2.793

2018影响因子

(CJCR)

  • 中文核心
  • EI
  • 中国科技核心
  • Scopus
  • CSCD
  • 英国科学文摘

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

基于概率图模型的点集匹配方法研究

曲寒冰 王加强 李彬 王松涛

曲寒冰, 王加强, 李彬, 王松涛. 基于概率图模型的点集匹配方法研究. 自动化学报, 2015, 41(4): 694-710. doi: 10.16383/j.aas.2015.c140376
引用本文: 曲寒冰, 王加强, 李彬, 王松涛. 基于概率图模型的点集匹配方法研究. 自动化学报, 2015, 41(4): 694-710. doi: 10.16383/j.aas.2015.c140376
QU Han-Bing, WANG Jia-Qiang, LI Bin, WANG Song-Tao. Probabilistic Graphical Model for Robust Point Set Matching. ACTA AUTOMATICA SINICA, 2015, 41(4): 694-710. doi: 10.16383/j.aas.2015.c140376
Citation: QU Han-Bing, WANG Jia-Qiang, LI Bin, WANG Song-Tao. Probabilistic Graphical Model for Robust Point Set Matching. ACTA AUTOMATICA SINICA, 2015, 41(4): 694-710. doi: 10.16383/j.aas.2015.c140376

基于概率图模型的点集匹配方法研究


DOI: 10.16383/j.aas.2015.c140376
详细信息
    作者简介:

    王加强 北京市科学技术研究院模式识别重点实验室助理研究员,河北工业大学微电子学与固体电子学专业博士研究生.2005年和2008年分别获得山东理工大学学士和工学硕士.主要研究方向为图像处理,计算机视觉,模式识别和生物识别.E-mail:wangjq.bj@gmail.com

  • 基金项目:

    北京市科学技术研究院创新团队计划(2015-20N),北京市科学技术研究院青年骨干计划(2014-30),天津市科技计划(14RCGFGX00846)资助

Probabilistic Graphical Model for Robust Point Set Matching

More Information
  • Fund Project:

    Supported by Innovation Group Plan of Beijing Academy of Science and Technology(2015-20N), Youth Core Plan of Beijing Academy of Science and Technology(2014-30), and Tianjin Science and Technology Projects(14RCGFGX00846)

