)
    [23] Hoerl A E, Kennard R W. Ridge regression:biased estimation for nonorthogonal problems. Technometrics, 1970, 12(1):55-67
    [24] Zou H, Hastie T. Regularization and variable selection via the elastic net. Journal of the Royal Statistical Society:Series B(Statistical Methodology), 2005, 67(2):301-320
    [25] Zhou Y, Jin R, Hoi S C H. Exclusive lasso for multi-task feature selection. IN:Proceedings of the 2010 International Conference on Artificial Intelligence and Statistics. 2010. 988-995
    [26] Sakoe H, Chiba S. Dynamic programming algorithm optimization for spoken word recognition. IEEE Transactions on Acoustics, Speech, and Signal Processing, 1978, 26(1):43-49
    [27] Nesterov Y. Smooth minimization of non-smooth functions. Mathematical Programming, 2005, 103(1):127-152
    [28] Tseng P. On accelerated proximal gradient methods for convex-concave optimization. SIAM Journal on Optimization, 2008.
  • [1] 张继文, 梁桐, 张淑平. 实验小鼠运动参数的模板匹配及粒子滤波提取方法[J]. 自动化学报, 2018, 44(1): 25-34. doi: 10.16383/j.aas.2018.c160573
    [2] 杨默涵, 陈万忠, 李明阳. 基于总体经验模态分解的多类特征的运动想象脑电识别方法研究[J]. 自动化学报, 2017, 43(5): 743-752. doi: 10.16383/j.aas.2017.c160175
    [3] 孟明, 朱俊青, 佘青山, 马玉良, 罗志增. 多类运动想象脑电信号的两级特征提取方法[J]. 自动化学报, 2016, 42(12): 1915-1922. doi: 10.16383/j.aas.2016.c160122
    [4] 唐郅, 侯进. 基于深度神经网络的语音驱动发音器官的运动合成[J]. 自动化学报, 2016, 42(6): 923-930. doi: 10.16383/j.aas.2016.c150726
    [5] 鲁志红, 郭丹, 汪萌. 基于加权运动估计和矢量分割的运动补偿内插算法[J]. 自动化学报, 2015, 41(5): 1034-1041. doi: 10.16383/j.aas.2015.c140686
    [6] 伏云发, 徐保磊, 李永程, 李洪谊, 王越超, 余正涛. 基于运动相关皮层电位握力运动模式识别研究[J]. 自动化学报, 2014, 40(6): 1045-1057. doi: 10.3724/SP.J.1004.2014.01045
    [7] 王勇, 胡士强. 基于混沌特征的运动模式分割和动态纹理分类[J]. 自动化学报, 2014, 40(4): 604-614. doi: 10.3724/SP.J.1004.2014.00604
    [8] 蓝荣祎, 孙怀江. 基于逆运动学和重构式ICA的人体运动风格分析与合成[J]. 自动化学报, 2014, 40(6): 1135-1147. doi: 10.3724/SP.J.1004.2014.01135
    [9] KHALID Shehzad, NAFTEL Andrew. 基于轨迹系数特征空间表示法的含有异常情况的自动运动学习[J]. 自动化学报, 2010, 36(5): 655-666. doi: 10.3724/SP.J.1004.2010.00655
    [10] 王智灵, 陈宗海, 徐萧萧, 吴亮. 基于蛙眼视觉特性的运动目标模糊化区域理解跟踪方法[J]. 自动化学报, 2009, 35(8): 1048-1054. doi: 10.3724/SP.J.1004.2009.01048
    [11] 王伟, 李伟. 基于可变分块尺寸的多模板运动估计算法[J]. 自动化学报, 2009, 35(1): 34-38. doi: 10.3724/SP.J.1004.2009.00034
    [12] 胡芝兰, 江帆, 王贵锦, 林行刚, 严洪. 基于运动方向的异常行为检测[J]. 自动化学报, 2008, 34(11): 1348-1357. doi: 10.3724/SP.J.1004.2008.01348
    [13] 喻俊志, 陈尔奎, 王硕, 谭民. 仿生机器鱼运动控制算法研究[J]. 自动化学报, 2005, 31(4): 537-542.
    [14] 钟敏生, 马争鸣. 基于小波系数块的运动补偿[J]. 自动化学报, 2004, 30(1): 64-69.
    [15] 周兵, 李波, 毕波. 摄像机运动情况下的运动对象检测[J]. 自动化学报, 2003, 29(3): 472-480.
    [16] 黄浴, 袁保宗. 基于长序列立体图象的运动参数LS估计[J]. 自动化学报, 1997, 23(1): 125-128.
    [17] 傅洁, 吴立德. 从表观运动来看运动的基本约束[J]. 自动化学报, 1994, 20(1): 66-73.
    [18] 苏剑波, 李耀通. 一种用于机器人的物体运动参数快速识别方法[J]. 自动化学报, 1994, 20(3): 286-291.
    [19] 徐文立, 刘文煌. 由特征点的空间位置估计运动参数[J]. 自动化学报, 1992, 18(4): 440-447.
    [20] 徐文立. 计算机视觉的PNP问题的最优解[J]. 自动化学报, 1992, 18(5): 522-531.
  • 加载中
计量
  • 文章访问数:  1131
  • HTML全文浏览量:  96
  • PDF下载量:  1893
  • 被引次数: 0
出版历程
  • 收稿日期:  2014-06-25
  • 修回日期:  2014-09-11
  • 刊出日期:  2015-04-20

模板化的人体运动合成

doi: 10.16383/j.aas.2015.c140457
    作者简介:

    夏贵羽 南京理工大学博士研究生.2012年获得南京理工大学学士学位.主要研究方向为模式识别,人体运动捕获数据重用.E-mail:xiaguiyu1989@sina.com

    通讯作者: 孙怀江 南京理工大学计算机科学与工程学院教授.1995年获得西北工业大学博士学位.主要研究方向为神经网络与机器学习,人体运动分析与合成.本文通信作者.E-mail:sunhuaijiang@njust.edu.cn

摘要: 为解决现有运动合成方法中控制方式过于复杂的问题,提出一种模板化的运动合成模型,旨在降低运动合成技术的应用门槛.利用稀疏主成分分析(Sparse principal component analysis, SPCA)、Group lasso和Exclusive group lasso对人体运动进行建模,使其对应的每一个低维参数只依赖于少数几个人体关节,构成人体运动的一个内在自由度(Degree of freedom, DOF),并具有直观语义;同时,每个关节被尽量少的低维参数所控制,以减少低维参数对彼此所控制的自由度的交叉影响.实验表明,通过直观地修改低维参数,就能够实时地控制每个参数对应的摆臂幅度、踢腿高度、跳跃距离等运动属性.这种模板学习、模板定制的两步方法,有效地降低了运动合成控制的复杂度,即便非专业人员也可以用其进行艺术创作.

English Abstract

夏贵羽, 孙怀江. 模板化的人体运动合成. 自动化学报, 2015, 41(4): 758-771. doi: 10.16383/j.aas.2015.c140457
引用本文: 夏贵羽, 孙怀江. 模板化的人体运动合成. 自动化学报, 2015, 41(4): 758-771. doi: 10.16383/j.aas.2015.c140457
XIA Gui-Yu, SUN Huai-Jiang. Templated Human Motion Synthesis. ACTA AUTOMATICA SINICA, 2015, 41(4): 758-771. doi: 10.16383/j.aas.2015.c140457
Citation: XIA Gui-Yu, SUN Huai-Jiang. Templated Human Motion Synthesis. ACTA AUTOMATICA SINICA, 2015, 41(4): 758-771. doi: 10.16383/j.aas.2015.c140457
参考文献 (28)

目录

    /

    返回文章
    返回