  • 摘要: 在概率图模型框架下提出了一种将回归分析和聚类分析相结合的贝叶斯点集匹配方法,其中,回归分析用来估计两个点集之间的映射函数,而聚类分析用来建立两个点集中点与点之间的对应关系.本文将点集匹配问题表示为一种多层的概率有向图,并提出了一种由粗到精的变分逼近算法来估计点集匹配的不确定性;此外,还利用高斯混合模型估计映射函数回归中的异方差噪声和场景点密度估计中离群点的分布;同时,引入转移变量建立起模型点集与场景点集之间的关系,并与离群点混合模型共同对场景点的分布进行估计.实验结果表明,该方法与其他点集匹配算法相比,在鲁棒性和匹配精度方面均达到了较好的效果.
  • [1] Caetano T S, Caelli T, Schuurmans D, Barone D. Graphical models and point pattern matching. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2006, 28(10):1646-1663
    [2] [2] Cootes T F, Taylor C J, Cooper D H, Graham J. Active shape modelstheir training and applications. Computer Vision and Image Understanding, 1995, 61(1):38-59
    [3] [3] Czogiel I, Dryden I, Brignell C. Bayesian matching of unlabeled marked point sets using random fields with application to molecular alignment. Annals of Applied Statistics, 2011, 5(4):2603-2629
    [4] [4] Schmidler S C. Fast Bayesian shape matching using geometric algorithms. Bayesian Statistics, 2007, 8:471-490
    [5] [5] Pilet J, Lepetit V, Fua P. Real-time non-rigid surface detection. In:Proceedings of the 2005 IEEE Computer Society Conference on Computer Vision and Pattern Recognition. San Diego, USA:IEEE, 2005. 822-828
    [6] [6] Simpson I J A, Schnabel J A, Groves A R, Andersson J L R, Woolrich M W. Probabilistic inference of regularisation in non-rigid registration. NeuroImage, 2012, 59(3):2438-2451
    [7] [7] Gu L, Kanade T. A generative shape regularization model for robust face alignment. In:Proceedings of the 10th European Conference on Computer Vision. Marseille, France:Springer, 2008. 413-426
    [8] [8] Wamelen P B V, Li Z, Iyengar S. A fast expected time algorithm for the 2-D point pattern matching problem. Pattern Recognition, 2004, 37(8):1699-1711
    [9] Zhou Zhi-Yong, Li Li-Hua, Zheng Jian, Kuai Duo-Jie, Hu Su, Zhang Tao. Point sets non-rigid registration using student's-t mixture model with spatial constraints. Acta Automatica Sinica, 2014, 40(4):683-696(周志勇, 李莉华, 郑健, 蒯多杰, 胡粟, 张涛. 含局部空间约束的t分布混合模型的点集配准. 自动化学报, 2014, 40(4):683-696)
    [10] Besl P J, McKay N D. A method for registration of 3-D shapes. IEEE Transactions on Pattern Analysis and Machine Intelligence, 1992, 14(2):239-256
    [11] Lu C P, Mjolsness E. Two-dimensional object localization by coarse-to-fine correlation matching. Advances in Neural Information Processing Systems, 1994, 6:985-992
    [12] Zhang Z. Iterative point matching for registration of freeform curves and surfaces. International Journal of Computer Vision, 1994, 13(2):119-152
    [13] Lowe D G. Object recognition from local scale-invariant features. In:Proceedings of the 7th International Conference on Computer Vision. Kerkyra, Greece:IEEE, 1999, 2:1150 -1157
    [14] Bay H, Tuytelaars T, van Gool L. SURF:speeded up robust features. In:Proceedings of the 9th European Conference on Computer Vision. Graz, Austria:Springer, 2006. 404-417
    [15] Pachauri D, Kondor R, Singh V. Solving the multiway matching problem by permutation synchronization. Advances in Neural Information Processing Systems, 2013, 26:1860-1868
    [16] Pizarro D, Bartoli A. Feature-based deformable surface detection with self-occlusion reasoning. International Journal of Computer Vision, 2012, 97(1):54-70
    [17] Zhao J, Ma J Y, Tian J W, Ma J, Zhang D Z. A robust method for vector field learning with application to mismatch removing. In:Proceedings of the 2011 Computer Vision and Pattern Recognition. Colorado Springs, USA:IEEE, 2011. 2977-2984
    [18] Mardia K V, Nyirongo V B, Fallaize C J, Barber S, Jackson R M. Hierarchical Bayesian modelling of pharmacophores in Bioinformatics. Biometrics, 2011, 67(2):617-619
    [19] Mardia K V, Fallaize C J, Barber S, Jackson R M, Theobald D L. Bayesian alignment of similarity shapes. Annals of Applied Statistics, 2013, 7(2):989-1009
    [20] Liu Y. Automatic 3D free form shape matching using the graduated assignment algorithm. Pattern Recognition, 2005, 38(10):1615-1631
    [21] Tsin T, Kanade T. A correlation-based approach to robust point set registration. In:Proceedings of the 8th European Conference on Computer Vision. Prague, Czech:Springer, 2004. 558-569
    [22] Chui H, Rangarajan A. A new point matching algorithm for non-rigid registration. Computer Vision and Image Understanding, 2003, 89(2-3):114-141
    [23] Jian B, Vemuri C C. Robust point set registration using Gaussian mixture models. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2011, 33(8):1633-1645
    [24] Ma J Y, Zhao J, Tian J W, Tu Z W, Yuille A. Robust estimation of nonrigid transformation for point set registration. In:Proceedings of the 2013 IEEE Conference on Computer Vision and Pattern Recognition. Columbus, Ohio, USA:IEEE, 2013. 2147-2154
    [25] Myronenko A, Song X. Point set registration:coherent point drift. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2010, 32(12):2262-2275
    [26] Horaud R P, Forbes F, Yguel M, Dewaele G D, Zhang J. Rigid and articulated point registration with expectation conditional maximization. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2011, 33(3):587-602
    [27] Almhdie A, Lger C, Deriche M, Lde R. 3D registration using a new implementation of the ICP algorithm based on a comprehensive lookup matrix:application to medical imaging. Pattern Recognition Letters, 2007, 28(12):1523-1533
    [28] Dorai C, Wang G, Jain A, Mercer C. From images to models:automatic 3D object model construction from multiple views. In:Proceedings of the 13th International Conference on Pattern Recognition. Vienna, Austria:IEEE, 1996. 770-774
    [29] Hahnel D, Thrun S, Burgard W. An extension of the ICP algorithm for modelling nonrigid objects with mobile robots. In:Proceedings of the 18th International Conference on Artificial Intelligence. Acapulco, Mexico:Morgan Kaufmann, 2003. 915-920
    [30] Liu Y. Automatic registration of overlapping 3D point clouds using closest points. Image and Vision Computing, 2006, 24(7):762-781
    [31] Chui H, Rangarajan A. A feature registration framework using mixture models. In:Proceedings of the 2000 IEEE Workshop on Mathematical Methods in Biomedical Image Analysis. Hilton Head Island, USA:IEEE, 2000. 190-197
    [32] Hou S, Galata A. Robust estimation of Gaussian mixtures from noisy input data. In:Proceedings of the 2008 IEEE Conference on Computer Vision and Pattern Recognition. Anchorage, Alaska, USA:IEEE, 2008. 1-8
    [33] Govindu V M, Werman M. On using priors in affine matching. Image and Vision Computing, 2004, 22(14):1157-1164
    [34] Hastie T J, Tibshirani R J. Generalized Additive Models. London, UK:Chapman and Hall, 1990.
    [35] D'Souza A, Vijayakumar S, Schaal S. The Bayesian backfitting relevance vector machine. In:Proceedings of the 21st International Conference on Machine Learning. Banff, Alberta, Canada:ACM, 2004. 31
    [36] Hu B G, Qu H B, Wang Y, Yang S H. A generalized-constraint neural network model:associating partially known relationships for nonlinear regression. Information Sciences, 2009, 179(12):1929-1943
    [37] Qu H B, Hu B G. Variational Bayes inference for generalized associative functional networks. In:Proceedings of the 2007 International Joint Conference on Neural Networks. Orlando, FL, USA:IEEE, 2007. 184-189
    [38] Roberts S J, Penny W D. Variational Bayes for generalized autoregressive models. IEEE Transactions on Signal Processing, 2002, 50(9):2245-2257
    [39] Bishop C M. Pattern Recognition and Machine Learning. Spring Street, NY:Springer, 2006.
    [40] Beal M J. Variational Algorithms for Approximate Bayesian Inference [Ph.D. dissertation], University of Cambridge, UK, 2003.
    [41] MacKay D J C. Bayesian non-linear modeling for the prediction competition. Maximum Entropy and Bayesian Methods, 1996, 62:221-234
    [42] Lawrence N D, Bishop C M. Variational Bayesian Independent Component Analysis. Technical Report, Computer Laboratory, University of Cambridge, UK, 2000.
    [43] Beal M, Ghahramani Z. The variational Bayesian EM algorithm for incomplete data:with application to scoring graphical model structures. Bayesian Statistics, 2003, 7:453 -464
    [44] Choudrey R A. Variational Methods for Bayesian Independent Component Analysis [Ph.D. dissertation], University of Oxford, UK, 2002.
    [45] Hensman J, Rattray M, Lawrence N. Fast variational inference in the conjugate exponential family. Advances in Neural Information Processing Systems, 2012, 25:2897-2905
    [46] Valpola H, Honkela A. Hyperparameter Adaptation in Variational Bayes for the Gamma Distribution. Technical Report, Laboratory of Computer and Information Science, Helsinki University of Technology, FI, 2006.
    [47] Kaji D, Watanabe S. Two design methods of hyperparameters in variational Bayes learning for Bernoulli mixtures. Neuralcomputing, 2011, 74(11):2002-2007
    [48] Bergstra J B, Bengio Y. Random search for hyperparameter optimization. Journal of Machine Learning Research, 2012, 13(1):281-305
  • [1] 王传云, 秦世引. 动态场景红外图像的压缩感知域高斯混合背景建模[J]. 自动化学报, 2018, 44(7): 1212-1226. doi: 10.16383/j.aas.2017.c170061
    [2] 余建波, 卢笑蕾, 宗卫周. 基于局部与非局部线性判别分析和高斯混合模型动态集成的晶圆表面缺陷探测与识别[J]. 自动化学报, 2016, 42(1): 47-59. doi: 10.16383/j.aas.2016.c150311
    [3] 刘毅, 陈圣磊, 冯国富, 黄兵, 夏德深. 基于图割的低景深图像自动分割[J]. 自动化学报, 2015, 41(8): 1471-1481. doi: 10.16383/j.aas.2015.c140734
    [4] 曲寒冰, 陈曦, 王松涛, 于明. 基于变分贝叶斯逼近的前向仿射变换点集匹配方法研究[J]. 自动化学报, 2015, 41(8): 1482-1494. doi: 10.16383/j.aas.2015.e130204
    [5] 宋艳涛, 纪则轩, 孙权森. 基于图像片马尔科夫随机场的脑MR图像分割算法[J]. 自动化学报, 2014, 40(8): 1754-1763. doi: 10.3724/SP.J.1004.2014.01754
    [6] 鹿文鹏, 黄河燕, 吴昊. 基于领域知识的图模型词义消歧方法[J]. 自动化学报, 2014, 40(12): 2836-2850. doi: 10.3724/SP.J.1004.2014.02836
    [7] 杨栋, 周秀玲, 郭平. 基于贝叶斯通用背景模型的图像标注[J]. 自动化学报, 2013, 39(10): 1674-1680. doi: 10.3724/SP.J.1004.2013.01674
    [8] 刘松涛, 王慧丽, 殷福亮. 基于图割和模糊连接度的交互式舰船红外图像分割方法[J]. 自动化学报, 2012, 38(11): 1735-1750. doi: 10.3724/SP.J.1004.2012.01735
    [9] 林晓丹. 基于高斯混合模型的DCT域水印检测方法[J]. 自动化学报, 2012, 38(9): 1445-1448. doi: 10.3724/SP.J.1004.2012.01445
    [10] 孙作雷, 茅旭初. 基于激光束匹配和图模型的移动机器人相对运动估计误差分析[J]. 自动化学报, 2011, 37(2): 205-213. doi: 10.3724/SP.J.1004.2011.00205
    [11] 连峰, 韩崇昭, 刘伟峰, 元向辉. 基于SMC-PHDF的部分可分辨的群目标跟踪算法[J]. 自动化学报, 2010, 36(5): 731-741. doi: 10.3724/SP.J.1004.2010.00731
    [12] 郭戈, 王宝凤. 多丢包不确定离散系统的鲁棒Kalman滤波[J]. 自动化学报, 2010, 36(5): 767-772. doi: 10.3724/SP.J.1004.2010.00767
    [13] 孟猛, 王晓瑞, 梁家恩, 徐波. 一种基于互补声学模型的多系统融合语音关键词检测方法[J]. 自动化学报, 2009, 35(1): 39-45. doi: 10.3724/SP.J.1004.2009.00039
    [14] 董远, 陆亮, 赵贤宇, 赵建. 对文本无关的说话人验证中模型距离归一化问题的研究[J]. 自动化学报, 2009, 35(5): 556-560. doi: 10.3724/SP.J.1004.2009.00556
    [15] 徐利敏, 唐振民, 何可可, 钱博. 基于自适应直方图均衡化的鲁棒性说话人辨认研究[J]. 自动化学报, 2008, 34(7): 752-759. doi: 10.3724/SP.J.1004.2008.00752
    [16] 王天树, 郑南宁, 袁泽剑. 机器智能与模式识别研究中的统计学习方法[J]. 自动化学报, 2002, 28(增刊): 103-116.
    [17] 王书宁, 黄学俊, 戴建设. 线性模型参数l∞和l1中心估计量的统一求法[J]. 自动化学报, 1996, 22(3): 353-356.
    [18] 王子栋, 郭治. 离散系统的鲁棒约束方差估计及应用--模型噪声强度不确定情形[J]. 自动化学报, 1996, 22(3): 339-343.
    [19] 权太范. 高精度RBP-模糊推理复合学习系统[J]. 自动化学报, 1995, 21(4): 392-399.
    [20] 张裕明, 吴林. 残差初值的自适应估计[J]. 自动化学报, 1991, 17(4): 395-403.
  • 加载中
计量
  • 文章访问数:  1565
  • HTML全文浏览量:  110
  • PDF下载量:  1989
  • 被引次数: 0
出版历程
  • 收稿日期:  2014-06-03
  • 修回日期:  2014-09-27
  • 刊出日期:  2015-04-20

基于概率图模型的点集匹配方法研究

doi: 10.16383/j.aas.2015.c140376
    基金项目:

    北京市科学技术研究院创新团队计划(2015-20N),北京市科学技术研究院青年骨干计划(2014-30),天津市科技计划(14RCGFGX00846)资助

    作者简介:

    王加强 北京市科学技术研究院模式识别重点实验室助理研究员,河北工业大学微电子学与固体电子学专业博士研究生.2005年和2008年分别获得山东理工大学学士和工学硕士.主要研究方向为图像处理,计算机视觉,模式识别和生物识别.E-mail:wangjq.bj@gmail.com

摘要: 在概率图模型框架下提出了一种将回归分析和聚类分析相结合的贝叶斯点集匹配方法,其中,回归分析用来估计两个点集之间的映射函数,而聚类分析用来建立两个点集中点与点之间的对应关系.本文将点集匹配问题表示为一种多层的概率有向图,并提出了一种由粗到精的变分逼近算法来估计点集匹配的不确定性;此外,还利用高斯混合模型估计映射函数回归中的异方差噪声和场景点密度估计中离群点的分布;同时,引入转移变量建立起模型点集与场景点集之间的关系,并与离群点混合模型共同对场景点的分布进行估计.实验结果表明,该方法与其他点集匹配算法相比,在鲁棒性和匹配精度方面均达到了较好的效果.

English Abstract

曲寒冰, 王加强, 李彬, 王松涛. 基于概率图模型的点集匹配方法研究. 自动化学报, 2015, 41(4): 694-710. doi: 10.16383/j.aas.2015.c140376
引用本文: 曲寒冰, 王加强, 李彬, 王松涛. 基于概率图模型的点集匹配方法研究. 自动化学报, 2015, 41(4): 694-710. doi: 10.16383/j.aas.2015.c140376
QU Han-Bing, WANG Jia-Qiang, LI Bin, WANG Song-Tao. Probabilistic Graphical Model for Robust Point Set Matching. ACTA AUTOMATICA SINICA, 2015, 41(4): 694-710. doi: 10.16383/j.aas.2015.c140376
Citation: QU Han-Bing, WANG Jia-Qiang, LI Bin, WANG Song-Tao. Probabilistic Graphical Model for Robust Point Set Matching. ACTA AUTOMATICA SINICA, 2015, 41(4): 694-710. doi: 10.16383/j.aas.2015.c140376
参考文献 (48)

目录

    /

    返回文章
    返回